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SOME CONVOLUTION INEQUALITIES IN MUSIELAK
ORLICZ SPACES

RAMAZAN AKGUN

Abstract. Uniform boundedness of some family of convolution-type
operators with kernels, such as Steklov, Poisson, Cesaro, De la Vallée-
Poussin, Fejér, Jackson, having some properties are investigated in Musielak
Orlicz spaces. As an application we obtained approximate identities in
these spaces.

1. Introduction

Approximate identities are very useful tool ([4, p.31, Def. 1.1.4], [19, p.62],
[20, Ch.9]) in Fourier and Harmonic Analysis. In these books there are two
approaches. For the approach defined in the books [19, p.62] and [20, Ch.9]
approximate identities are investigated by Benkirane, Douieb, Val ([3]); Cruz-
Uribe, Fiorenza ([5]); Hudzik ([8]); Maeda, Ohno, Mizuta, Shimomura ([10, 11])
and Samko ([13]) in generalized Lebesgue spaces with variable exponent and
Musielak Orlicz spaces. Some convolution type inequalities were investigated by
R. A. Bandaliev, A. H. Isayev in [2] and F. I. Mamedov, S. H. Ismailova in [12].

For the approach similar to definition in [4, p.31, Def. 1.1.4] some results are
obtained by Sharapudinov ([15]) and Shah-Emirov ([14]) in (weighted) generalized
Lebesgue spaces with variable exponent. Continuing this fact our work mainly
focus on to obtain approximate identities in Musielak Orlicz spaces. To do this
we will consider A > 1 and 2w-periodic, essentially bounded kernels ky = k()
on T := [—m,7) such that

| n@lde < ¢y 1)
T

sup et |ka(z)| < CaNY; (1.2)
’k,\(&?)‘ S 03; A_’y S ‘.ZL'| S ™ (1.3)

for some constants C}23,v,7 > 0, which are independent of A\. We define the
operator

Kyf(z) = /Tf(t)kA(t —2)dt, 1<A<oo, zeT.
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Then we prove that sequence of operators { K f }1<x<oo is uniformly bounded (in
A) in Musielak Orlicz spaces L¥ for some conditions on ¢. For example Steklov,
Poisson, Cesaro, De la Vallée-Poussin, Fejér, Jackson’s and some other kernels
satisfy (1.1-1.3). As a result we can obtain several approximate identities in
Musielak Orlicz spaces L?. Note that we will use a Dini-Lipschitz type condition
on . Also we obtain that the family {S\ ;f}1<i<oo formed with translation of
Steklov-type means in L, is uniformly bounded for v > 0, |7| < wA™7, where
Sxrf is defined ([16]) by

T+1/(2))
Sxrf(x) =S flz+71)=A f(@ + u)du.
T—1/(2))

In §2 we give preliminary notations and definitions. In §3 we consider uniform
boundedness of the family {S) - f}1<)<oo- In §4 we consider the uniform bound-
edness of some family of convolution-type operators with kernels, such as Steklov,
Poisson, Cesaro, De la Vallée-Poussin, Fejér, Jackson, having properties (1.1-1.3)
in Musielak Orlicz spaces L¥. In the last section §5 we obtain approximate iden-
tities in Musielak Orlicz spaces L¥.

In what follows, A < B will mean that, there exists a positive constant Cy, ...,
dependent only on the parameters u, v, ... and can be different in different places,
such that the inequality A < CBis hold. If A < B and B < A then we will write
B ~ A.

2. Preliminaries
A function ¢ : [0,00) — [0,00] is called ®-function (briefly ¢ € @) if ¢ is
convex, left continuous and

(0) = lim o (t) =0, ¢(c0):= lim ¢ (x) = co.

T—00

A ®-function ¢ is said to be an N-function if it is continuous, positive and satisfies

lim 20— g 20
o+ t t—oo ¢
Let @ (T') be the collection of functions ¢ : T x [0, 00) — [0, 00| such that
(i) ¢ (z,-) € ® for every z € T,
(ii) ¢ (w,u) is in L°(T'), the set of measurable functions, for every u > 0.
A p(-,u) € ®(T) said to satisfy Ag condition (¢ € Ag) with respect to u if
v (x,2u) < Ky (x,u) holds for all z € T,u > 0, with some constant K > 2.
Subclass ® (V) consists of functions ¢ € ® (T') such that
(1) ¢ (z,-) is, for every x € T, an N-function and ¢ € Ag;
(IT) there exists a constant ¢ > 0 such that inf,cr ¢ (z,1) > ¢;
(II) [ ¢ (2,1) < oo and ¢ (z,1) < ca.e. on T;
(IV) there exists a constant A > 0 such that for all z,y € T we have

= OQ.

