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HIGHER ORDER CONDITIONS IN NONDIFFERENTIABLE
PROGRAMMING PROBLEMS

MISRADDIN A. SADYGOV

Abstract. In the paper, using the classes of S — (a, 8,v,6,w) and S —
(8,0) locally Lipschitz mappings at the point, higher order necessary
conditions of the extremum are received for extreme problems in the
presence of restrictions.

1. Introduction

Research of smooth extreme problems with restriction (the problem on con-
ditional extremum) is based on Lagrange’s principle offered by J.L.Lagrange at
the close of the 18th century. Strict justification of the Lagrange principle for the
wide class of extreme problems demanded serious efforts of many mathematicians
and was generally finished in the second half of the XX century. The convex ex-
treme problem with restriction is well studied in the books [4, 9]. Nonsmooth
extreme problems with restriction are considered in the book [3], and in classes
of locally Lipschitz functions necessary conditions of the extremum of the first
order are received. In the present work necessary conditions of the extremum
of any order for nonsmooth and, in particular, for smooth extreme problems in
the presence of restrictions are proved. Let’s note that when receiving necessary
conditions of the extremum, the essential role has the classes of S — («, 5, v, 0, w)
and S — (3, 6) locally Lipschitz mappings at the point (see [5]-[8]).

The work consists of three sections. In Section 2, a number of properties of
S—(a, B,v,0,w) and S— (S, ) locally Lipschitz mappings at the point are studied.
In Section 3, a number of properties of the approximate cone is studied. In Section
4, by means of Lagrange’s function and the approximate cone necessary conditions
of the extremum of higher order in the presence of restrictions are received. Let’s
note that in Section 4 the necessary condition of the extremum is received where
the regularity at the minimum point is not required. In particular, from here
follows necessary conditions of the extremum of second order for the classical
problem on the conditional extremum and for the mathematical programming
problem(see [1], p.237).
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2. Class of locally Lipschitz functions of higher order

Let X and Y be real Banach spaces, FF : X — Y, S: X —» Y, i X>R,
p: X >R a>0v>0,>ar,6 >0, K >0,0: Ry - Ryandw: Ry — Ry,
where 0(0) = 0, w(0) = 0, Ry = [0,+00). Let’s put B = {y € X : [jy|| <1},
B(z,0) = {ye X : |y—a| <0}

The mapping F'is said to be S—(«, 3, v, 0, w) locally Lipschitz with the constant
K at the point z € X, if F' satisfies the condition

|F(z+z+y) —F@+z)—S@+y) + @)
v —av Boav
< Kyl (1l + Iy =) + w(lz])
at x,y € dB. If w(t) = 0, then the mapping F is said to be S — (a, 8, v, J) locally
Lipschitz with the constant K at the point Z (see [7]). If w(t) = 0 and S(x) =0,
then the mapping F' is said to be («, 3, v,d) locally Lipschitz with the constant
K at the point Z.

If there is a function o : R4y — Ry, where liﬁ)l @ = 0, such that
t

w(||z]]) = o(||z]|), then S — (e, B, v, 8,w) locally Lipschitz with the constant K
at the point Z mapping F' we call S — («a, 8, v, 6, 0(5)) locally Lipschitz with the
constant K at the point Z.

Let’s consider generalization of the class S — («, 8,v,d,w) locally Lipschitz
mapping with the constant K at the point . Let v > 0, u >0, 0 > 0, K > 0.
We call the mapping F' S — [u, 0, v, §,w] locally Lipschitz with the constant K at
the point T € X, if I satisfies the condition

I1F(@+2+y) = Fz+z) =S +y) +S@) < Kyl (121" + [lylI) + w(ll=()

at z,y € 0 B. Further we consider that y > S—av, o > ﬂ_ao‘”, where a > 0, v > 0,
B>
We call the mapping F': X — Y satisfying the condition

IF(z +y) - F(z) - S)| < K |ly|”

at y € 6B, S — (f3,9) locally Lipschitz with the constant K at the point Z.

