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HIGHER ORDER CONDITIONS IN NONDIFFERENTIABLE

PROGRAMMING PROBLEMS

MISRADDIN A. SADYGOV

Abstract. In the paper, using the classes of S − (α, β, ν, δ, ω) and S −
(β, δ) locally Lipschitz mappings at the point, higher order necessary
conditions of the extremum are received for extreme problems in the
presence of restrictions.

1. Introduction

Research of smooth extreme problems with restriction (the problem on con-
ditional extremum) is based on Lagrange’s principle offered by J.L.Lagrange at
the close of the 18th century. Strict justification of the Lagrange principle for the
wide class of extreme problems demanded serious efforts of many mathematicians
and was generally finished in the second half of the XX century. The convex ex-
treme problem with restriction is well studied in the books [4, 9]. Nonsmooth
extreme problems with restriction are considered in the book [3], and in classes
of locally Lipschitz functions necessary conditions of the extremum of the first
order are received. In the present work necessary conditions of the extremum
of any order for nonsmooth and, in particular, for smooth extreme problems in
the presence of restrictions are proved. Let’s note that when receiving necessary
conditions of the extremum, the essential role has the classes of S− (α, β, ν, δ, ω)
and S − (β, δ) locally Lipschitz mappings at the point (see [5]-[8]).

The work consists of three sections. In Section 2, a number of properties of
S−(α, β, ν, δ, ω) and S−(β, δ) locally Lipschitz mappings at the point are studied.
In Section 3, a number of properties of the approximate cone is studied. In Section
4, by means of Lagrange’s function and the approximate cone necessary conditions
of the extremum of higher order in the presence of restrictions are received. Let’s
note that in Section 4 the necessary condition of the extremum is received where
the regularity at the minimum point is not required. In particular, from here
follows necessary conditions of the extremum of second order for the classical
problem on the conditional extremum and for the mathematical programming
problem(see [1], p.237).
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2. Class of locally Lipschitz functions of higher order

Let X and Y be real Banach spaces, F : X → Y , S : X → Y , f: X→R,
ϕ : X → R, α > 0, ν > 0, β ≥ αν, δ > 0, K > 0, o : R+ → R+ and ω : R+ → R+,
where o(0) = 0, ω(0) = 0, R+ = [0,+∞). Let’s put B = {y ∈ X : ‖y‖ ≤ 1},
B(x, δ) = {y ∈ X : ‖y − x‖ ≤ δ}.

The mapping F is said to be S−(α, β, ν, δ, ω) locally Lipschitz with the constant
K at the point x̄ ∈ X, if F satisfies the condition

‖F (x̄+ x+ y)− F (x̄+ x)− S(x+ y) + S(x)‖

≤ K ‖y‖ν
(
‖x‖β−αν + ‖y‖

β−αν
α

)
+ ω(‖x‖)

at x, y ∈ δB. If ω(t) ≡ 0, then the mapping F is said to be S− (α, β, ν, δ) locally
Lipschitz with the constant K at the point x̄ (see [7]). If ω(t) ≡ 0 and S(x) ≡ 0,
then the mapping F is said to be (α, β, ν, δ) locally Lipschitz with the constant
K at the point x̄.

If there is a function o : R+ → R+, where lim
t↓0

o(t)
t = o, such that

ω(‖x‖) = o(‖x‖β), then S − (α, β, ν, δ, ω) locally Lipschitz with the constant K
at the point x̄ mapping F we call S − (α, β, ν, δ, o(β)) locally Lipschitz with the
constant K at the point x̄.

Let’s consider generalization of the class S − (α, β, ν, δ, ω) locally Lipschitz
mapping with the constant K at the point x̄. Let ν > 0, µ > 0, σ > 0, K > 0.
We call the mapping F S − [µ, σ, ν, δ, ω] locally Lipschitz with the constant K at
the point x̄ ∈ X, if F satisfies the condition

‖F (x̄+ x+ y)− F (x̄+ x)− S(x+ y) + S(x)‖ ≤ K ‖y‖ν (‖x‖µ + ‖y‖σ) + ω(‖x‖)

at x, y ∈ δB. Further we consider that µ ≥ β−αν, σ ≥ β−αν
α , where α > 0, ν > 0,

β ≥ ν.
We call the mapping F : X → Y satisfying the condition

‖F (x̄+ y)− F (x̄)− S(y)‖ ≤ K ‖y‖β

at y ∈ δB, S − (β, δ) locally Lipschitz with the constant K at the point x̄.

If there is a function o : R+ → R+, where lim
t↓0

o(t)
t = 0, such that

‖F (x̄+ y)− F (x̄)− S(y)‖ ≤ o(‖y‖β)

at y ∈ δB, we call the mapping F : X → Y S − (o(β), δ) locally Lipschitz at the
point x̄.

If F (x) = f(x), we will put S(x) = ϕ(x).

If the function f : X → R satisfies the condition f(x̄+y)−f(x̄)−ϕ(y) ≤ K ‖y‖β
at y ∈ δB, we call the function f ϕ−(β, δ) locally semi-Lipschitz with the constant
K at the point x̄.

If there is a function o : R+ → R+, where lim
t↓0

o(t)
t = 0, such that

f(x̄+ y)− f(x̄)− ϕ(y) ≤ o(‖y‖β)

at y ∈ δB, we will call the function f ϕ − (o(β), δ) locally semi-Lipschitz at the
point x̄.
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Further we consider that S(0) = 0 and ϕ(0) = 0 (if S(0) 6= 0, it is necessary

to consider the function S̃(x) = S(x)− S(0)).
In [5]-[7] S − (α, β, ν, δ, ω) locally Lipschitz mapping with the constant K at

the point are defined and a number of their properties are studied.

Lemma 2.1. Let X and Y be normed spaces, x0 ∈ X, the derivative F ′(z)
in Frechet’s sense exist at z ∈ x0 + 2δB, also there be L > 0 such that
‖F ′(u)− F ′(υ)‖ ≤ L ‖u− υ‖ at u, υ ∈ x0 + 2δB. Then∥∥F (x0 + x+ y)− F (x0 + x)− F ′(x0)(y)

∥∥ ≤ L ‖y‖ (‖x‖+ ‖y‖)

at x, y ∈ δB.

Lemma 2.1 is proved in [7] (see lemma 4.4.3).
Let M ⊂ X, x0 ∈ M. Let’s put dM (x) = inf {‖y − x‖ : y ∈M} . It is easily

checked that

|dnM (x0 + x+ y)− dnM (x0 + x)| ≤ 2 · 9n−1 ‖y‖ (‖x‖n−1 + ‖y‖n−1)

at x, y ∈ X.
If the function f satisfies the Lipschitz condition in α- neighborhood of the

point x0, then by lemma 2.4.2[5] for any ε > 0 there exists δ > 0 such that

f(x) ≤ f(x0) + sup
p∈∂f(x0)

〈p, x− x0〉+ ε ‖x− x0‖

at x ∈ B(x0, δ), where δ ≤ α, ∂f(x0) is Clark’s subdifferential. If ε = 1
n , where

n ∈ N , then there exists δn > 0 such that

f(x) ≤ f(x0) + sup
p∈∂f(x0)

〈p, x− x0〉+
1

n
‖x− x0‖ (2.1)

at x ∈ B(x0, δn). We consider that δn > δn+1. Having put o(t) = t
n at

t ∈ (δn+1, δn] from (2.1) we have that

f(x0 + z) ≤ f(x0) + sup
p∈∂f(x0)

〈p, z〉+ o(‖z‖)

at z ∈ B(0, δ1).
In particular from here we have that if f : X → R is a continuous convex

function, there is the function o : R+ → R+, where lim
t↓0

o(t)
t = 0 and δ > 0 such

that

f(x0 + x)− f(x0)− f ′(x0;x) ≤ o(‖x‖)

at x ∈ B(0, δ). Then from proposition 4.3.4[2] we have that

0 ≤ f(x0 + x)− f(x0)− f ′(x0;x) ≤ o(‖x‖)

at x ∈ B(0, δ).
Further we will denote I = {0, 1, . . . ,m}, J = {1, . . . ,m}.
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3. Number of properties of the approximate cone

Let X be a Banach space, C ⊂ X, x0 ∈ C, o(x, 0) = 0, o1(x, 0) = 0,
o2(x, 0) = 0. Let’s put (see [7])
Kα,µ(x0;C,ϕ) = {x ∈ X : ∃λx > 0, ∃o1(x, λ) : [0, λx] → X, ∃o2(x, λ) :

