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ON ALMOST COMPLEX STRUCTURES IN COVARIANT

TENSOR BUNDLES

SEHER ASLANCI

Abstract. The main purpose of the present paper is to discuss rela-
tions between holomorphic covariant tensor fields and lifts on pure cross-
sections in tensor bundles of types (0, q). We prove that the complete lift
of almost complex structure, when restricted to the pure cross-section
determined by an almost holomorphic covariant (0, q)-tensor fields, is an
almost complex structure on covariant tensor bundle.

1. Introduction

We suppose that (M2r, ϕ) is an almost complex manifold. Let C be a complex

algebra and
∗
ω = (

∗
ωv1...vq), v1 . . . vq = 1, . . . , r be a complex tensor field of type

(0, q) on holomorphic (analytic) complex manifold Xr(C). Then the real model

of
∗
ω is a tensor field ω = (ωj1...jq), j1 . . . jq = 1, . . . , 2r on M2r such that

ω(ϕX1, X2, . . . , Xq) = ω(X1, ϕX2, . . . , Xq) = . . . = ω(X1, X2, . . . , ϕXq)

for any X1, X2, . . . , Xq ∈ =1
0(M2r). Such tensor fields are said to be pure with

respect to ϕ. They were studied by many authors ([2, 3, 5, 6]). The covector
field (1-form) is considered to be pure, by convention.

We denote by
∗
= 0

q(M2r) the module of all pure tensor fields ω of type (0, q)
on M2r with respect to the almost complex structure ϕ. We now fix a posi-
tive integer λ, where 1 ≤ λ ≤ q. If ω is any pure tensor fields of type (0, q),

then the tensor product of ω and ϕ with contraction (ω
C
⊗ϕ)(Y1, Y2, . . . , Yq) =

ω(Y1, . . . , ϕYλ, . . . , Yq) = (ϕmλjλ ωj1...mλ...jq) is also pure tensor field. We shall prove

only the case when ϕ ∈
∗
=1

1(M2r) and ω ∈
∗
= 0

2(M2r). In fact, we have

(ω
C
⊗ϕ)(ϕX, Y ) = ω(ϕ(ϕX), Y )) = ω(ϕX,ϕY )) = (ω

C
⊗ϕ)(X,ϕY )

for any X,Y ∈ =1
0(M2r). The product ω

C
⊗ϕ is also denoted by ω ◦ ϕ and called

the pure product.

Let now ω ∈
∗
=

0

q(M2r). The Φϕ-operator associated with ϕ and applied to ω is
defined by [5], [6]
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(Φϕω)(X,Y1, . . . , Yq) = (ϕX)(ω(Y1, Y2, . . . , Yq))−X(ω(ϕY1, Y2, . . . , Yq))
+
∑q

λ=1 ω(Y1, Y2, . . . , ϕ(LXYλ), . . . , Yq) ,
(1.1)

where Φϕω ∈ =0
q+1(M2r) and LX is the Lie derivation with respect to X.

Let on M2r be given the integrable almost complex structure ϕ. For complex

tensor field
∗
ω of type (0, q) on Xr(C) to be C−holomorphic tensor field it is

necessary and sufficient that Φϕω = 0 (see [4], p.57). Let now M2r be a manifold
with non-integrable almost complex structure ϕ. In this case, when Φϕω = 0, ω
is said to be almost holomorphic.

2. Lifts on a cross-sections

Let Mn be a differentiable manifold of class C∞ and finite dimension n. Then
the set T 0

q (Mn) =
⋃

P∈Mn

T 0
q (P ) is, by definition, the tensor bundle of type (0, q)

over Mn, where
⋃

denotes the disjoint union of the tensor spaces T 0
q (P ) for all

P ∈ Mn. For any point P̃ of T 0
q (Mn) such that P̃ ∈ T 0

q (Mn), the surjective

correspondence P̃ → P determines the natural projection π : T 0
q (Mn) → Mn.