If there is a function o : R4+ — Ry, where 1}&)1 @ = 0, such that

IF(2 +y) — F(2) — S|l < olllyl”)
at y € 6B, we call the mapping F': X — Y S — (0o(8),0) locally Lipschitz at the
point Z.

If F(x) = f(x), we will put S(x) = p(z).

If the function f : X — R satisfies the condition f(Z+y)—f(Z)—¢(y) < K ||y||°
at y € dB, we call the function f ¢ — (3, d) locally semi-Lipschitz with the constant
K at the point Z.

If there is a function o : R4+ — Ry, where lti&)l @ = 0, such that

F@+y) = £(@) —ely) < ollyl”)

at y € 6B, we will call the function f ¢ — (o(5),0) locally semi-Lipschitz at the
point Z.
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Further we consider that S(0) = 0 and ¢(0) = 0 (if S(0) # 0, it is necessary
to consider the function S(z) = S(z) — 5(0)).

In [5]-[7] S — (o, B,v,0,w) locally Lipschitz mapping with the constant K at
the point are defined and a number of their properties are studied.

Lemma 2.1. Let X and Y be normed spaces, xg € X, the derivative F'(z)
in Frechet’s sense exist at z € xo + 26B, also there be L > 0 such that
|F'(u) — F'(v)|| < L|lu—v| at u,v € xg+ 26B. Then

[F(zo + 2 +y) — F(zo +z) — F'(z0)(y)|| < Llyll (|l + [lyl])
at x,y € 0B.

Lemma 2.1 is proved in [7] (see lemma 4.4.3).
Let M C X, zg € M. Let’s put dy(z) = inf{||ly —z|| : y € M}. It is easily
checked that

[y (o + x +y) — diy (o +2)| < 29" lyl| (" + |ly]" ™)

at z, y € X.
If the function f satisfies the Lipschitz condition in a- neighborhood of the
point zp, then by lemma 2.4.2[5] for any € > 0 there exists 0 > 0 such that

f@) < f(mo) + sup (p,x —mo) + ¢ ||lz — a0
pEIf(zo)

at @ € B(zo,5), where § < o, 0f(x0) is Clark’s subdifferential. If ¢ = 1, where
n € N, then there exists §, > 0 such that

f@) < fao)+ sup (p,z— o)+~ |1z — zol (2.1)
pEDf(x0) n

at @ € B(wo,6,). We consider that 6, > 6,41. Having put o(t) = £ at
t € (0p+1,0p) from (2.1) we have that

f(zo+2) < f(zo) + sup (p,z)+o(]lz])
p€If(z0)

at z € B(0,61).
In particular from here we have that if f : X — R is a continuous convex
function, there is the function o : Ry — R4, where lifgl @ =0 and 6 > 0 such
¢

that
fxo +2) — f(zo) — f'(wos 2) < ofl|z])
at x € B(0,0). Then from proposition 4.3.4[2] we have that
0 < f(zo+2) — fl20) — f'(zo;2) < o(||z]])

at x € B(0,0).
Further we will denote I = {0,1,...,m}, J ={1,...,m}.
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3. Number of properties of the approximate cone

Let X be a Banach space, C C X, xg € C, o(z,0) =0, o1(z,0) =0,
02(x,0) = 0. Let’s put (see [7])

Kou(xo;Cp) = {z € X : IN; > 0, Joi(z,A) : [0,A;] = X, Joa(z,N) :
[0, \z] = Ry, where Olg\m A 5 0 and 02(36 () — 0at A | 0, that zo+Az+o01(z,\) €
C, oAz +o1(z,N)) < oa(z, ) at X € [O Az},

Topu(zo;C,p) = {xz € X : Jo(z,\) : [0,\;] = Ry, where O(m N 5 0at A0
and 3\; | 0, Ju; € X, where /\al—_l |lvi—z|| — 0 at i — 400, that T + \jv; €
C, p(Aivy) < oz, ;) at all i}, Z

Ku(x0;C,¢) = {x € X : I\, > 0, Joa(z,N) : [0, \;] = R, where w 0
at A1 0, that zo + Az € C, o(Ax) < oa(x, A) at A € [0, Az},
Ko(20;C) = {z € X : 3\, > 0, Jo(z,A) : [0,A\;] = X, where 22 5 0 at