[0, λx]→ R+, where o1(x,λ)
λα → 0 and o2(x,λ)

λµ → 0 at λ ↓ 0, that x0+λx+o1(x, λ) ∈
C, ϕ(λx+ o1(x, λ)) ≤ o2(x, λ) at λ ∈ [0, λx]},
Tα,µ(x0;C,ϕ) = {x ∈ X : ∃o(x, λ) : [0, λx] → R+, where o(x,λ)

λµ → 0 at λ ↓ 0

and ∃λi ↓ 0, ∃υi ∈ X, where 1
λα−1
i

‖υi − x‖ → 0 at i → +∞, that x0 + λiυi ∈
C, ϕ(λiυi) ≤ o(x, λi) at all i},
Kµ(x0;C,ϕ) = {x ∈ X : ∃λx > 0, ∃o2(x, λ) : [0, λx] → R+, where o2(x,λ)

λµ → 0
at λ ↓ 0, that x0 + λx ∈ C, ϕ(λx) ≤ o2(x, λ) at λ ∈ [0, λx]},
Kα(x0;C) = {x ∈ X : ∃λx > 0, ∃o(x, λ) : [0, λx] → X, where o(x,λ)

λα → 0 at
λ ↓ 0, that x0 + λx+ o(x, λ) ∈ C for λ ∈ [0, λx]}, KC(x0) ≡ K1(x0;C).

Lemma 3.1. Let X and Y be real Banach spaces, C = {x ∈ C1 : fi(x) ≤ 0,
i = 1, . . . ,m, F (x) = 0}, where fi : X → R, i ∈ J , fi(x0) = 0 at i ∈ J ,
F : X → Y , C1 ⊂ X, the function fi satisfy ϕi − (β, δ) locally Lipschitz con-
dition with the constant Ki at the point x0, ϕi and ϕ be a continuous positively
homogeneous function of degree α, β > α, µ ≥ α ≥ 1 and the mapping F be
strictly differentiable and regular at the point x0 ∈ C, i.e. ImF ′(x0) = Y . Then
Kα,µ(x0;C,ϕ) ⊂ {x ∈ Kα(x0;C1) : ϕi(x) ≤ 0, i ∈ J, ϕ(x) ≤ 0, F ′(x0)x = 0}.

Proof. Let x ∈ Kα,µ(x0;C,ϕ). Then there exists ∃λx > 0, ∃o1(x, λ) : [0, λx]→
X, ∃o2(x, λ) : [0, λx] → R+, where

o1(x,λ)
λα → 0, o2(x,λ)

λµ → 0 at λ ↓ 0, that
fi(x0+λx+o1(x, λ)) ≤ 0 at i ∈ J , F (x0+λx+o1(x, λ)) = 0, x0+λx+o1(x, λ) ∈ C1

and ϕ(λx + o1(x, λ)) ≤ o2(x, λ) at λ ∈ [0, λx]. Besides let λx > 0 such that
‖λx+ o1(x, λ)‖ ≤ δ at λ ∈ [0, λx]. From equality F (x0 + λx + o1(x, λ)) = 0
according to Lyusternik’s theorem we have that F ′(x0)x = 0. As the functions
fi satisfy ϕi− (β, δ) locally Lipschitz condition with the constant Ki at the point
x0, then

|fi(x0 + y)− fi(x0)− ϕi(y)| ≤ Ki ‖y‖β

at y ∈ δB. Therefore

|fi(x0 + λx+ o1(x, λ))− fi(x0)− ϕi(λx+ o1(x, λ))| ≤ Ki ‖λx+ o1(x, λ)‖β

at λ ∈ [0, λx]. From here we receive

ϕi(λx+ o1(x, λ)) ≤ fi(x0 + λx+ o1(x, λ)) +Ki ‖λx+ o1(x, λ)‖β

at λ ∈ [0, λx]. As ϕi is a positively homogeneous function of degree α, then

λαϕi(x+ o1(x,λ))
λα ) ≤ Ki ‖λx+ o1(x, λ)‖β at λ ∈ [0, λx]. By the condition, ϕi is a

continuous function and β > α, from here we receive ϕi(x) ≤ 0 at i ∈ J .

By the condition ϕ(λx + o1(x, λ)) ≤ o2(x, λ) at λ ∈ [0, λx], where o2(x,λ)
λµ → 0

at λ ↓ 0. Therefore λαϕ(x + o1(x,λ))
λα ) ≤ o2(x, λ) at λ ∈ [0, λx]. From here we

receive ϕ(x) ≤ 0.
As x0 + λx + o1(x, λ) ∈ C1 at λ ∈ [0, λx], by definition x ∈ Kα(x0;C1). The

lemma is proved.
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Lemma 3.2. Let X and Y be Banach spaces, C = {x ∈ C1 : fi(x) ≤ 0,
i = 1, . . . ,m, F (x) = 0}, where fi : X → R, i ∈ J , F : X → Y , C1 ⊂ X,
the functions fi satisfy ϕi − (β, δ) locally Lipschitz condition with the constant
Ki at the point x0, ϕi and ϕ be continuous positively homogeneous functions of
degree α, the mapping F satisfy S − (β, δ) locally Lipschitz condition with the
constant K at the point x0, S be a continuous positively homogeneous mapping
of degree α, β > α, µ ≥ α ≥ 1. Then

Kα,µ(x0;C,ϕ) ⊂ {x ∈ Kα(x0;C1) : ϕi(x) ≤ 0, i ∈ J, ϕ(x) ≤ 0, S(x) = 0}.

Proof. Let x ∈ Kα,µ(x0;C,ϕ). Then there exists ∃λx > 0, ∃o1(x, λ) : [0, λx]→
X, ∃o2(x, λ) : [0, λx] → R+, where o1(x,λ)

λα → 0, o2(x,λ)
λµ → 0 at λ ↓ 0, that

fi(x0+λx+o1(x, λ)) ≤ 0 at i ∈ J , F (x0+λx+o1(x, λ)) = 0, x0+λx+o1(x, λ) ∈ C1

and ϕ(λx + o1(x, λ)) ≤ o2(x, λ) at λ ∈ [0, λx]. Besides let λx > 0 such that
‖λx+ o1(x, λ)‖ ≤ δ at λ ∈ [0, λx].

As the mapping F : X → Y satisfies S− (β, δ) locally Lipschitz condition with
the constant K at the point x0, then

‖F (x0 + y)− F (x0)− S(y)‖ ≤ K ‖y‖β

at y ∈ δB. Therefore

‖F (x0 + λx+ o1(x, λ))− F (x0)− S(λx+ o1(x, λ))‖ ≤ K ‖λx+ o1(x, λ)‖β

at λ ∈ [0, λx]. From here we receive

‖S(λx+ o1(x, λ))‖ ≤ ‖F (x0 + λx+ o1(x, λ))‖+K ‖λx+ o1(x, λ)‖β (3.1)

at λ ∈ [0, λx]. As F (x0 + λx + o1(x, λ)) = 0 and S is a continuous positively
homogeneous mapping of degree α, and β > α, then from (3.1) we have that

λα
∥∥∥∥S(x+

o1(x, λ))

λα
)

∥∥∥∥ ≤ K ‖λx+ o1(x, λ)‖β

at λ ∈ [0, λx]. From here we receive ‖S(x)‖ = 0.
The remaining part of the proof repeats the proof of lemma 3.1. The lemma

is proved.
Further we consider that α0 ≥ 0, α1 ≥ 0, . . . , αm ≥ 0 and y∗ ∈ Y ∗ simul-

taneously are non zero. The case α0 = α1 = · · · = αm = 0 and y∗ = 0 is
trivial.

Vector υ ∈ X is called hypertangent to the set C at the point x0 ∈ C, if for
some ε > 0 and for all y ∈ (x0 + εB)

⋂
C, ω ∈ υ + εB, t ∈ (0, ε) the ratio

y + tω ∈ C is fulfilled(see [3]). The set of all hypertangents to the set C at the
point x0 ∈ C is denoted by IC(x0). If x̄ ∈ IC(x0), by definition IC(x0) there
exists α0 > 0 such that x0 + tx̄+ r(t) ∈ C at t ∈ [0, α0], where r(t)→ 0 at t ↓ 0.

