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ON LAURENT COEFFICIENTS OF CAUCHY TYPE

INTEGRALS OF FINITE COMPLEX MEASURES

RASHID A. ALIEV

Abstract. Boundary values of Cauchy type integrals of finite complex
measures given on an annulus, generally speaking, are not Lebesgue
integrable, and therefore at expansion of Cauchy type integrals in Lau-
rent series, the expansion coefficients cannot be expressed by boundary
values using the Lebesgue integral. In this paper, using the notions
of A-integration and N -integration, we get a formula for calculating the
Laurent expansion coefficients of Cauchy type integrals of finite complex
measures.

1. Introduction

Let T1 = {z ∈ C : | z − a | = R}, T2 = {z ∈ C : | z − a | = r} are the concen-
tric circles with the centers at the point a ∈ C, 0 < r < R, and a finite complex
measure ν is given on the set T = T1

⋃
T2. The function

F (z) =
1

2πi

∫
T

dν (τ)

τ − z
=

1

2πi

∫
T1

dν1 (τ)

τ − z
+

1

2πi

∫
T2

dν2 (τ)

τ − z
,

z ∈ G = {z ∈ C : r < |z − a| < R} , are called Cauchy type integrals of the
measure ν on the annulus G, where ν1 and ν2 are the restrictions of the measure
ν, respectively, on the sets T1 and T2. It is known that (see [13]) the function
F (z) is analytical on the domain G and expanded in Laurent series:

F (z) =
∞∑

k=−∞
ak (z − a)k , z ∈ G, (1.1)

and the expansion coefficients ak, k ∈ Z are determined by the equalities

ak =
1

2πi

∫
T1

(τ − a)−k−1 dν1 (τ) , k ∈ Z+,

ak = − 1

2πi

∫
T2

(τ − a)−k−1 dν2 (τ) , k ∈ Z\Z+. (1.2)

Smirnoff (see [16]) proved that the analytic functions F (z) have finite non-
tangential boundary values F (τ) for almost all points τ ∈ T .
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It follows from a theorem of Zygmund (see [12, ch.5, C, §3◦]) that, if a measure ν
is absolutely continuous: dν (τ) = f (τ) dτ and f ∈ L logL (T ), then the equality

F (z) =
1

2πi

∫
T1

F (τ)

τ − z
dτ − 1

2πi

∫
T2

F (τ)

τ − z
dτ, z ∈ G (1.3)

is holds. Therefore for the Laurent coefficients ak, k ∈ Z the following equalities
are valid:

ak =
1

2πi

∫
T1

(τ − a)−k−1 F (τ) dτ =
1

2πi

∫
T2

(τ − a)−k−1 F (τ) dτ, k ∈ Z. (1.4)

If f ∈ L (T ) and f /∈ L logL (T ), it can happen that the boundary values F (τ)
is not Lebesgue integrable on T , and therefore the equalities (1.3), (1.4) are not
satisfied in this case. It follows from P.L.Ul’yanov’s work [20] that the boundary
values F (τ) is A-integrability on T in the case f ∈ L (T ). In the case when the
measure ν is not absolutely continuous, the boundary values F (τ) do not satisfy
the condition λm { τ ∈ T : |F+ (τ)| > λ } = o (1) as λ → +∞, and therefore do
not integrable in the sense of A-integration. In [4], the author introduced the
notion of N -integration and proved that the boundary values F (τ) of Cauchy
type integrals of finite complex measures is N -integrability on T .

In the present paper, using the notion of A-integration and N -integration, we
obtain the analogue of formula (1.4) for finite complex measures.

2. On Laurent coefficients of Cauchy type integrals of absolutely
continuous measures

For a measurable complex function f on an interval [a, b] ⊂ R we set

[f (x)]n = [f (x)]n = f (x) for |f (x)| ≤ n

[f (x)]n = n · sgnf (x) , [f (x)]n = 0 for |f (x)| > n, n ∈ N,
where sgnz = z

|z| for z 6= 0 and sgn0 = 0.

In 1929, Titchmarsh [18] introduced the notion of Q- and Q′-integrals.