The projection π defines the natural differentiable manifold structure of T 0
q (Mn),

that is, T 0
q (Mn) is a C∞-manifold of dimension n+nq. If xj are local coordinates

in a neighborhood U of P ∈ Mn, then a tensor t at P which is an element of
T 0
q (Mn) is expressible in the form (xj , tj1...jq), where tj1...jq are components of t

with respect to natural base. We may consider (xj , tj1...jq) = (xj , xj̄) = (xJ),
j = 1, . . . , n, j̄ = n + 1, . . . , n + nq, J = 1, . . . , n + nq as local coordinates in a
neighborhood π−1(U) ⊂ T 0

q (Mn).

We denote by =pq(Mn) the module of all tensor fields of type (p, q) on Mn. If
α ∈ =q0(Mn), then it is regarded in a natural way (by contraction) as a function
in T 0

q (Mn), which we denote by ıα. If α has local expression

α = αj1...jq∂j1 ⊗ . . .⊗ ∂jq
in a coordinate neighborhood U(xj) ⊂ Mn, then ıα = α(t) has the local expres-
sion

ıα = αj1...jq tj1...jq

with respect to the coordinates (xj , xj̄) in π−1(U).
Suppose that A ∈ =0

q(Mn). Then there is a unique vector field VA ∈ =1
0(T 0

q (Mn))

(vertical lift of A) such that for α ∈ =q0(Mn) [1]

VA(ıα) = α(A) ◦ π = V (α(A)),

where V (α(A)) is the vertical lift of the function α(A) ∈ F (Mn).

If VA = VAj∂j+VAj̄∂j̄ , then the vertical lift VA of A to T 0
q (Mn) has components

VA =

(
VAj

VAj̄

)
=

(
0

Aj1...jq

)
(2.1)

with respect to the coordinates (xj , xj̄) in T 0
q (Mn) [2].
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Let LV be the Lie derivation with respect to V ∈ =1
0(Mn). We define the

complete lift cV = L̄V of V to T 0
q (Mn) [1] by

cV (ıα) = ı(LV α)

for α ∈ =q0(Mn). The vector field cV has components

cV =

(
cV j

cV j̄

)
=

(
V j

−
∑q

µ=1 tj1...m...jq∂jµV
m

)
(2.2)

with respect to the coordinates (xj , xj̄) in T 0
q (Mn) [2].

Suppose that there is given a tensor field ω ∈ =0
q(Mn). Then the correspon-

dence x → ωx, ωx being the value of ω at x ∈ Mn, determines a mapping
σω : Mn → T 0

q (Mn), such that π ◦ σω = idMn , and the n-dimensional submani-

fold σω(Mn) of T 0
q (Mn) is called the cross-section determined by ω. If the tensor

field ω has the local component ωk1...kq(x
k), the cross-section σω(Mn) is locally

expressed by {
xk = xk

xk̄ = ωk1...kq(x
k)

(2.3)

with respect to the coordinates (xk, xk̄) in T 0
q (Mn). Differentiating (2.3) by xj ,

we see that n tangent vector fields Bj(j = 1, . . . , n) to σω(Mn) have components

(BK
j ) = (

∂xK

∂xj
) =

(
δkj

∂jωk1...kq

)
(2.4)

with respect to the natural frame {∂k, ∂k̄} in T 0
q (Mn).