Lemma 3.3. Let X and Y be Banach spaces, C = {x ∈ C1 : fi(x) ≤ 0,
i = 1, . . . ,m, F (x) = 0}, where fi : X → R, i ∈ J, F : X → Y and C1 ⊂ X,
the functions fi satisfy ϕi − (β, δ) locally Lipschitz condition with the constant
Ki at the point x0, ϕi and be ϕ continuous positively homogeneous functions,
β > 1, µ > 0 and the mapping F a be strictly differentiable and regular at the
point x0 ∈ X, fi(x0) = 0 at i ∈ J . Then

K1,µ(x0;C,ϕ) ⊃ {x ∈ IC1(x0) : ϕi(x) < 0, i ∈ J, ϕ(x) < 0, F ′(x0)x = 0}.
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Proof. Let x ∈ {x ∈ IC1(x0) : ϕi(x) < 0, i ∈ J, ϕ(x) < 0, F ′(x0)x = 0}. If
F ′(x0)x = 0, then according to Lyusternik’s theorem there exists ∃λx > 0,

∃o1(x, λ) : [0, λx]→ X, where o1(x,λ)
λ → 0 at λ ↓ 0, that F (x0 +λx+o1(x, λ)) = 0

at λ ∈ [0, λx]. Besides let λx > 0 such that ‖λx+ o1(x, λ)‖ ≤ δ at λ ∈ [0, λx]. As
the functions fi satisfy ϕi − (β, δ) locally Lipschitz condition with the constant
Ki at the point x0, then

|fi(x0 + y)− fi(x0)− ϕi(y)| ≤ Ki ‖y‖β

at y ∈ δB. Therefore

|fi(x0 + λx+ o1(x, λ))− fi(x0)− ϕi(λx+ o1(x, λ))| ≤ Ki ‖λx+ o1(x, λ)‖β

at λ ∈ [0, λx]. From here we receive that

fi(x0 + λx+ o1(x, λ)) ≤ ϕi(λx+ o1(x, λ)) +Ki ‖λx+ o1(x, λ)‖β

at λ ∈ [0, λx]. As ϕi is a positively homogeneous function, then

fi(x0 + λx+ o1(x, λ)) ≤ λϕi(x+
o1(x, λ))

λ
) +Ki ‖λx+ o1(x, λ)‖β . (3.2)

By the condition ϕi is a continuous function and β > 1. Let ε > 0 such that

ϕi(x) + ε < 0. Then for ε > 0 there exists δx > 0 such that ϕi(x + o1(x,λ))
λ ) ≤

ϕi(x) + ε at λ ∈ [0, δx]. Therefore based on the ratio (3.2) there exists λ̄x > 0
such that fi(x0 + λx+ o1(x, λ)) ≤ 0 at λ ∈ [0, λ̄x] and i ∈ J .

By the condition ϕ(x) < 0, and ϕ is a continuous positively homogeneous

function. Let ε > 0 such that ϕ(x) + ε < 0. Then for ε > 0 there exists λ̃x > 0

such that ϕ(x + o1(x,λ))
λ ) ≤ ϕ(x) + ε at λ ∈ [0, λ̃x]. Therefore λϕ(x + o1(x,λ))

λ ) ≤
λ(ϕ(x) + ε) ≤ 0 at λ ∈ [0, λ̃x].

If x ∈ IC1(x0), then by definition of IC1(x0) there exists α0 > 0 such that

x0 + tx+ o1(x, λ) ∈ C1 at t ∈ [0, α0]. Having put λx = min{λ̄x, λ̃x, α0} we receive
that x ∈ K1,µ(x0;C,ϕ). The lemma is proved.

The following lemma 3.4 is similarly proved.

Lemma 3.4. Let X and Y be Banach spaces, C = {x ∈ C1 : fi(x) ≤ 0, i ∈ J},
fi : X → R, i ∈ J , and C1 ⊂ X, the functions fi satisfy ϕi − (β, δ) locally
Lipschitz condition with the constant Ki at the point x0, ϕi and ϕ be continuous
positively homogeneous functions of degree α, β > α ≥ 1, µ > 0 and fi(x0) = 0
at i ∈ J . Then

Kα,µ(x0;C,ϕ) ⊃ {x ∈ Kα(x0;C1) : ϕi(x) < 0, i ∈ J, ϕ(x) < 0}.

Lemma 3.5. Let X and Y be Banach spaces, C = {x ∈ X : fi(x) ≤ 0, i ∈ J ,
F (x) = 0, x ∈ C1}, where fi : X → R, i ∈ J , F : X → Y , C1 ⊂ X, the functions
fi satisfy ϕi − (2, δ) locally Lipschitz condition with the constant Ki at the point
x0, where i ∈ J , ϕi are continuous positively homogeneous functions at i ∈ I, the
mapping F satisfy S − (2, δ) locally Lipschitz condition with the constant K at
the point x0, S : X → Y be continuous positively homogeneous mapping, x0 ∈ C,
fi(x0) = 0 at i ∈ J, and ϕ(x) = −

m∑
i=1

αifi(x0 + x)− 〈y∗, F (x0 + x)〉+
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+
m∑
i=0

αiϕi(x) + 〈y∗, S(x)〉 , where α0 ≥ 0, α1 ≥ 0, . . . , αm ≥ 0 and y∗ ∈ Y ∗. Then

K1,2(x0;C,ϕ) ⊂ {x ∈ KC1(x0) : ϕi(x) ≤ 0, i ∈ J, α0ϕ0(x) ≤ 0, S(x) = 0}.

Proof. Let x ∈ K1,2(x0;C,ϕ). Then there exists ∃λx > 0, ∃o1(x, λ) : [0, λx]→
X, ∃o2(x, λ) : [0, λx] → R+, where o1(x,λ)

λ → 0 and o2(x,λ)
λ2

→ 0 at λ ↓ 0, that
fi(x0 +λx+o1(x, λ)) ≤ 0, i ∈ J , F (x0 +λx+o1(x, λ)) = 0, x0 +λx+o1(x, λ) ∈ C1

and ϕ(λx + o1(x, λ)) ≤ o2(x, λ) at λ ∈ [0, λx]. Besides let λx > 0 such that
‖λx+ o1(x, λ)‖ ≤ δ at λ ∈ [0, λx]. As the function fi satisfies ϕi − (2, δ) locally
Lipschitz condition at the point x0, then

|fi(x0 + y)− fi(x0)− ϕi(y)| ≤ Ki ‖y‖2

at y ∈ δB. Therefore

|fi(x0 + λx+ o1(x, λ))− fi(x0)− ϕi(λx+ o1(x, λ))| ≤ Ki ‖λx+ o1(x, λ)‖2

at λ ∈ [0, λx]. From here we receive

ϕi(λx+ o1(x, λ)) ≤ fi(x0 + λx+ o1(x, λ)) +Ki ‖λx+ o1(x, λ)‖2

at λ ∈ [0, λx]. As ϕi is a continuous positively homogeneous function, then

λϕi(x+ o1(x,λ))
λ ) ≤ Ki ‖λx+ o1(x, λ)‖2 at λ ∈ [0, λx]. From here we receive that

ϕi(x) ≤ 0 at i ∈ J . By the condition ϕ(λx + o1(x, λ)) ≤ o2(x, λ) at λ ∈ [0, λx].
Therefore

ϕ(λx+ o1(x, λ)) = −
m∑
i=1

αifi(x0 + λx+ o1(x, λ))− 〈y∗, F (x0 + λx+ o1(x, λ))〉

+
m∑
i=0

αiϕi(λx+ o1(x, λ)) + 〈y∗, S(λx+ o1(x, λ))〉 ≤ o2(x, λ)

at λ ∈ [0, λx]. From here we have that
m∑
i=0

αiϕi(λx+ o1(x, λ)) + 〈y∗, S(λx+ o1(x, λ))〉

≤
m∑
i=1

αifi(x0 + λx+ o1(x, λ)) + 〈y∗, F (x0 + λx+ o1(x, λ))〉+ o2(x, λ)

at λ ∈ [0, λx]. Therefore

fi(x0 + λx+ o1(x, λ)) ≤ ϕi(λx+ o1(x, λ)) +Ki ‖λx+ o1(x, λ)‖2 ,
‖F (x0 + λx+ o1(x, λ))− F (x0)− S(λx+ o1(x, λ))‖ ≤ L ‖λx+ o1(x, λ)‖2

at λ ∈ [0, λx]. Then we have that S(x) = 0 and

〈y∗, F (x0 + λx+ o1(x, λ))− F (x0)− S(λx+ o1(x, λ))〉
≤ ‖y∗‖ ‖F (x0 + λx+ o1(x, λ))− F (x0)− S(λx+ o1(x, λ))‖

≤ L ‖y∗‖ ‖λx+ o1(x, λ)‖2

at λ ∈ [0, λx]. Then we receive that
m∑
i=0

αiϕi(λx+ o1(x, λ)) + 〈y∗, S(λx+ o1(x, λ))〉 ≤
m∑
i=1

αi(ϕi(λx+ o1(x, λ))

+Ki ‖λx+ o1(x, λ)‖2) + 〈y∗, S(λx+ o1(x, λ))〉+ L ‖y∗‖ ‖λx+ o1(x, λ)‖2

at λ ∈ [0, λx]. From here we have that α0ϕ0(x) ≤ 0.
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From x0 + λx + o1(x, λ) ∈ C1 at λ ∈ [0, λx] we have that x ∈ KC1(x0). The
lemma is proved.