Definition 2.1. Let f be a measurable complex function, defined on an interval

[a, b]. If the finite limit lim
n→∞

∫ b
a [f (x)]n dx ( lim

n→∞

∫ b
a [f (x)]n dx, respectively) exist,

then f is said to be Q-integrable (Q′-integrable, respectively) on [a, b], that is,
f ∈ Q [a, b] (f ∈ Q′ [a, b]), and the value of this limit is referred to as the Q-
integral (Q′-integral) of this function and is denoted by

(Q)

∫ b

a
f (x) dx

((
Q′
) ∫ b

a
f (x) dx

)
.

In the same paper Titchmarsh established that, when studying the properties
of trigonometric series conjugate to Fourier series of Lebesgue integrable func-
tions, Q-integration leads to a series of natural results. A very uncomfortable fact
impeding the application of Q-integrals and Q′-integrals studying diverse prob-
lems of function theory is the absence of the additivity property, that is, the Q-
integrability (Q′-integrability) of two functions does not imply the Q-integrability
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(Q′-integrability) of their sums. If one adds the condition

λm {x ∈ [a, b] : |f (x)| > λ } = o (1) , λ→ +∞, (2.1)

where m stands for the Lebesgue measure, to the definition of Q-integrability
(Q′-integrability) of a function f on the interval [a, b], then the Q-integral and
Q′-integral coincide (Q [a, b] = Q′ [a, b]), and these integrals become additive (see
[18]).

Definition 2.2. Suppose that the function f satisfy the condition (2.1) and is
Q′-integrable (or Q-integrable). That the function f is said to be A-integrable
on [a, b], f ∈ A [a, b], and denoted by

(A)

∫ b

a
f (x) dx =

(
Q′
) ∫ b

a
f (x) dx = (Q)

∫ b

a
f (x) dx.

Let the function f be given on the circle T1 = {z ∈ C : | z − a | = R}. If the
function f∗ (θ) = eiθf

(
a+R · eiθ

)
, θ ∈ [0, 2π] is A-integrable on the interval

[0, 2π], then the function f is said to be A-integrable on T1 and is denoted by

(A)

∫
T1

f (τ) dτ = (A)

∫ 2π

0
ieiθf

(
a+R · eiθ

)
dθ.

The properties of A- and Q-integrals were investigated in [4-6, 9-11, 18], and
for the applications of A- and Q-integrals in the theory of functions of real and
complex variables we refer the reader to [1-4, 7, 8, 14, 15, 17-21].

We need the following theorems proved in [7], [14] and [20].

Theorem 2.1. [7]. Let T0 = {z ∈ C : | z | = 1}, f ∈ L (T0) and F+ (z) =
1

2πi

∫
T0

f(τ)dτ
τ−z , z ∈ D+ = {z ∈ C : |z| < 1} be the Cauchy type integral of the

function f . Then for the Taylor coefficients a′k, k ∈ Z+, of F+ (z) by expanding

Taylor series F+ (z) =
∑∞

k=0 a
′
kz
k holds the equality

a′k =
1

2πi
(A)

∫
T0

τ−k−1F+ (τ) dτ, k ∈ Z+,

where F+ (τ) are the non-tangential boundary values of F+ (z) as z → τ ∈ T0.

Theorem 2.2. [20]. Let f ∈ L (T0) and F+ (z), z ∈ D+ be the Cauchy type
integral of the function f . Then

(A)

∫
T0

τkF+ (τ) dτ = 0, k ∈ Z+,

where F+ (τ) are the non-tangential boundary values of F+ (z) as z → τ ∈ T0.

Theorem 2.3. [7]. Let f ∈ L (T0) and F− (z) = 1
2πi

∫
T0

f(τ)dτ
τ−z , z ∈ D− =

{z ∈ C : |z| > 1} be the Cauchy type integral of the function f . Then for the
Taylor coefficients b′k, k ∈ N , of F− (z) by expanding Taylor series F− (z) =∑∞

k=1
b′k
zk

holds the equality

b′k =
1

2πi
(A)

∫
T0

τk−1F− (τ) dτ, k ∈ N,

where F− (τ) are the non-tangential boundary values of F− (z) as z → τ ∈ T0.
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Theorem 2.4. [14]. Let f ∈ L (T0) and F− (z), z ∈ D− be the Cauchy type
integral of the function f . Then

(A)

∫
T0

τ−kF− (τ) dτ = 0, k ∈ N,

where F− (τ) are the non-tangential boundary values of F− (z) as z → τ ∈ T0.