14 ($,U) < u*Aln Eiy‘, u>1.
e (y,u)

Some examples belonging to ® (N): Let p : T — [1,00) be in L (T) such that
2m-periodic, essentially bounded on 7" and, for all z,y € T it has Dini-Lipschitz
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property
1
|z — |

Ip(x) —p(y)|In

with a constant ¢ > 0. Then the functions

<c

o ¢ (r,u) =uP® sup,erp(r) < oo,
o (i) ¢ (z,u) = u"™ log (1 +u), supyerp(z) < oo,
o (iii) ¢ (2,u) = u (log (1 + u))P®

belong to the class ® (V).

For ¢ € ®(N) we set o, (f) := [r¢(z,|f (z)])dz. Generalized Orlicz class
L? (or Musielak Orlicz space) is the class of 27 periodic Lebesgue measurable
functions f : T — R satisfying the condition limy_,g 0, (Af) = 0. Equivalent
condition for f € L°(T) to belong to L¥ is that g, (Af) < oo for some A > 0. L¥
becomes a normed space with the Orlicz norm

11l —sup{/ 1f () g ()| de : ew(g)gl}

and with the Luxemburg norm

||f||w:inf{)\>0:g¥, <§> < 1}

where ¢ (t,v) := sup,>¢ (uv — ¢ (t,u)), v > 0, t € T, is the complementary
function (with respect to variable v) of ¢ in the sense of Young. These two
norms are equivalent:

1l < [1f1lg < 2111,
Young’s inequality holds for complementary functions ¢, € ® (N)
us < @ (z,u) + v (z,s)
where u,s > 0, x € T. From Young’s inequality we have
1fllg) < 00 (f) + 1.

Also [, < 0p ()it ]I, > 1and [ ], = o, (f)if | £, < 1. Holder’s inequality
holds:

| 1r@a@lde <171, 151 (2.1)

If ¢ is an N-function, r () is nonnegative and r () # 0, then Jensen’s integral
inequality holds:

0 (m | 1@r@ dx) < W [et@r@a. @)

3. Steklov operator

In this section we will consider the uniform boundedness of the family formed
with translation of Steklov means.
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Theorem 3.1. If we take v > 0, 1 < X\ < oo, |7| < wA™7, then the sequence of
operators {Sx r Fi<r<oo defined by

z+7+1/(2X)

Surf) = Sifern=a [

is uniformly bounded in \ and T, for functions f in LY with ¢ € ® (N).
Proof. Let N := |\"|, h:=1/N,z €T, x := (kh — 1) 7w, Uy := [vk, Tx+1). Then
2N—1
T = |J Uk where the length of Uy is | (Ug) = |xgy1 — x| = 7/|A\7].
k=0
Assume that || f|[, < 1. We need to show that
o (Saeh) = [ o @IS @ o < e

T
with ¢ > 0 independent of f. Then

zHT+1/(2))
Py (SA,Tf) = Py (A/ f(t)dt>

Fr—1/(2))
- [l
T

a+7+1/(2))
A / F(t)dt
cr—1/(2))

>dx

2N—-1 Thy1 x+7+1/(2))
< Z / olx, 1+ A / f(t)dt| | du.
k=0 YTk z+7—1/(2X)

We set
ok (u) = inf{gp(w,u) tx € Ek} <inf{p (z,u) :z € Uy} =: ¢ (u)
for some larger set ZF O Uy, which will be chosen later with the property
! (Ek) < mr/|\] (3.1)

for some m > 1. On the other hand

2N—1 gy z+7+1/(20)
pereh S Y [ A (14a] [ f(t)dt| ) do
k=0 YTk z+7—1/(2))
where
x+7+1/(20)
¥ (9«31 A | Ler 1/ f(t)dt)) o (z,a(z,\)
Ap (@, 4) = a1/ (2N T onla(mN)
o (LA TSN o) enlala

We prove the uniform estimate Ay (x,\) < ¢ for z € Uy where ¢ > 0 is indepen-
dent of x, k and A. Indeed, since
A
olat) _ ot _ (i)
ek (t) o (sk )

, x€Usq e=F

we have
A

1

_g@(x,a(:n,)\)) In P,
Ak(x,)\)—mga(az,A) <| |).
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Also |z — | <1 (EF) < ma/|\7] and

ln<;> Q’Y
A |z—sk| < )\ln(im) < C(m’ A)’

a4+74+1/(2))
/ W) <Clfl, <C
a+T—1/(2))

a(z,\) () < <\ (C+2)" w(57) < C(m, A).