Lemma 3.6. Let X and Y be Banach spaces, C = {x ∈ X : fi(x) ≤ 0, i ∈ J,
F (x) = 0, x ∈ C1}, where fi : X → R, i ∈ J , F : X → Y , C1 ⊂ X, the functions
fi satisfy ϕi − (2, δ) locally Lipschitz condition with the constant Ki at the point
x0, where i ∈ J , ϕi be continuous positively homogeneous functions at i ∈ J and
derivative F ′(z) in Frechet’s sense exist at z ∈ x0 + 2δB and there will be L > 0
such that ‖F ′(u)− F ′(υ)‖ ≤ L ‖u− υ‖ at u, υ ∈ x0 + 2δB, fi(x0) = 0 at i ∈ J,
and ϕ(x) = −

m∑
i=1

αifi(x0 + x)− 〈y∗, F (x0 + x)〉 , where α1 ≥ 0, . . . , αm ≥ 0 and

y∗ ∈ Y ∗. Then

K1,2(x0;C,ϕ) ⊂ {x ∈ KC1(x0) : ϕi(x) ≤ 0, i ∈ J,
m∑
i=1

αiϕi(x) ≥ 0, F ′(x0)x = 0}

= {x ∈ KC1(x0) : ϕi(x) ≤ 0, αiϕi(x) = 0, i ∈ J, F ′(x0)x = 0}.

Proof. Let x ∈ K1,2(x0;C,ϕ). Then there exists ∃λx > 0, ∃o1(x, λ) : [0, λx]→
X, ∃o2(x, λ) : [0, λx] → R+, where o1(x,λ)

λ → 0 and o2(x,λ)
λ2

→ 0 at λ ↓ 0, that
fi(x0 +λx+o1(x, λ)) ≤ 0, i ∈ J , F (x0 +λx+o1(x, λ)) = 0, x0 +λx+o1(x, λ) ∈ C1

and ϕ(λx + o1(x, λ)) ≤ o2(x, λ) at λ ∈ [0, λx]. Besides let λx > 0 such that
‖λx+ o1(x, λ)‖ ≤ δ at λ ∈ [0, λx].

As the function fi satisfies ϕi − (2, δ) locally Lipschitz condition at the point
x0, then

|fi(x0 + y)− fi(x0)− ϕi(y)| ≤ Ki ‖y‖2

at y ∈ δB. Therefore

|fi(x0 + λx+ o1(x, λ))− fi(x0)− ϕi(λx+ o1(x, λ))| ≤ Ki ‖λx+ o1(x, λ)‖2

at λ ∈ [0, λx]. From here we receive that

ϕi(λx+ o1(x, λ)) ≤ fi(x0 + λx+ o1(x, λ)) +Ki ‖λx+ o1(x, λ)‖2

at λ ∈ [0, λx]. As ϕi is a continuous positively homogeneous function, then

λϕi(x + o1(x,λ))
λ ) ≤ Ki ‖λx+ o1(x, λ)‖2 at λ ∈ [0, λx]. Then we receive that

ϕi(x) ≤ 0 at i ∈ J .
By lemma 2.1 we have∥∥F (x0 + λx+ o1(x, λ))− F (x0)− F ′(x0)(λx+ o1(x, λ))

∥∥ ≤ L ‖λx+ o1(x, λ)‖2

at λ ∈ [0, λx]. Then we have that F ′(x0)x = 0 and〈
y∗, F (x0 + λx+ o1(x, λ))− F (x0)− F ′(x0)(λx+ o1(x, λ))

〉
≤ ‖y∗‖

∥∥F (x0 + λx+ o1(x, λ))− F (x0)− F ′(x0)(λx+ o1(x, λ))
∥∥

≤ L ‖y∗‖ ‖λx+ o1(x, λ)‖2

at λ ∈ [0, λx]. Also we have that

fi(x0 + λx+ o1(x, λ))− fi(x0)− ϕi(λx+ o1(x, λ)) ≤ Ki ‖λx+ o1(x, λ)‖2

at λ ∈ [0, λx]. Then we receive that

−
m∑
i=1

αifi(x0 + λx+ o1(x, λ))− 〈y∗, F (x0 + λx+ o1(x, λ))〉
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+
m∑
i=1

αiϕi(λx+ o1(x, λ)) +
〈
y∗, F ′(x0)(λx+ o1(x, λ))

〉
≥ −(

m∑
i=1

αiKi + ‖y∗‖L) ‖λx+ o1(x, λ)‖2

at λ ∈ [0, λx].
By the condition ϕ(λx+ o1(x, λ)) ≤ o2(x, λ) at λ ∈ [0, λx]. Therefore

ϕ(λx+ o1(x, λ)) = −
m∑
i=1

αifi(x0 + λx+ o1(x, λ))

−〈y∗, F (x0 + λx+ o1(x, λ))〉 ≤ o2(x, λ)

at λ ∈ [0, λx]. Therefore
m∑
i=1

αiϕi(λx+ o1(x, λ)) +
〈
y∗, F ′(x0)(λx+ o1(x, λ))

〉
≤ −(

m∑
i=1

αiKi + ‖y∗‖L) ‖λx+ o1(x, λ)‖2 − o2(x, λ)

at λ ∈ [0, λx]. From here we will receive that
m∑
i=1

αiϕi(x) + 〈y∗, F ′(x0)(x)〉 ≥ 0.

As F ′(x0)x = 0, we have that
m∑
i=1

αiϕi(x) ≥ 0.

From x0 + λx + o1(x, λ) ∈ C1 at λ ∈ [0, λx] we have that x ∈ KC1(x0). The
lemma is proved.

It is possible to receive similar statements in classes of S − (α, β, ν, δ, ω) and
S − (o(β), δ) locally Lipschitz mappings at the point.

Let’s note that the results received in Section 3 are used for receiving rela-
tions between the results received in Section 4 and mathematical programming
problems.

4. The necessary condition of higher order in terms of
approximate cone and Lagrange’s function

Let X be a Banach space, C ⊂ X, f : X → R, ϕ : X → R, ϕ1 : X → R.

Theorem 4.1. If X is a Banach space, x0 is the minimum point of the function
f on the set C, there exist α > 0, ν > 0, β ≥ ν, µ > 0, σ > 0, where µ ≥ β−αν,
σ ≥ β−αν

α , finite positively homogeneous function ϕ1 of degree µ, the function

o : R+ → R+, where lim
t↓0

o(t)
t = 0, the numbers δ > 0 and K are such that

|f(x0 + x+ y)− f(x0 + x)− ϕ(x+ y) + ϕ(x)| ≤ K ‖y‖ν (ϕ1(x)+‖y‖σ)+o(‖x‖β)

for x ∈ Kα,β(x0;C,ϕ) (x ∈ Tα,β(x0;C,ϕ)), ‖x‖ ≤ δ, y ∈ X, ‖y‖ ≤ ‖x‖ ,
x0 + x+ y ∈ C, then

f
{β}−
ϕ (x0;x) = lim

λ↓0

1
λβ

(f(x0 + λx)− ϕ(λx)− f(x0)) ≥ 0 at x ∈ Kα,β(x0;C,ϕ),

f
{β}+
ϕ (x0;x) = lim

λ↓0
1
λβ

(f(x0 + λx)− ϕ(λx)− f(x0)) ≥ 0 at x ∈ Tα,β(x0;C,ϕ).
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Proof. If x ∈ Kα,β(x0;C,ϕ), by definition there will be λx > 0, o1(x, λ) :

[0, λx] → X, o2(x, λ) : [0, λx] → R+, where o1(x,λ)
λα → 0 and o2(x,λ)