Theorem 2.5. Let f ∈ L (T ) and F (z) = 1
2πi

∫
T
f(τ)dτ
τ−z = 1

2πi

∫
T1

f(τ)dτ
τ−z +

1
2πi

∫
T2

f(τ)dτ
τ−z , z ∈ G be the Cauchy type integral of the function f . Then for

the Laurent coefficients ak, k ∈ Z, of F (z) by expanding Laurent series (1.1)
holds the equalities

ak =
1

2πi
(A)

∫
T1

(τ − a)−k−1 F (τ) dτ

=
1

2πi
(A)

∫
T2

(τ − a)−k−1 F (τ)dτ, k ∈ Z, (2.2)

where F (τ) are the non-tangential boundary values of F (z) as z → τ ∈ T .

Proof. We denote by

F1 (z) =
1

2πi

∫
T1

f (τ) dτ

τ − z
, {z ∈ C : | z − a | < R} ,

F2 (z) =
1

2πi

∫
T2

f (τ) dτ

τ − z
, {z ∈ C : | z − a | > r} .

It follows from the theorems 2.1, 2.2, 2.3 and 2.4 that

ak =
1

2πi
(A)

∫
T1

(τ − a)−k−1 F1 (τ) dτ, k ∈ Z+, (2.3)

(A)

∫
T1

(τ − a)−k−1 F1 (τ) dτ = 0, k ∈ Z\Z+, (2.4)

ak =
1

2πi
(A)

∫
T2

(τ − a)−k−1 F2 (τ) dτ, k ∈ Z\Z+. (2.5)

(A)

∫
T2

(τ − a)−k−1 F2 (τ) dτ = 0, k ∈ Z+. (2.6)

Since the function F1 (z) is an analytical in the bounded domain
{z ∈ C : | z − a | < R} and the function F2 (z) is an analytical in the unbounded
domain {z ∈ C : | z − a | > r}, then we have∫

T1

(τ − a)−k−1 F2 (τ) dτ = 0, k ∈ Z+, (2.7)

ak =
1

2πi

∫
T1

(τ − a)−k−1 F2 (τ) dτ, k ∈ Z\Z+, (2.8)∫
T2

(τ − a)−k−1 F1 (τ) dτ = 0, k ∈ Z\Z+. (2.9)

ak =
1

2πi

∫
T2

(τ − a)−k−1 F1 (τ) dτ, k ∈ Z+. (2.10)



296 RASHID A. ALIEV

Therefore, it follows from the equations (2.3)-(2.10) and from the additivity of
A-integral (see [18]) that

ak =
1

2πi
(A)

∫
T1

(τ − a)−k−1 F1 (τ) dτ

=
1

2πi
(A)

∫
T1

(τ − a)−k−1 F1 (τ) dτ +
1

2πi

∫
T1

(τ − a)−k−1 F2 (τ) dτ

=
1

2πi
(A)

∫
T1

(τ − a)−k−1 [F1 (τ) + F2 (τ)] dτ

=
1

2πi
(A)

∫
T1

(τ − a)−k−1 F (τ) dτ, k ∈ Z+,

ak =
1

2πi

∫
T1

(τ − a)−k−1 F2 (τ) dτ

=
1

2πi

∫
T1

(τ − a)−k−1 F2 (τ) dτ +
1

2πi
(A)

∫
T1

(τ − a)−k−1 F1 (τ) dτ

=
1

2πi
(A)

∫
T1

(τ − a)−k−1 [F2 (τ) + F1 (τ)] dτ

=
1

2πi
(A)

∫
T1

(τ − a)−k−1 F (τ) dτ, k ∈ Z\Z+,

ak =
1

2πi
(A)