On the other hand, the fibre T 0
q (x) = π−1(x) is locally expressed by{
xk = const,
tk1...kq = tk1...kq ,

tk1...kq being consider as parameters. On differentiating with respect to xj̄ =

tj1...jq , we see that nq tangent vector fields Cj̄(j̄ = 1, . . . , nq) to the fibre T 0
q (x)

have components

(CKj̄ ) = (
∂xK

∂xj̄
) =

(
0

δj1k1 . . . δ
jq
kq

)
(2.5)

with respect to the natural frame {∂k, ∂k̄} in T 0
q (Mn), where δji is the Kronecker

symbol.
A vector field X along a cross-section σω : Mn → T 0

q (Mn) is mapping X : Mn →
T
(
T 0
q (Mn)

)
(T (T pq (Mn))-tangent bundle over the manifold T 0

q (Mn)) such that

π̃◦x = σω, where π̃ is the projection π̃ : T
(
T 0
q (Mn)

)
→ T 0

q (Mn). Thus X assigns

to each point x ∈Mn a tangent vector to T 0
q (Mn) at σω (x) and therefore n+nq

local vector fieldsBj and Cj̄ in π−1 (U) ⊂ T 0
q (Mn) are vector fields along σω (Mn).

They form a local family of frames
{
Bj , Cj̄

}
along σω(Mn), which is called the

adapted (B,C)- frame of σω(Mn) in π−1(U). From cV = cV h∂h+cV h̄∂h̄ and cV =
cV jBj + cV j̄Cj̄ , we easily obtain cV k = cV jBk

j + cV j̄Ck
j̄
, cV k̄ = cV jBk̄

j + cV j̄C k̄
j̄
.

Now, taking account of (2.2) on the cross-section σω(Mn), and also (2.4) and
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(2.5), we have cṼ k = V k, cṼ k̄ = −LV ωk1...kq . Thus, the complete lift cV has
along σω(Mn) components of the form

cV =

(
cṼ k

cṼ k̄

)
=

(
V k

−LV ωk1...kq

)
with respect to the adapted (B,C)- frame. From (2.1), (2.4) and (2.5), by using
similar way the vertical lift VA also has components

VA =

(
V Ãk

V Ãk̄

)
=

(
0

Ak1...kq

)
with respect to the adapted (B,C)- frame.

3. Lifts on a holomorphic pure cross-sections

Let S ∈ =1
2(M2r). Making use of the Jacobi matrix of the coordinate transfor-

mation in T 0
q (M2r):{

xj
′

= xj
′
(xj),

xj̄
′

= tj′1...j′q = Aj1
j′1
. . . A

jq
j′q
tj1...jq = A

(j)
(j′)x

j̄ ,

where

A
(j)
(j′) = Aj1

j′1
. . . A

jq
j′q
, Aj1

j′1
=
∂xj1

∂xj′
,

we can define a (1,1)-tensor field γS ∈ =1
1(T 0

q (M2r)):

γS = ((γS)IJ) =

(
(γS)ij (γS)i

j̄

(γS)īj (γS)ī
j̄

)
=

(
0 0

tmi2...isS
m
ji1

0

)
,

where Smji1 are local components of S in M2r. Clearly, we have γS(VA) = 0 for

any A ∈ =0
q(M2r). We can easily verify that the lift γS has along cross-section

σω(M2r) components

γS = ((γ̃S)IJ) =

(
0 0

ωmi2...isS
m
ji1

0

)
(3.1)

with respect to the adapted (B,C)-frame, where ωmi2...is are local components of
ω in M2r.

Theorem 3.1. Let ω ∈ =0
q(M2r) be a pure tensor field with respect to ϕ and

ϕ2 = −idM2r . Then ω ◦ ϕ ∈ KerΦϕ if and only if ω ∈ KerΦϕ, where Φϕ is
defined by ( ) and (ω ◦ ϕ) (Y1, Y2, . . . , Yq) = ω(ϕY1, Y2, . . . , Yq).