λβ
→ 0 at

λ ↓ 0, that x0 + λx+ o1(x, λ) ∈ C and ϕ(λx+ o1(x, λ)) ≤ o2(x, λ) at λ ∈ [0, λx].
Therefore

f{β}−ϕ (x0;x) = lim
λ↓0

1

λβ
(f(x0 + λx)− ϕ(λx)− f(x0))

≥ lim
λ↓0

1

λβ
(f(x0 + λx+ o1(x, λ))− f(x0)− ϕ(λx+ o1(x, λ)) + o2(x, λ))

+ lim
λ↓0

1

λβ
(−f(x0 + λx+ o1(x, λ)) + f(x0 + λx) + ϕ(λx+ o1(x, λ))

ϕ(λx)− o2(x, λ) ≥ lim
λ↓0

1

λβ
(f(x0 + λx+ o1(x, λ))− f(x0)− ϕ(λx+ o1(x, λ))

−o2(x, λ))− lim
λ↓0

K

λβ
[‖o1(x, λ)‖ν (λµϕ1(x) + ‖o1(x, λ)‖σ) + o2(x, λ) + o(‖λx‖β)]

≥ − lim
λ↓0

K

λβ
[‖o1(x, λ)‖ν (λβ−ανλµ−β+ανϕ1(x) + ‖o1(x, λ)‖

β−αν
α ‖o1(x, λ)‖σ−

β−αν
α )

+o2(x, λ) + o(‖λx‖β)] = 0.

Let’s prove the second part of the theorem. If x ∈ Tα,β(x0;C,ϕ), then by def-

inition there will be ∃o2(x, λ) : [0, λx] → R+, where o2(x,λ)
λβ

→ 0 at λ ↓ 0 and

∃λi ↓ 0, ∃υi ⊂ X, where 1
λα−1
i

‖υi − x‖ → 0 at i → +∞, that x0 + λiυi ∈ C,

ϕ(λiυi) ≤ o2(x, λi) for all i. Therefore

f{β}+ϕ (x0;x) = lim
λ↓0

1

λβ
(f(x0 + λx)− ϕ(λx)− f(x0))

≥ lim
i→∞

1

λβi
(f(x0 +λix)−ϕ(λix)−f(x0)) ≥ lim

i→∞

1

λβi
(f(x0 +λiυi)−ϕ(λiυi)−f(x0)

+o2(x, λi)) + lim
i→∞

1

λβi
(−f(x0 +λiυi) + f(x0 +λix) +ϕ(λiυi)−ϕ(λix)− o2(x, λi))

≥ lim
i→∞

1

λβi
(f(x0 + λiυi)− ϕ(λiυi)− f(x0) + o2(x, λi))

− lim
i→∞

1

λβi
(f(x0+λix+λi(υi−x))−f(x0+λix)−ϕ(λix+λi(υi−x))+ϕ(λix))+o2(x, λi))

≥ − lim
i→∞

1

λβi
(K ‖λi(υi − x)‖ν (λµϕ1(x)+‖λi(υi − x)‖σ)+o2(x, λi)+o(‖λix‖β) = 0.

The theorem is proved.
Remark 4.1. From the proof of theorem 4.1 we have that if for any x ∈

Kα,β(x0;C,ϕ) there exists ∃λx > 0, ∃o1(x, λ) : [0, λx]→ X, ∃o2(x, λ) : [0, λx]→
R+, ∃o(x, λ) : [0, λx] → R+,where o1(x,λ)

λα → 0, o2(x,λ)
λβ

→ 0, o(x,λ)
λβ
→ 0 at λ ↓ 0,

that x0 + λx+ o1(x, λ) ∈ C and ϕ(λx+ o1(x, λ)) ≤ o2(x, λ) as λ ∈ [0, λx] and

|f(x0 + λx+ o1(x, λ))− f(x0 + λx)− ϕ(λx+ o1(x, λ)) + ϕ(λx)| ≤ o(x, λ)
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at λ ∈ [0, λx] and x0 is the minimum point of the function f on the set C, then
the statement of theorem 4.1 is also true.

If ϕ1(x) = ‖x‖µ , where µ ≥ β − αν, the following corollary 4.1 follows from
theorem 4.1.

Corollary 4.1. If X is a Banach space, x0 is the minimum point of the function
f on the set C , there exist α > 0, ν > 0, µ > 0, β ≥ ν, σ > 0, where µ ≥ β−αν,
σ ≥ β−αν

α , the functions o : R+ → R+, where lim
t↓0

o(t)
t = 0 and ϕ : X → R,

numbers δ > 0 and K are such that

|f(x0 + x+ y)− f(x0 + x)− ϕ(x+ y) + ϕ(x)| ≤ K ‖y‖ν (‖x‖µ + ‖y‖σ) + o(‖x‖β)

for x ∈ Kα,β(x0;C,ϕ) (x ∈ Tα,β(x0;C,ϕ)), ‖x‖ ≤ δ, y ∈ X, ‖y‖ ≤ ‖x‖ , x0 + x+
y ∈ C, then

f
{β}−
ϕ (x0;x) = lim

λ↓0

1
λβ

(f(x0 + λx)− ϕ(λx)− f(x0)) ≥ 0 at x ∈ Kα,β(x0;C,ϕ),

(f
{β}+
ϕ (x0;x) = lim

λ↓0
1
λβ

(f(x0 +λx)−ϕ(λx)−f(x0)) ≥ 0 at x ∈ Tα,β(x0;C,ϕ)).

Let’s note that theorem 4.1 and corollary 4.1 are generalizations of theorem
6.1 and corollary 6.1 of [6]. For simplicity further we will consider the use of the
first part of theorem 4.1, when α ≥ 1 and µ = σ = β − ν.

Let X and Y be banach spaces, fi : X → R, i ∈ I, F : X → Y , C ⊂ X.
Let’s consider the problem

f0(x)→ min, (4.1)

P = {x ∈ X : fi(x) ≤ 0, i = 1, . . . ,m, F (x) = 0, x ∈ C}.

Theorem 4.2. Let X and Y be Banach spaces, fi : X → R, i ∈ I, and F : X →
Y , the functions fi satisfy ϕi−(1, 2, 1, δ, oi(2)) locally Lipschitz condition with the
constant Ki at the point x0, where the functions ϕi satisfy the Lipschitz condition
with the constant Mi in the set 2δB and derivative F ′(z) in Frechet’s sense exists
at z ∈ x0 + 2δB and there will be L > 0 such that ‖F ′(u)− F ′(υ)‖ ≤ L ‖u− υ‖
at u, υ ∈ x0 + 2δB, α0 ≥ 0, α1 ≥ 0, . . . , αm ≥ 0 and y∗ ∈ Y ∗, and x0 be the
minimum point of f0 on the set P . Then

f{2}−ϕ (x0;x) = lim
λ↓0

1

λ2
(α0f0(x0 + λx)− ϕ(λx)− α0f0(x0)) ≥ 0

at x ∈ Kr,2(x0; P, ϕ), where ϕ(x) = −
m∑
i=1

αifi(x0 + x)− 〈y∗, F (x0 + x)〉, r ≥ 2.

Proof. Using lemma 2.1 by the condition we have that∣∣∣∣∣
m∑
i=0

αifi(x0 + x+ y) + 〈y∗, F (x0 + x+ y)〉 −
m∑
i=0

αifi(x0 + x)− 〈y∗, F (x0 + x)〉

−
m∑
i=0

αiϕi(x+ y)−
〈
y∗, F ′(x0)(x+ y)

〉
+

m∑
i=0

αiϕi(x) +
〈
y∗, F ′(x0)(x)

〉∣∣∣∣∣
≤

m∑
i=0

αi |fi(x0 + x+ y)− fi(x0 + x)− ϕi(x+ y) + ϕi(x)|
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+
∣∣〈y∗, F (x0 + x+ y)− F (x0 + x)− F ′(x0)(x+ y) + F ′(x0)(x

〉∣∣
≤ (

m∑
i=0

Kiαi + ‖y∗‖L) ‖y‖ (‖y‖+ ‖x‖) +

m∑
i=0

αioi(‖x‖2)

at x, y ∈ δB. Therefore∣∣∣∣∣
m∑
i=0

αifi(x0 + x+ y) + 〈y∗, F (x0 + x+ y)〉 −
m∑
i=0

αifi(x0 + x)− 〈y∗, F (x0 + x)〉

∣∣∣∣∣
≤ (

m∑
i=0

Kiαi + ‖y∗‖L) ‖y‖ (‖y‖+ ‖x‖) +

m∑
i=0

αioi(‖x‖2)