∫
T2

(τ − a)−k−1 F2 (τ) dτ

=
1

2πi
(A)

∫
T2

(τ − a)−k−1 F2 (τ) dτ +
1

2πi

∫
T2

(τ − a)−k−1 F1 (τ) dτ

=
1

2πi
(A)

∫
T2

(τ − a)−k−1 [F2 (τ) + F1 (τ)] dτ

=
1

2πi
(A)

∫
T2

(τ − a)−k−1 F (τ) dτ, k ∈ Z\Z+.

ak =
1

2πi

∫
T2

(τ − a)−k−1 F1 (τ) dτ

=
1

2πi

∫
T2

(τ − a)−k−1 F1 (τ) dτ +
1

2πi
(A)

∫
T2

(τ − a)−k−1 F2 (τ) dτ

=
1

2πi
(A)

∫
T2

(τ − a)−k−1 [F1 (τ) + F2 (τ)] dτ

=
1

2πi
(A)

∫
T2

(τ − a)−k−1 F (τ) dτ, k ∈ Z+.

Theorem 2.5 is proved.
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3. Laurent coefficients of Cauchy type integrals of finite complex
measures

For a measurable real function f on the interval [a , b] we write

(f > λ) = {x ∈ [a , b] : f (x) > λ} , (f < λ) = {x ∈ [a , b] : f (x) < λ} ,
(f ≥ λ) = {x ∈ [a , b] : f (x) ≥ λ} , (f ≤ λ) = {x ∈ [a , b] : f (x) ≤ λ} .

Definition 3.1. We denote by M ([a , b] ; C) the class of measurable complex-
valued functions f on the interval [a , b] for which a finite limit lim

λ→+∞
λm (|f | > λ)

exist.

In [4] the author showed that the Q-integral and the Q′-integral coincide on
the function class M ([a , b] ; C), that is, if f ∈M ([a , b] ; C), then for the exis-

tence of the integral (Q)
∫ b
a f (x) dx it is necessary and sufficient that the integral

(Q′)
∫ b
a f (x) dx exist, and in that case these integrals are equal.

Let be a measurable real 2π - periodic function such that for every interval
[α , β] ⊂ R there exists a finite limit

lim
λ→+∞

λm {x ∈ [α , β] : |f (x)| > λ} .

We write (see [2])

P (f ; q;x; t) =
π

2
ctg

πqn−1

2
f (t)

for t ∈
(
x− πqn−1, x− πqn

)⋃(
x+ πqn, x+ πqn−1

)
, n ∈ Z+, 0 < q < 1,

P1 (f ;x) = lim
q→1−

lim
η→+∞

ηm { t ∈ (x, x+ π) : |P (f ; q;x; t)| > η} , (3.1)

P2 (f ;x) = lim
q→1−

lim
η→+∞

ηm { t ∈ (x− π, x) : |P (f ; q;x; t)| > η} , (3.2)

rλ,f (x) =

 sgn (P2 (f ;x)− P1 (f ;x)) for f (x) > λ,
0 for |f (x)| ≤ λ,

sgn (P1 (f ;x)− P2 (f ;x)) for f (x) < −λ,
under the assumption that the finite limits on the right-hand sides of the equations
(3.1) and (3.2) exist for almost all x ∈ [0, 2π). For every measurable complex
function f = Ref + iImf defined on the interval [0, 2π) we write rλ,f (x) =
rλ,Ref (x) + irλ,Imf (x) under the assumption that rλ,Ref (x) and rλ,Imf (x) exist
for almost all x ∈ [0, 2π).