Since ¢ (x,t) is convex with respect to t, ¢y, is convex and

2N—-1

Tk+1 o
o (Srf) S Z / 29% ) dz+
2N-1

Thy1 () z+7+1/(20)

> [T al(r F@)]de ) d

=0 YTk z+7—1/(2))
2N—-1

B C(,ZD(QW)/ g /$k+1 /CC+T+1/(2/\)
=5 de+2 > e A o ()| dt | da

k=0
2N -1
C Tht1 T+7+1/(2X)
:c@(27r)77+2/ Ok A/ |F(8)] dt | da.
2 k=0 Y%k z+7—1/(2X)
In the last integral we use the Jensen’s integral inequality (2.2) and

2N—-1 g, T+7+1/(2))
po (Srrf) S e+ > / Pk /\/ |f(t)|dt | dz
k=0 Yk z+7—1/(2X)
2N—-1 Tht1 z+74+1/(2X)
< o+ / / f dtdx
Z Tk x+7—1/(2)) ’ ( )‘)
2N—1 gy pr41/(2))
S e+ A / / f(z+1)])dtdx
Z Tk T—1/(2X) ‘ ’
T+1/(2)\) 2N—-1 Tk41
Scrrf Y / o (1 + 1)) dnd
T—1/(2\) k=0 “ Tk
T+1/(2>\) 2N-1 Z‘k+1—t
< et [ el dsat
T=1/(2X) o Jmk—t
We take as ZF the set
U {z:z+teUs}.

te(—7—1/(2X),7+1/(2)))

283

Clearly % O Uy, and [ (E¥) < 57/|A\7]. Then (3.1) is satisfied with m = 5. Since
each point x € T belongs simultaneously not more than to a finite number ng
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of the sets Ug, taking maximum with respect to all the sets Uy containing z we
obtain

TH1/(23)
po(Sanf) S e A / dat / & (. 1f(@))) da
7—1/(2\) T

S ot [ el ds
with ¢ (x,u) := max; ¢; (t). Now using
¢ (z,u) <p(z,u), VzeT,

we get

po (Sarf) < C+/T90(w,\f(w))dﬂs Sct|fll,<C

These are give

I1Sx+fll, S 11, -
and the result follows. O

Let p € ®(N), f € L¥, 0 < h <1 and define the Steklov operator

1 h
Thf () = Sinpsef (x) = h/o flx+t)dt, zeT.
For 0 < 6 € RT we define the modulus of continuity for f € L¥, p € ® (N), as

Q(f,0),:= P (L =Th) fll,

where I is the identity operator. We have that if o € ® (N), f € L¥ and 6 > 0,
then

Q(f,0), S Iflly

holds for some constant depending only on ¢. In general, modulus of continuity
Q(f, ')90 is the main tool in Approximation Theory ([1, 9, 17]).

4. Some convolution inequalities
Let A > 1, k\ = kx(z) be 2m-periodic, essentially bounded function defined on
T, such that (1.1-1.3) hold. We define the operator
Ky f(z) :/ fOkA(t—z)dt, 1<A<oo, zeT. (4.1)
T

Such type conditions on kernel and operators (4.1) were investigated for variable
exponent Lebesgue spaces in [15].

Theorem 4.1. Let A > 1, ky\ = kx(z) be 2r-periodic, essentially bounded func-
tion defined on T', such that (1.1)-(1.3) to hold. If f in LY with ¢ € ® (N), then
there exist a constant, independent of A and f, such that

BNl S I

holds.
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Proof. The proof is similar to the proof of Theorem 3.1. Let N := [\Y], h :=1/N,
x €T,z = (kh—1)7m, Uy := [vk, Tky1),

T\ (x — mh,x + 7h) , when (z — wh,z +mh) C T,
E, =< T\{(-m,z+wh)U(x —7h+2m,7)} ,whenz—7h< —m,
T\{(z —7h,m)U(—m,x +7h —2m)} , when z+ 7h > 7.