+

∣∣∣∣∣
m∑
i=0

αiϕi(x+ y) +
〈
y∗, F ′(x0)(x+ y)

〉
−

m∑
i=0

αiϕi(x)−
〈
y∗, F ′(x0)(x)

〉∣∣∣∣∣
≤

m∑
i=0

αi |ϕi(x+ y)− ϕi(x)|+
∣∣〈y∗, F ′(x0)(x+ y)− F ′(x0)(x

〉∣∣
+(

m∑
i=0

Kiαi + ‖y∗‖L) ‖y‖ (‖y‖+ ‖x‖) +

m∑
i=0

αioi(‖x‖2)

≤ (
m∑
i=0

Kiαi + ‖y∗‖L) ‖y‖ (‖y‖+ ‖x‖)

+(
m∑
i=0

Miαi + ‖y∗‖
∥∥F ′(x0)

∥∥) ‖y‖+
m∑
i=0

αioi(‖x‖2)

at x, y ∈ δB. If x ∈ Kr,2(x0;P,ϕ), then by definition there will be λx > 0,

o1(x, λ) : [0, λx] → X, o2(x, λ) : [0, λx] → R+, where o1(x,λ)
λr → 0 and o2(x,λ)

λ2
→ 0

as λ ↓ 0, that x0 +λx+o1(x, λ) ∈ P and ϕ(λx+o1(x, λ)) ≤ o2(x, λ) at λ ∈ [0, λx].
Let λx > 0 such that λx ‖x‖ ≤ δ and ‖o1(x, λ)‖ ≤ δ at λ ∈ [0, λx]. Then∣∣∣∣∣

m∑
i=0

αifi(x0 + λx+ o1(x, λ)) + 〈y∗, F (x0 + λx+ o1(x, λ))〉

−
m∑
i=0

αifi(x0 + λx)− 〈y∗, F (x0 + λx)〉

∣∣∣∣∣
≤ (

m∑
i=0

Kiαi + ‖y∗‖L) ‖o1(x, λ)‖ (‖o1(x, λ)‖+ ‖λx‖)

+(

m∑
i=0

Miαi + ‖y∗‖
∥∥F ′(x0)

∥∥) ‖o1(x, λ)‖+

m∑
i=0

αioi(‖λx‖2)

at λ ∈ [0, λx]. If r ≥ 2, from remark 4.1 we have that

f{2}−ϕ (x0;x) = lim
λ↓0

1

λ2
(α0f0(x0 + λx)− ϕ(λx)− α0f0(x0)) ≥ 0

at x ∈ Kr,2(x0;P,ϕ), where ϕ(x) = −
m∑
i=1

αifi(x0 + x) − 〈y∗, F (x0 + x)〉. The

theorem is proved.
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Let us put L(x, α, y∗) = α0f0(x)+
m∑
i=1

αifi(x)+〈y∗, F (x)〉, α = (α0, α1, ..., αm).

Corollary 4.2. If αifi(x0) = 0, i ∈ J, and the condition of theorem 4.2 is
satisfied, then

lim
λ↓0

1

λ2
(L(x0 + λx, α, y∗)− L(x0, α, y

∗)) ≥ 0

at x ∈ Kr,2(x0;P,ϕ), where r ≥ 2.

Proof. If αifi(x0) = 0, i ∈ J, under the condition of theorem 4.2 we have that

f{2}−ϕ (x0;x) = lim
λ↓0

1

λ2
(α0f0(x0 + λx) +

m∑
i=1

αifi(x0 + λx)

+ 〈y∗, F (x0 + λx)〉 − α0f0(x0)−
m∑
i=1

αifi(x0)− 〈y∗, F (x0)〉)

= lim
λ↓0

1

λ2
(L(x0 + λx, α, y∗)− L(x0, α, y

∗)) ≥ 0

at x ∈ Kr,2(x0;P,ϕ). The corollary is proved.
Let the condition of theorem 4.2 be satisfied and x0 be the local minimum point

of f0 on the set P, α0 ≥ 0, α1 ≥ 0, . . . , αm ≥ 0 and y∗ ∈ Y ∗. As K2(x0;P,ϕ) ⊂
Kr,2(x0;P,ϕ), from theorem 2 we have that

f{2}−ϕ (x0;x) = lim
λ↓0

1

λ2
(α0f0(x0 + λx)− ϕ(λx)− α0f0(x0)) ≥ 0

at x ∈ K2(x0;P,ϕ), where ϕ(x) = −
∑m

i=1 αifi(x0 + x)− 〈y∗, F (x0 + x)〉.

Theorem 4.3. Let X and Y be Banach spaces, fi : X → R, i ∈ I , and F : X →
Y , the functions fi satisfy ϕi − (1, 2, 1, δ, oi(2)) locally Lipschitz condition with
the constant Ki at the point x0 at i ∈ I , derivative F ′(z) in Frechet’s sense exist
at z ∈ x0 + 2δB and there will be L > 0 such that ‖F ′(u)− F ′(υ)‖ ≤ L ‖u− υ‖
at u, υ ∈ x0 + 2δB, α0 ≥ 0, α1 ≥ 0, . . . , αm ≥ 0 and y∗ ∈ Y ∗, and x0 be the
minimum point of the function f0 on the set P . Then

f
{2}−
ϕ (x0;x) = lim

λ↓0

1
λ2

(α0f0(x0 + λx)− ϕ(λx)− α0f0(x0)) ≥ 0

at x ∈ Kr,2(x0;P,ϕ), where ϕ(x) = −
m∑
i=1

αifi(x0 + x)− 〈y∗, F (x0 + x)〉+

+
m∑
i=0

αiϕi(x) + 〈y∗, F ′(x0)x〉 , r ≥ 1.

Proof Using lemma 2.1 by the condition we have that∣∣∣∣∣
m∑
i=0

αifi(x0 + x+ y) + 〈y∗, F (x0 + x+ y)〉 −
m∑
i=0

αifi(x0 + x)− 〈y∗, F (x0 + x)〉

−
m∑
i=0

αiϕi(x+ y)−
〈
y∗, F ′(x0)(x+ y)

〉
+

m∑
i=0

αiϕi(x) +
〈
y∗, F ′(x0)x

〉∣∣∣∣∣
≤

m∑
i=0

αi |fi(x0 + x+ y)− fi(x0 + x)− ϕi(x+ y) + ϕi(x)|
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+
∣∣〈y∗, F (x0 + x+ y)− F (x0 + x)− F ′(x0)(x+ y) + F ′(x0)x

〉∣∣
≤ (

m∑
i=0

Kiαi + ‖y∗‖L) ‖y‖ (‖y‖+ ‖x‖) +

m∑
i=0

αioi(‖x‖2)

at x, y ∈ δB. Therefore∣∣∣∣∣α0f0(x0 + x+ y)− α0f0(x0 + x) +

m∑
i=1

αifi(x0 + x+ y)

+ 〈y∗, F (x0 + x+ y)〉 −
m∑
i=1

αifi(x0 + x)− 〈y∗, F (x0 + x)〉

−
m∑
i=0

αiϕi(x+ y)−
〈
y∗, F ′(x0)(x+ y)

〉
+

m∑
i=0

αiϕi(x) +
〈
y∗, F ′(x0)x

〉∣∣∣∣∣
≤ (

m∑
i=0

Kiαi + ‖y∗‖L) ‖y‖ (‖y‖+ ‖x‖) +
m∑
i=0

αioi(‖x‖2)

at x, y ∈ δB, i.e. α0f0 is −
m∑
i=1

αifi(x0 + x)− 〈y∗, F (x0 + x)〉+
m∑
i=0

αiϕi(x) +

+〈y∗, F ′(x0)x〉 −(1, 2, 1, δ,
m∑
i=0

αioi(2)) locally Lipschitz function with the constant

(
m∑
i=0

Kiαi + ‖y∗‖L) at the point x0.

Then from the corollary 4.1 we have

f{2}−ϕ (x0;x) = lim
λ↓0

1

λ2
(α0f0(x0 + λx)− ϕ(λx)− α0f0(x0)) ≥ 0

at x ∈ Kr,2(x0;P,ϕ), where ϕ(x) = −
m∑
i=1

αifi(x0 + x)− 〈y∗, F (x0 + x)〉+

+
m∑
i=0

αiϕi(x) + 〈y∗, F ′(x0)x〉 . The theorem is proved.