Definition 3.2. Let SM ([0, 2π] ; C) denote the class of complex measurable
functions f on the interval [0, 2π) for which rλ,f (x) exists for almost all x ∈
[0, 2π), the limit

lim
ε→0+

lim
λ→+∞

λ

∫ β−ε

α−ε
rλ,f (t) dt

exist for every interval [α , β) ⊂ [0, 2π), and the function f− ν̃ satisfies condition
(2.5), where ν̃ stands for the function conjugate to the measure ν defined by the
rule

ν ([α , β)) =
π

2
lim
ε→0+

lim
λ→+∞

λ

∫ β−ε

α−ε
rλ,f (t) dt

for every interval [α , β) ⊂ [0, 2π).
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We note that for every function f = ν̃ + g, where ν is a finite Borel measure
on the interval [0, 2π) and the measurable function g satisfies condition (2.1), the
value rλ,f (x) exists for almost all x ∈ [0, 2π), and, for every interval [α , β) ⊂
[0, 2π), one has the equation (see [2])

νs ([α , β)) =
π

2
lim
ε→0+

lim
λ→+∞

λ

∫ β−ε

α−ε
rλ,f (t) dt, (3.3)

where νs stands for the singular part of ν.
Equality (3.3) shows that the class of functions SM ([0, 2π] ; C) coincides with

the class of functions admitting a representation of the form f = ν̃s+g, where νs is
a finite singular complex Borel measure on the interval [0, 2π) and the measurable
complex function g on [0, 2π) satisfies condition (2.1).

In [4] the author shows that the Q-integral and Q′-integral has the additivity
property in SM ([0, 2π] ; C), that is, if the functions f1, f2 ∈ SM ([0, 2π] ; C)
are Q-integrable (Q′-integrable) on the interval [0 , 2π], then their sum f1 + f2

also belongs to SM ([0, 2π] ; C), the sum is Q-integrable (Q′-integrable) on this
interval and Q-integral (Q′-integral) from the sum equals the sum of Q-integrals
(Q′-integrals).

Definition 3.3. If a function f belongs to the class SM ([0, 2π] ; C) and is Q′-
integrable on the interval [0, 2π], then is said to be N -integrable on [0, 2π]. The
sum (

Q′
) ∫ 2π

0
f (x) dx+

π

2i
lim

λ→+∞
λ

∫ 2π

0
rλ,f (x) dx

is referred to as the N+-integral, and the difference(
Q′
) ∫ 2π

0
f (x) dx− π

2i
lim

λ→+∞
λ

∫ 2π

0
rλ,f (x) dx

as the N−-integral of on [0, 2π]; these integrals are denoted by (N+)
∫ 2π

0 f (x) dx

and (N−)
∫ 2π

0 f (x) dx, respectively.

The equation (3.3) shows that, if the singular measure νs in the decomposition
f = ν̃s+g ∈ SM ([0, 2π] ; C) is known, then N+ - and N−-integrals are evaluated
by the formulae(

N+
) ∫ 2π

0
f (x) dx =

(
Q′
) ∫ 2π

0
f (x) dx− i

∫ 2π

0
dνs (x)

= (A)

∫ 2π

0
g (x) dx− i

∫ 2π

0
dνs (x) ,

(
N−
) ∫ 2π

0
f (x) dx =

(
Q′
) ∫ 2π

0
f (x) dx+ i

∫ 2π

0
dνs (x)

= (A)

∫ 2π

0
g (x) dx+ i

∫ 2π

0
dνs (x) .

For a complex measurable function f on the interval [a, b] we denote by f∗ a
2π-periodic function defined for x ∈ [0, 2π) by the equation

f∗ (x) =
b− a
2π

f

(
a+

b− a
2π

x

)
.
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Definition 3.4. If a function f∗ is N -integrable on the interval [0, 2π], then
the function f is said to be N -integrable on the interval [a, b], and the N+- and
N−-integrals of f on [a, b] are defined by the formulae(
N+
) ∫ b

a
f(x)dx =

(
N+
) ∫ 2π

0
f∗(x)dx,

(
N−
) ∫ b

a
f(x)dx =

(
N−
) ∫ 2π

0
f∗(x)dx.

Example 3.1. If the Lebesgue integrable function ϕ on [a, b] is Holder continuous
at a point x0 ∈ (a, b), that is, there are numbers δ > 0 , C > 0, α ∈ (0, 1 ] such
that |ϕ(x)− ϕ (x0)| ≤ C |x− x0|α for every x ∈ (x0 − δ; x0 + δ), then(
N+
) ∫ b

a

ϕ (x)

x− x0
dx = v.p.