2N—1
Then T'= |J Uy where the length of Uy is I (Uy) = |zk+1 — zx| = 7/|A7].

k=0
Assume that [|f||,, = 1. We need to show that

o (Knf) = [ @07 @) d < c

with ¢ > 0 independent of f. Then convexity of ¢ implies

pe (Exf) = po </ F@)kA(t — ) dt) =Py ({/Hm /x} ()ka( t—ﬂﬁ)dt>
< %o ( / izhf( >ka<t—x>dt) L ( / it h(t—x)dt)

= I + 1.
If z € T and t € E,, then, from (1.3), we have
[kt — )] S 1.

Using Holder’s inequality (2.1) and (III) we obtain

f(t)kx(t—x)dt‘ < / ()] dt
E.
< Ay S 1y S e+ 1

and hence

L < p (QC/EIf(t)kA(t—x)dQ < K/T<p (x/E f(t)k,\(t—x)dt) do

/cp(x,c+1)dx§/<p(m,1)dw§0.
T T

z+mh
nos [e(o [ 0l - o)

2N—-1

- Tl z+7h
< X [Te(nre [0l do

k=0

AN

Now

On the other hand
2N—-1

ne Y [Maena (1 [ - olar) as
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where

12 (l‘ 1+ fx+7rh [f ()] [kA(t — )| dt) _ @(w,a(x,)\)).
( +f$+7rh Hk/\(t—xﬂdt) or (a(z,N))

We prove the uniform estimate Ay (x,\) < ¢ for z € Uy where ¢ > 0 is indepen-
dent of x, k and A. Indeed, since

Ag (z, A) =

. N oy
o (x,t) ¢ (2,1) <t (I %), x € Uy, s € EF
wr () el ?)

we have
A

o (z,a(z,\)) o (z h(ﬁ)
prlaa ) = TEN T
Also |z — | <1 (EF) < mm/|\7] and

x+mh
MMANSW<L{/ !ﬂmﬁ>ﬁdﬂmu—dﬂ

—7h

Ag (2, N\) =

A

A

o))" (F5) < (e )" < (OAU)@
< C(m,A) (Al/ln(ﬁ))UA < C(m, A,v).

Let puy = f_tf: |kA(t — )| dt = ff::h |kx(t)| dt.Then py < C. Without loss

of generality we may assume that uy > 0, because the sequence of operators

{K\f}H<r<oo formed with with gy = 0 is uniformly bounded in L?, p € ® (N).
As before, by Jensen’s integral inequality (2.2)

2N—-1

Tht1 x+7rh
L < Z/ cpk(l—i—C / )Hk:A(t—:c)\dt)
2N-1 Tht1 z+7h
< c—l—CZ/ ( / ]f(t)\k,\(t—x)]dt>dx

—mh
2N—1 gy 1 x—f—ﬂ'h
< e+ Z/ / t)]) |ka(t — x)| dtdx
aN—1
< et Z / NG \/ e (1f (@ + 1)) ddt
1 2N—1
< e M |Z/ e (1f (@ + 0)]) dadt
KX J—=h Ty
2N—-1 ., ¢
1 k+1—
S ¢+ — kx(t) / dxdt.
o _Wh| !Z . (@))

We take as ZF the set

U {z:z+teU}.

te(—mh,mh)
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Clearly ZF > Uy, and [ (EF) < 37/|A\7]. Then (3.1) is satisfied with m = 3. Since
each point x € T belongs simultaneously not more than to a finite number ng
of the sets Uy, taking maximum with respect to all the sets Uy containing x we

obtain
wh

L o< c+; Ikx()ldt/ (2, 1/ (2)]) dz

—7h

S ot el
with ¢ (x,u) := max; ¢; (t). Now using
o(z,u) < p(z,u), VreT,
we get
po s St [ ol lf@Dde e+, < C

These are give

IS, < NI,
and the result follows. O

5. Approximate identities
Holder’s inequality (2.1) and (III) imply
[ 1r@iae s i1 < clml,
and hence L¥ C L'. Let
a o
f(x) - ()Q(ﬂ—i-;(ak (f)coskx + by (f)sinkx) ZAk z, f) (5.1)

be the Fourier series of f in L¥ with ¢ € ® (N) and

=D Az

be the partial sum of the Fourier series (5.1

(z, f) = %/ft)pnt_m (5.2)

), n=0,1,2,.
).