Let the condition of theorem 4.3 be satisfied and x0 be the local minimum
point of function f0 on the set P, α0 ≥ 0, α1 ≥ 0, . . . , αm ≥ 0 and y∗ ∈ Y ∗. As
K2(x0;P,ϕ) ⊂ Kr,2(x0;P,ϕ), from theorem 4.3 we have that

f{2}−ϕ (x0;x) = lim
λ↓0

1

λ2
(α0f0(x0 + λx)− ϕ(λx)− α0f0(x0)) ≥ 0

at x ∈ K2(x0;C,ϕ), where ϕ(x) = −
m∑
i=1

αifi(x0 + x)− 〈y∗, F (x0 + x)〉+

+
m∑
i=0

αiϕi(x) + 〈y∗, F ′(x0)x〉.

If
m∑
i=1

αifi(x0) + 〈y∗, F (x0)〉 = 0, having put that L(x, α, y∗) =
m∑
i=0

αifi(x) +

+ 〈y∗, F (x)〉 , α = (α0, α1, . . . , αm), y∗ ∈ Y ∗ from theorem 4.3 we have that

L{2}−qα,y∗
(x0, α, y

∗;x) = lim
λ↓0

1

λ2
(L(x0 + λx, α, y∗)
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−
m∑
i=0

αiϕi(λx)−
〈
y∗, F ′(x0)(λx)

〉
− L(x0, α, y

∗)) ≥ 0

at x ∈ Kr,2(x0;P, qα,y∗), where

qα,y∗(x) = −
m∑
i=1

αifi(x0 + x)− 〈y∗, F (x0 + x)〉+
m∑
i=0

αiϕi(x) +
〈
y∗, F ′(x0)(x)

〉
.

If the function x→ L
{2}−
qα,y∗ (x0, α, y

∗;x) is continuous and

clKr,2(x0;P,ϕ) ⊃ {x ∈ KC(x0) : ϕi(x) ≤ 0, i ∈ I, α0 ϕ0(x) ≤ 0, F ′(x0)x = 0},

then we have from here that L
{2}−
qα,y∗ (x0, α, y

∗; z) ≥ 0 at

z ∈ {x ∈ KC(x0) : ϕi(x) ≤ 0, i ∈ I, α0ϕ0(x) ≤ 0, F ′(x0)x = 0}.
Let C ⊂ X, x0 ∈ C. Let’s put

TC (x0) = {υ ∈ X : ∀hn > 0, hn → 0,∀xn → x0,∃un → υ, xn + hnun ∈ C},
T (x0;C) = {υ ∈ X : ∃hn > 0, hn → 0, ∃un → υ, x0 + hnun ∈ C},

where TC (x0) is the tangent cone to C at the point x0, and T (x0;C) is the
contingent cone to C at the point x0 (see [2]).

If C ⊂ X is a convex set, then TC (x0) = T (x0;C) = cl
⋃
λ>0

C−x0
λ (see [2]).

If C ⊂ X is a convex set and x0 ∈ C, we will designate C̃ = intC
⋃
{x0},

SC̃(x0) =
⋃
λ>0

C̃−x0
λ . Let’s note that if intC 6= ∅ and C is a convex set, then

TC(x0) = clSC̃(x0).

Theorem 4.4. Let X and Y be Banach spaces, x0 be the local minimum point in
the problem (4.1), β > 1, the function fi satisfy ϕi− (β, δ) locally semi-Lipschitz
condition with the constant K at the point x0, where i ∈ I, ϕi : X → R sublinear
continuous functions at i ∈ I , fj(x0) = 0 at j ∈ J , the operator F : X → Y
be strictly differentiable at the point x0 and F ′(x0)X = Y , C be a convex set,
intC 6= ∅, then there exist simultaneously non zero α0 ≥ 0, α1 ≥ 0, . . . , αm ≥ 0

and y∗ ∈ Y ∗ such that
m∑
i=0

αiϕi(x) + 〈y∗, F ′(x0)x〉 ≥ 0 at x ∈ TC(x0).

Proof. Let’s denote Λ = F ′(x0). Let’s show that system

ϕ0(x) < 0, ϕ1(x) < 0, . . . , ϕm(x) < 0,Λx = 0

has no solution on SC̃(x0). Let’s assume the contrary. Let there exist x̄ ∈
SC̃(x0) such that ϕi(x̄) < 0 at i ∈ I and Λx̄ = 0. As Λx̄ = F ′(x0)x̄ = 0 and
F ′(x0)X = Y , according to Lyusternik’s theorem there exists ε > 0 and the

mapping r : [0, ε] → X such that r(t)
t → 0 as t ↓ 0 and F (x0 + tx̄ + r(t)) = 0

at t ∈ [0, ε]. By the condition the function fi satisfies ϕi − (β, δ) locally semi-
Lipschitz condition with the constant K at the point x0, where i ∈ I, β > 1.
Then we have that

fi(x0 + tx̄+ r(t))− fi(x0)−ϕi(tx̄+ r(t)) ≤ K ‖tx̄+ r(t)‖β

at t ∈ [0, ε], ‖tx̄+ r(t)‖ ≤ δ, i ∈ I . As ϕi is a continuous function, there exists

0 < δ0 ≤ 1
2δ such that

∣∣∣ϕi(x̄+ r(t)
t )− ϕi(x̄)

∣∣∣ ≤ 1
2 |ϕi(x̄)| at

∥∥∥ r(t)t ∥∥∥ ≤ δ0 and i ∈ I.

Then we get that ϕi(x̄ + r(t)
t ) ≤ 1

2ϕi(x̄) at
∥∥∥ r(t)t ∥∥∥ ≤ δ0 and i ∈ I . As r(t)

t → 0



94 MISRADDIN A. SADYGOV

at t ↓ 0, then there exists λ, where 0 < λ < 1, it that
∥∥∥ r(t)t ∥∥∥ ≤ δ0 at t ∈ (0, λ].

Then ‖tx̄+ r(t)‖ ≤ δ at t ∈ [0, λ1], where λ1 = min{λ, 1
2‖x̄‖δ, ε}. Therefore we

have that

fi(x0 + tx̄+ r(t))− fi(x0) ≤ 0, 5 tϕi(x̄) +Ktβ
∥∥∥∥x̄+

r(t)

t

∥∥∥∥β
≤ 0, 5 tϕi(x̄) +Ktβ(‖x̄‖+ δ0)β

at t ∈ [0, λ1] and i ∈ I . From here we have that

f0(x0 + tx̄+ r(t))−f0(x0) < 0, fj(x0 + tx̄+ r(t)) < 0, j ∈ J , F (x0 + tx̄+ r(t)) = 0

at rather small t > 0. If x̄ ∈ SC̃(x0) =
⋃
λ>0

C̃−x0
λ , then there exists λ0 > 0 such

that x̄ ∈ C̃−x0
λ0

, i.e. x0 + λ0x̄ ∈ C̃. Therefore x0 + λ0x̄ ∈ int C. Then there

exists ν0 > 0, where λ0 > ν0, such that x0 + λ0x̄+ (λ0
r(t)
t ) ∈ int C at t ∈ [0, ν0].

Therefore

x0 + t(x̄+
r(t)

t
) = (1− t

λ0
)x0 +

t

λ0
(x0 + λ0x̄+ λ0(

r(t)

t
)) ∈ C,

i.e. we have that x0 + tx̄+ r(t) ∈ C at t ∈ [0, ν0].
As x0 is the local minimum point in problem (4.1), we get contradiction. There-

fore the system ϕ0(x) < 0, ϕ1(x) < 0, . . ., ϕm(x) < 0, Λx = 0 has no solution
on SC̃(x0). According to theorem 5.5.3[9] there exists simultaneously non-zero

α0 ≥ 0, α1 ≥ 0, . . . , αm ≥ 0 and y∗ ∈ Y ∗ such that
m∑
i=0

αiϕi(x)+〈y∗, F ′(x0)x〉 ≥ 0

at x ∈ SC̃(x0). As ϕi : X → R are continuous functions at i ∈ I and

Λ = F ′(x0) is a linear continuous operator, then
m∑
i=0

αiϕi(x) + 〈y∗, F ′(x0)x〉 ≥ 0

at x ∈ clSC̃(x0) = TC(x0). The theorem is proved.
From theorem 4.4 we have that the zero point minimizes the convex function
m∑
i=0

αiϕi(x)+ 〈y∗, F ′(x0)x〉+δTC(x0)(x) in X. As ∂δTC(x0)(0) = NC(x0), we will

get that

0 ∈ ∂(
m∑
i=0

αiϕi(x) +
〈
y∗, F ′(x0)x

〉
+ δTC(x0)(x))x=0

=
m∑
i=0

αi∂ϕi(0) + F ′(x0)∗y∗ +NC(x0).