∫ b

a

ϕ (x)

x− x0
dx− πiϕ (x0) = lim

ε→0+

∫ b

a

ϕ (x)

x− x0 + iε
dx,

(
N−
) ∫ b

a

ϕ (x)

x− x0
dx = v.p.

∫ b

a

ϕ (x)

x− x0
dx+ πiϕ (x0) = lim

ε→0+

∫ b

a

ϕ (x)

x− x0 − iε
dx.

Note that (see [4]) N+- and N−-integrals have the additivity property and for
these integrals the change of variables formulas hold.

Let a measurable function f be given on a simple closed Lyapunov contour Γ
and let ξ = ξ (s), s ∈ [0, l] be the parametric equation of Γ, where s is the arc
length of the part of the contour from the point ξ0 = ξ (0) to the point ξs = ξ (s).
We write f∗ (t) = f (ξ (t)) · ξ′ (t), t ∈ [0, l].

Definition 3.5. If a function f∗ is N -integrable on the interval [0, l], then the
function f is said to be N -integrable on the contour Γ, and N+- and N−-integrals
of f on Γ are defined by the formulas(

N+
) ∫

Γ
f (τ) dτ =

(
N+
) ∫ l

0
f∗ (t) dt,

(
N−
) ∫

Γ
f (τ) dτ =

(
N−
) ∫ l

0
f∗ (t) dt.

From the change of variables formulas for N+- and N−-integrals it follows
that if a contour Γ is given by a parametric equation ξ = ξ (t), t ∈ [a, b], where
ξ = ξ (t) is differentiable on [a, b], the derivative ξ′ (t) is Holder continuous and
satisfies the conditions: |ξ′ (t)| ≥ D0 > 0, t ∈ [a , b] and ξ′ (a) = ξ′ (b), then
the N -integrability of the function f on Γ is equivalent to N -integrability of the
function f (ξ (t))·ξ′ (t) on [a, b], and the N+ - and N−-integrals of these functions
are equal.

We need the following theorems proved by the author in [4] and [7].

Theorem 3.1. [7]. Let ν0 be a finite complex Borel measure on the circle T0

and F+ (z) = 1
2πi

∫
T0

dν0(τ)
τ−z , z ∈ D+ is Cauchy type integral of the measure ν0.

Then for the Taylor coefficients ak, k ∈ Z+, of F+ (z) by expanding Taylor series
F+ (z) =

∑∞
k=0 a

′
kz
k holds the equality

a′k =
1

2πi

(
N+
) ∫

T0

τ−k−1F+ (τ) dτ, k ∈ Z+,

where F+ (τ) are the non-tangential boundary values of F+ (z) as z → τ ∈ T0.
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Theorem 3.2. [4]. Let ν0 be a finite complex Borel measure on the circle T0 and
F+ (z), z ∈ D+ be the Cauchy type integral of the measure ν0. Then(

N+
) ∫

T0

τkF+ (τ) dτ = 0, k ∈ Z+,

where F+ (τ) are the non-tangential boundary values of F+ (z) as z → τ ∈ T0.

Theorem 3.3. [7]. Let ν0 be a finite complex Borel measure on the circle T0

and F− (z) = 1
2πi

∫
T0

dν0(τ)
τ−z , z ∈ D− is Cauchy type integral of the measure ν.

Then for the Taylor coefficients bk, k ∈ N , of F− (z) by expanding Taylor series

F− (z) =
∑∞

k=1
b′k
zk

holds the equality

b′k =
1

2πi

(
N−
) ∫

T0

τ−k−1F− (τ) dτ, k ∈ N,

where F− (τ) are the non-tangential boundary values of F− (z) as z → τ ∈ T0.

Theorem 3.4. [4]. Let ν be a finite complex Borel measure on the circle T0

and F− (z), z ∈ D− is Cauchy type integral of the measure ν. Then for the
Taylor coefficients bk, k ∈ N , of F− (z) by expanding Taylor series (1.1) holds
the equality (

N−
) ∫

T0

τ−kF− (τ) dτ = 0, k ∈ N,

where F− (τ) are the non-tangential boundary values of F− (z) as z → τ ∈ T0.