Proof. Taking account of (1.1) and the purity of ω, we have

(Φϕω)(X,Y1, . . . , Yq) =
(
LϕXω − LX (ω ◦ ϕ)

)
(Y1, . . . , Yq) . (3.2)

If we substitute ω ◦ ϕ into ω and ϕX into X, then the equation (3.2) may be
written as

(Φϕ (ω ◦ ϕ)) (ϕX, Y1, . . . , Yq) =
(
Lϕ2X (ω ◦ ϕ)− LϕX

(
ω ◦ ϕ2

))
(Y1, . . . , Yq)

= − (LX (ω ◦ ϕ) + LϕXω) (Y1, . . . , Yq)
= − (Φϕω) (X,Y1, . . . , Yq)
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or

((Φϕ (ω ◦ ϕ)) ◦ ϕ) (X,Y1, . . . , Yq) = − (Φϕω) (X,Y1, . . . , Yq) ,

from which by virtue of detϕ 6= 0, we see that Φϕ (ω ◦ ϕ) = 0 if and only if
Φϕω = 0. �

We also have

Theorem 3.2. Let ω ∈ =0
q(M2r) be a pure tensor field with respect to ϕ, and

ω ∈ KerΦϕ. If ϕ2 = −idM2r , then ω ◦Nϕ = 0, where

(ω ◦Nϕ) (X,Y1, Y2, . . . , Ys) = ω (Nϕ (X,Y1) , Y2, . . . , Ys) ,

Nϕ is the Nijenhuis tensor of ϕ.

Proof. Since (Φϕϕ)(X,Y ) = −(LϕY ϕ)X +ϕ((LY ϕ)X) = Nϕ(X,Y ) (see [3]), the
statement of theorem follows immediately from Theorem 3.1 and the following
formula:

(Φϕ(ω ◦ ϕ))(X,Y1, Y2, . . . Ys) = (Φϕω)(ϕX, Y1, Y2, . . . Ys)
+ω((Φϕϕ)(X,Y1), Y2, . . . Ys) = ((Φϕω) ◦ ϕ)(X,Y1, Y2, . . . Ys)
+ω(Nϕ(X,Y1), Y2, . . . Ys).

Let now T 0
q (M2r) =

⋃
P∈M T 0

q (P ) be a tensor bundle of type (0, q) with local

coordinates (xi, xī = ti1i2...iq) , i = 1, . . . , 2r; ī = 2r+ 1, . . . , 2r+ (2r)q. It is well

known that [2], the complete lift Cϕ to T 0
q (M2r) with components{

cϕ̃kl = ϕkl ,
cϕ̃k

l̄
= 0, cϕ̃k̄l = −(Φϕω)lk1...kq ,

cϕ̃k̄
l̄

= ϕl1k1δ
l2
k2
. . . δ

lq
kq

(xk̄ = tk1...kq , x
l̄ = tl1...lq)

with respect to the adapted (B,C)- frame of σω(M2r) satisfies the following equa-
tions {

(Cϕ)2(CX) = C(ϕ2)(CX) + γNϕ(CX) ,
(Cϕ)2(VA) = C(ϕ2)(VA) , VA ∈ =1

0(T 0
q (M2r))

(3.3)

for any X ∈ =1
0(M2r) and A ∈ =0

q(M2r), where γNϕ ∈ =1
1(T 0

q (M)) has compo-
nents (see (3.1))

γNϕ =

(
(γ̃Nϕ)ij (γ̃Nϕ)i

j̄

(γ̃Nϕ)īj (γ̃Nϕ)ī
j̄

)
=

(
0 0

(ω ◦N)ji1i2...is 0

)
with respect to the adapted (B,C)−frame. When ϕ is an almost complex struc-
ture on M2r, a pure tensor field ω of type (0, s) satisfying ω ∈ KerΦϕ is said to
be almost holomorphic (see the end of Introduction). �

Therefore from (3.3), Theorem 3.1 and Theorem 3.2 we obtain a following
theorem:

Theorem 3.3. Let M2r be a C∞- manifold with an almost complex structure
ϕ. Then the complete lift Cϕ ∈ =1

1

(
T 0
q (M2r)

)
, when restricted to the pure cross-

section determined by an almost holomorphic tensor field ω on M2r, is an almost
complex structure.
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