From the proof of theorem 4.4 we have that max
0≤i≤m

ϕi(x) ≥ 0 at

x ∈ TC(x0)
⋂
Ker F ′(x0).

Let’s note that in theorem 4.4 we can replace the condition: function fi satisfies
ϕi − (β, δ) locally semi-Lipschitz condition with the constant K as the point x0,
where β > 1, by: the function fi satisfies ϕi − (o(1), δ) locally semi-Lipschitz
condition as the point x0.

We denote the set of all hypertangents to the set C at the point x0 ∈ C by

IC(x0) (see [3]). If x̄ ∈ IC(x0) and r : R+ → X, where r(t)
t → 0 at t ↓ 0, by

definition of IC(x0) there exists α0 > 0 such that x0 + tx̄+ r(t) ∈ C at t ∈ [0, α0].
Therefore from the proof of theorem 4.4 we have that if C ⊂ X is any set and
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there exists a hypertangent vector to the set C at the point x0 ∈ C, theorem 4.4
remains true if in theorem 4.4 we replace the cone SC̃(x0) by intTC(x0), where
TC(x0) is Clarke’s tangent cone to the set C at the point x0 (see [3]), i.e. there
exists simultaneously non zero α0 ≥ 0, α1 ≥ 0, . . . , αm ≥ 0 and y∗ ∈ Y ∗ such that
m∑
i=0

αiϕi(x) + 〈y∗, F ′(x0)x〉 ≥ 0 at x ∈ intTC(x0). As ϕi : X → R are sublinear

continuous functions at i ∈ I, we will get that
m∑
i=0

αiϕi(x) + 〈y∗, F ′(x0)x〉 ≥ 0 at

x ∈ TC(x0).
Theorem 4.4 remains true, if F is an affine continuous operator, C ⊂ X is a

convex set.
Let’s note that theorem 4.3 is true for all α0 ≥ 0, α1 ≥ 0, . . . , αm ≥ 0 and

y∗ ∈ Y ∗, but in theorem 4.4 in which the necessary condition of the first order is
received, α0 ≥ 0, α1 ≥ 0, . . . , αm ≥ 0 and y∗ ∈ Y ∗ is not arbitrary.

Let’s denote Vα,y∗(x) =
m∑
i=0

αiϕi(x) + 〈y∗, F ′(x0)x〉, α = (α0, α1, . . . αm),

Ω = {(α, y∗) : αi ≥ 0, y∗ ∈ Y ∗,
m∑
i=0

αi+‖y∗‖ = 1, Vα,y∗(x) ≥ 0 at x ∈ TC(x0)}.

Corollary 4.3. If αifi(x0) = 0, i ∈ J , and the condition of theorems 4.3 and 4.4
is satisfied, then

sup{L{2}−qα,y∗ (x0, α, y
∗;x) : (α, y∗) ∈ Ω} ≥ 0 at x ∈

⋃
(α,y∗)∈ΩKr,2(x0;P, qα,y∗),

sup{L{2}+qα,y∗ (x0, α, y
∗;x) : (α, y∗) ∈ Ω} ≥ 0 at x ∈

⋃
(α,y∗)∈Ω Tr,2(x0;P, qα,y∗).

Using Section 3 the set
⋃

(α,y∗)∈ΩKr,2(x0;P, qα,y∗) may be substitute of by a

simpler set (see lemma 3.3 and lemma 3.4).

Theorem 4.5. If X and Y are Banach spaces, fi : X → R, i ∈ I , and F : X →
Y , the functions fi satisfy ϕi−(1, β, ν, δ, oi(β)) locally Lipschitz condition with the
constant Ki at the point x0 at i ∈ I , the mapping F (x) satisfies S−(1, β, ν, δ, o(β))
locally Lipschitz condition with the constant K at the point x0, α0 ≥ 0, α1 ≥
0, . . . , αm ≥ 0 and y∗ ∈ Y ∗, r ≥ 1, β ≥ ν > 0 and x0 is the minimum point in
problem (4.1), then

f
{β}−
ϕ (x0;x) = lim

λ↓0

1
λβ

(α0f0(x0+λx)−ϕ(λx)−α0f0(x0)) ≥ 0 at x ∈ Kr,β(x0;P,ϕ),

f
{β}+
ϕ (x0;x) = lim

λ↓0
1
λβ

(α0f0(x0+λx)−ϕ(λx)−α0f0(x0)) ≥ 0 at x ∈ Tr,β(x0;P,ϕ),

where ϕ(x) = −
m∑
i=1

αifi(x0 + x)− 〈y∗, F (x0 + x)〉+
m∑
i=0

αiϕi(x) + 〈y∗, S(x)〉.

Proof. By the condition we have that∣∣∣∣ m∑
i=0

αifi(x0 + x+ y) + 〈y∗, F (x0 + x+ y)〉 −
m∑
i=0

αifi(x0 + x)

− 〈y∗, F (x0 + x)〉 −
m∑
i=0

αiϕi(x+ y)− 〈y∗, S(x+ y)〉+
m∑
i=0

αiϕi(x) + 〈y∗, S(x)〉
∣∣∣∣

≤
m∑
i=0

αi |fi(x0 + x+ y)− fi(x0 + x)− ϕi(x+ y) + ϕi(x)|

+ |〈y∗, F (x0 + x+ y)− F (x0 + x)− S(x+ y) + S(x〉|
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≤ (
m∑
i=0

Kiαi + ‖y∗‖K) ‖y‖ν (‖y‖β−ν + ‖x‖β−ν) +
m∑
i=0

αioi(‖x‖β) + ‖y∗‖ o(‖x‖β)

at x, y ∈ δB. From here we have that α0f0 satisfies

−
m∑
i=1

αifi(x0 + x)− 〈y∗, F (x0 + x)〉+

m∑
i=0

αiϕi(x)

+ 〈y∗, S(x)〉 − (1, β, ν, δ,

m∑
i=0

αioi(β) + ‖y∗‖ o(β))

locally Lipschitz condition with the constant (
m∑
i=0

Kiαi+‖y∗‖K) at the point x0.

Validity of theorem 4.5 follows from corollary 4.1. The theorem is proved.
Let’s denote

ϕα,y∗(x) = −
m∑
i=1

αifi(x0 + x)− 〈y∗, F (x0 + x)〉+
m∑
i=0

αiϕi(x) + 〈y∗, S(x)〉 ,

L{β}−ϕα,y∗
(x0, α, y

∗;x) = lim
λ↓0

1

λβ
(L(x0 + λx, α, y∗)

−
m∑
i=0

αiϕi(λx)− 〈y∗, S(λx)〉L(x0, α, y
∗)),

L{β}+ϕα,y∗
(x0, α, y

∗;x) = lim
λ↓0

1

λβ
(L(x0 + λx, α, y∗)

−
m∑
i=0

αiϕi(λx)− 〈y∗, S(λx)〉 − L(x0, α, y
∗)).

Corollary 4.4. If αifi(x0) = 0, i ∈ J, and the condition of theorem 4.5 is
satisfied, then

L
{β}−
ϕα,y∗ (x0, α, y

∗;x) ≥ 0 at x ∈ Kr,β(x0;P,ϕα,y∗);

L
{β}+
ϕα,y∗ (x0, α, y

∗;x) ≥ 0 at x ∈ Tr,β(x0;P,ϕα,y∗), where r ≥ 1, β ≥ ν > 0.

Proof. If αifi(x0) = 0, i ∈ J, under the condition of theorem 4.5 we have that

L{β}−ϕα,y∗
(x0, α, y

∗;x) = lim
λ↓0

1

λβ
(

m∑
i=0

αifi(x0 + λx) + 〈y∗, F (x0 + λx)〉 −
m∑
i=0

αiϕi(λx)

−〈y∗, S(λx)〉 −
m∑
i=0

αifi(x0)− 〈y∗, F (x0)〉) = lim
λ↓0

1

λβ
(L(x0 + λx, α, y∗)

−
m∑
i=0

αiϕi(λx)− 〈y∗, S(λx)〉 − L(x0, α, y
∗)) ≥ 0

at x ∈ Kr,β(x0;P,ϕα,y∗).
The second case is proved similarly. The corollary is proved.
Let’s note that all statements of Section 4 remain true if x0 is the local mini-

mum point.
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