Theorem 3.5. Let ν be a finite complex Borel measure on the set T = T1
⋃
T2

and F (z) = 1
2πi

∫
T
dν(τ)
τ−z = 1

2πi

∫
T1

dν1(τ)
τ−z + 1

2πi

∫
T2

dν2(τ)
τ−z , z ∈ G is Cauchy type

integrals of the measure ν on the annulus G. Then for the Laurent coefficients
ak, k ∈ Z, of F (z) by expanding Laurent series (1.1) holds the equalities

ak =
1

2πi

(
N+
) ∫

T1

(τ − a)−k−1 F (τ) dτ

=
1

2πi

(
N−
) ∫

T2

(τ − a)−k−1 F (τ) dτ, k ∈ Z, (3.4)

where F (τ) are the non-tangential boundary values of F (z) as z → τ ∈ T .

Proof. We denote by

F1 (z) =
1

2πi

∫
T1

dν1 (τ)

τ − z
, {z ∈ C : | z − a | < R} ,

F2 (z) =
1

2πi

∫
T2

dν2 (τ)

τ − z
, {z ∈ C : | z − a | > r} .

It follows from the theorems 3.1, 3.2, 3.3 and 3.4 that

ak =
1

2πi

(
N+
) ∫

T1

(τ − a)−k−1 F1 (τ) dτ, k ∈ Z+, (3.5)

(
N+
) ∫

T1

(τ − a)−k−1 F1 (τ) dτ = 0, k ∈ Z\Z+, (3.6)

ak =
1

2πi

(
N−
) ∫

T2

(τ − a)−k−1 F2 (τ) dτ, k ∈ Z\Z+. (3.7)
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N−
) ∫

T2

(τ − a)−k−1 F2 (τ) dτ = 0, k ∈ Z+. (3.8)

Therefore, it follows from the equations (2.7)-(2.10), (3.5)-(3.8) and from the
additivity of N+-, N−-integrals (see [4]) that

ak =
1

2πi

(
N+
) ∫

T1

(τ − a)−k−1 F1 (τ) dτ

=
1

2πi

(
N+
) ∫

T1

(τ − a)−k−1 F1 (τ) dτ +
1

2πi

∫
T1

(τ − a)−k−1 F2 (τ) dτ

=
1

2πi

(
N+
) ∫

T1

(τ − a)−k−1 [F1 (τ) + F2 (τ)] dτ

=
1

2πi

(
N+
) ∫

T1

(τ − a)−k−1 F (τ) dτ, k ∈ Z+,

ak =
1

2πi

∫
T1

(τ − a)−k−1 F2 (τ) dτ

=
1

2πi

∫
T1

(τ − a)−k−1 F2 (τ) dτ +
1

2πi

(
N+
) ∫

T1

(τ − a)−k−1 F1 (τ) dτ

=
1

2πi

(
N+
) ∫

T1

(τ − a)−k−1 [F2 (τ) + F1 (τ)] dτ

=
1

2πi

(
N+
) ∫

T1

(τ − a)−k−1 F (τ) dτ, k ∈ Z\Z+,

ak =
1

2πi

(
N−
) ∫

T2

(τ − a)−k−1 F2 (τ) dτ

=
1

2πi

(
N−
) ∫

T2

(τ − a)−k−1 F2 (τ) dτ +
1

2πi

∫
T2

(τ − a)−k−1 F1 (τ) dτ

=
1

2πi

(
N−
) ∫

T2

(τ − a)−k−1 [F2 (τ) + F1 (τ)] dτ

=
1

2πi

(
N−
) ∫

T2

(τ − a)−k−1 F (τ) dτ, k ∈ Z\Z+.

ak =
1

2πi

∫
T2

(τ − a)−k−1 F1 (τ) dτ

=
1

2πi

∫
T2

(τ − a)−k−1 F1 (τ) dτ +
1

2πi

(
N−
) ∫

T2

(τ − a)−k−1 F2 (τ) dτ

=
1

2πi

(
N−
) ∫

T2

(τ − a)−k−1 [F1 (τ) + F2 (τ)] dτ

=
1

2πi

(
N−
) ∫

T2

(τ − a)−k−1 F (τ) dτ, k ∈ Z+.