It is well known that

with Dirichlet kernel D, (u) :=1+ 2 Z cos ku.
k=1
We define, for n,m € NU {0}, De la Vallée-Poussin mean

1 m
Vir(f,) = —— Snti(-s f)- 5.3
m(f?) m+1i:0 +(f) ( )
Note that we can give below examples of kernels satisfying the properties (1.1)-
(1.3):
(a) Steklov Operator oy f: Let Ay :=[—1/(2X),1/(2))], A > 1 and

{)\ ,LEEA)\,

Fa(w) = 0 ,zeT\ A
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We extend k) to R : =(—o00,00) with period 27. Steklov operator o) f is repre-

sented as e
oxf(x) = )\/ flu)du = / F@EA(t — z)dt.
e—1/(2)) T

kernel k) satisfies the properties (1.1)-(1.3) with v =1 = ~.
(b) De la Vallée-Poussin Operator V}}, f: Based on (5.3)and (5.2) we define De

la Vallée-Poussin Operator as
— [ rorn -2
T

sin? (m 4+ n + 1) u/2 — sin? (nu/2)
2 (m + 1) sin? (nu/2)
In this case kernels K]'_; and K] are satisfy the conditions (1.1)-(1.3).
(c) Fejér Operator Fyf: Let n € N,

(1) = 1 snl(gm4f1)x/2) 27
2(n+1) sin (x/2)
be the Fejér kernel and kx (z) := ky (z) for n < X < n + 1. The Fejér Operator

is defined as F)f (z) := L [, f(t)kx(t — z)dt. The Fejér kernel (5.4) satisfies the
properties (1.1)- (1 3) Wlth v= 1,7 = 1/2 since

n+1 C
< <
(1) < 2 n(t) < (n+1)¢t?

where

K] (u) =

(5.4)

for 0 <t <.
(d) Cesaro Operator Cyf: Let A € N, a > 0 and

be the Cesaro Operator with Cesaro kernel
A -1 k.
A7 Dy (¢) sin ((v+1/2)t)
k() = A Di(t) =
30 2 Ag et =2 2sin (1/2)t
k=0 v=0
A+« A

A9 = D

g < a ) T (1+a)
satisfies the properties (1.1)-(1.3) with v = 1,7 = o/ (a + 1), because

Ca
ES(t) <2n, ES() < ———
)\()— )\() Aa‘t’a—‘rl

for 0 < |t| < .
(e) Poisson Operator Pyf: Let 0 < r < 1 and A = 1/(1 —r). We define

Poisson Operator
1
x):/f@b@—@ﬁ
™Jr

2

with the Poisson kernel
1—r

iy (@) = P(rz) = 2(1 —2rcosx +1?)
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which satisfies the properties (1.1)-(1.3) with v =1,y = 1 because [ kx(x)dz =
moka(e) < (147) ) 2(1 =), kale) <7 (A< 2 < ).
(f) Jackson Operator Jy f: We define the Jackson operator

Inf(z /f Vea(t —z)dt, XN eN,
where k,, is the Jackson kernel
3 sin(Az/2)\*
k =
ME) = e 1) ( sin(/2) )

satisfy (1.1)-(1.3) with v =1,y =3/4 as

1
— [ kx(t)dt = 1
~ [ b = 1

< 1, A <y <o — 2T
maXier ‘k)\(u)’ 5 A

.1 T \2 9 "U,‘ S %
(g) Let ky(u) := n(2sin 5 ) and extend ky, (u)
n 1(2sm2)smnu s o <u<27r—%
to a 2m-periodic function ([18]) on the whole real axis. Then satisfy ky,(u) (1.1)-

(1.3) with v =1,y =1/2.
Now, Theorem 4.1 gives that

Corollary 5.1. The sequence of operators {Oxf}1<r<oo, given in examples (a)-
(g), is uniformly bounded (in \) in LY with ® (N).

Theorem 5.1. Let A > 1, k) = ky(z) be 2r-periodic, essentially bounded func-
tion defined on T, such that (1.1)-(1.3) and [, ky(x)dx = 1. If f in L¥ with
© € ®(N), then Ky\f is an approrimate identity, i.e.

I(Ex—1) fll, =0
as A — 00.
Proof. Using Corollary 3.7 of [6] we have
L'NIP = L?,  o(x,|f(x)]) < ¢ (2, )max {D|f(2)[",|f(x)]}
where D > 2 is Ay constant of ¢ and p := log, D. Then
I(Ex = 1) fll, < ClIEAf = fll, =0

as A — oo. O

Note that Steklov Operator oy f, Fejér Operator F) f, Cesaro Operator Cy f,
Poisson Operator Py, f, Jackson Operator J) f is approximate identity in L% with
®(N).
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