Theorem 3.5 is proved.



302 RASHID A. ALIEV

References

[1] A.B.Aleksandrov, A-integrability of the boundary values of harmonic functions,
Mathematical Notes, 30:1 (1981), 515–523.

[2] R.A.Aliev, Representability of analytic functions in terms of their boundary values,
Mathematical Notes, 73:1-2 (2003), 8-20.

[3] R.A.Aliev, Existence of angular boundary values and Cauchy-Green formula, Jour-
nal of Mathematical Physics Analysis Geometry,7:1 (2011), 3–18.

[4] R.A.Aliev, N±–integrals and boundary values of Cauchy-type integrals of finite
measures, Sbornik: Mathematics, 205:7 (2014), 913-935.

[5] R.A.Aliev, On the properties of Q- and Q′-inteqrals of the function measurable on
the real axis, Proceedings of the Institute of Mathematics and Mechanics, NAS of
Azerbaijan, 41:1 (2015), 56-62.

[6] R.A.Aliev, On properties of Hilbert transform of finite complex measures, Complex
analysis and operator theory, 10:1 (2016), 171–185.

[7] R.A.Aliev, On Taylor coefficients of Cauchy type integrals of finite complex mea-
sures, Complex variables and elliptic equations, 60:12 (2015), 1727–1738.

[8] R.A.Aliev, Riesz’s equality for the Hilbert transform of the finite complex measures,
Azerbaijan Journal of Mathematics, 6:1 (2016), 126–135.

[9] M.P. Efimova, On the properties of the Q-integral, Math. Notes, 90:3-4 (2011),
322-332.

[10] M.P. Efimova, Sufficient condition for a change of variable in generalized Q-
integration, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 13:1(2) (2013),
43-46.

[11] M.P. Efimova, The sufficient condition for integrability of a generalized Q-integral
and points of integrability, Moscow University Mathematics Bulletin, 70:4 (2015),
181-184.

[12] P. Koosis, Introduction to Hp spaces, 2nd ed., Cambridge Univ. Press, 1998.
[13] W. Rudin, Real and complex analysis, Mc Graw-Hill, New York, 1987, 416 pp.
[14] T.S.Salimov, The A-integral and boundary values of analytic functions, Mathematics

of the USSR-Sbornik, 64:1 (1989), 23–40.
[15] T.S.Salimov, On E.Titchmarsh’s theorem on the conjugate function, Proc. A. Raz-

madze Math. Inst,102 (1993), 99–114. (Russian)
[16] V.Smirnoff, Sur les valeurs limites des fonctions regulieres a l’interieur d’un cercle,

J. Soc. Phys.-Math. Leningrade, 2:2 (1929), 22-37.
[17] V.A.Skvortsov, A-integrable martingale sequences and Walsh series, Izvestia: Math-

ematics, 65:3 (2001), 607–616.
[18] E.C.Titchmarsh, On conjugate functions, Proc. of the London Math. Soc., 9 (1929),

49–80.
[19] P.L.Ul’yanov, Application of A-integration to a class of trigonometric series, Math-

ematics of the USSR-Sbornik , 35(77) (1954), 469-490. (in Russian)
[20] P.L.Ul’yanov, On theA-Cauchy integral. I, Russian Mathematical Surveys, 11:5(71)

(1956), 223–229. (in Russian)
[21] P.L.Ul’yanov, Integrals of Cauchy type, Twelve Papers on Approximations and In-

tegrals, Amer. Math. Soc., Trans. 2/44, 1965, 129–150.

Rashid A. Aliev
Baku State University, Baku, AZ 1148, Azerbaijan,
Institute of Mathematics and Mechanics, NAS of Azerbaijan, Baku, AZ 1141,

Azerbaijan
E-mail address: aliyevrashid@mail.ru



ON LAURENT COEFFICIENTS OF CAUCHY TYPE . . . 303

Received: May 3, 2016; Accepted: November 22, 2016