0

A1 0, that g + Az + o(z, \) € C for X € [0, \;]}, Ko (zo) = Ki(20;C).
Lemma 3.1. Let X and Y be real Banach spaces, C = {x € C; : fi(z) <0,
i=1,....,m, F(z) = 0}, where f; : X — R, i € J, fi(rg) = 0 at i € J,
F:X =Y, Cy CX, the function f; satisfy ¢; — (8,0) locally Lipschitz con-
dition with the constant K; at the point xg, w; and @ be a continuous positively
homogeneous function of degree o, 8 > o, u > « > 1 and the mapping F be

strictly differentiable and regular at the point xg € C, i.e. ImF'(x9) =Y. Then
Kau(zo;C, ) C{x € Ka(z0;C1) 1 i) <0, i € J, ¢(x) <0, F'(xo)z = 0}.

Proof. Let x € Ko u(x0; C, ¢). Then there exists I\, > 0, Joi(z, ) : [0, ;] —
X, Jos(x, ) : [0,\z] — R4, where % — 0, % — 0 at A | 0, that
fi(zo+Az+o1(z, ) <0atie€ J, F(xo+Ax+o1(z,\)) =0, xo+Az+o1(z,A) € Cy
and o(A\x + o1(x,A)) < oa(z,A) at A € [0, \;]. Besides let A, > 0 such that
Az + o1(xz, N)|| < § at X € [0,\;]. From equality F(xzg + A\x + o1(x,\)) = 0
according to Lyusternik’s theorem we have that F'(zg)x = 0. As the functions
fi satisfy ¢; — (8, d) locally Lipschitz condition with the constant K; at the point

xq, then

|fi(zo +y) = fi(zo) — @i(y)] < Ki [lyll”
at y € 0B. Therefore

[fiwo + Az + 01(2, 1) = fiwo) — pilhe + 01(x, V)| < K; | Az + o1 (w, A)||°
at A € [0, \z]. From here we receive
pi(Ax + 01(z,0)) < filwo + Az + 01(x, A)) + K [|Az + 01 (x, A)||

at A € [0,\;]. As ¢; is a positively homogeneous function of degree «, then
Api(z + o(e, /\))) < K ||Az 4 o1(z, \)||? at X € [0, Az]. By the condition, ¢; is a
continuous functlon and S > «, from here we receive ¢;(x) < 0at i€ J.

By the condition p(Az + o1(x,\)) < 0a(z, A) at A € [0, \,], where @ — 0
at A | 0. Therefore Ap(z + w) < 02(z,A) at A € [0,A\;]. From here we
receive p(z) < 0.

As zg + Ax + o1(z,A) € Cy at X € [0, \;], by definition € K,(z0;C1). The

lemma is proved.
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Lemma 3.2. Let X and Y be Banach spaces, C = {x € C;: fi(z) <0,
i=1,....,m, F(x) = 0}, where f; : X - R, i€ J, F:X —>Y, C; C X,
the functions f; satisfy p; — (8,9) locally Lipschitz condition with the constant
K; at the point xg, @; and @ be continuous positively homogeneous functions of
degree a, the mapping F satisfy S — (5,0) locally Lipschitz condition with the
constant K at the point xg, S be a continuous positively homogeneous mapping
of degree a,, B > a, u > a > 1. Then

Ko u(xo;C @) C{x € Ko(z0;C1) : @i(x) <0, i€ J, p(x) <0, S(x)=0}.

Proof. Let v € Ko u(20; C, ¢). Then there exists I\, > 0, Joi(z, ) : [0, A\;] —
X, Jog(xz,\) : [0,\;] =& Ry, where % — 0, w — 0 at A | 0, that
fi(zo+Az+o1(z,\)) <0atie€ J, F(xo+Ax+o1(z,\)) =0, zo+Az+o1(z,A) € C;
and p(Ax + o1(z,\)) < oa(x, ) at A € [0,);]. Besides let A, > 0 such that
Az + o1(z, \)|| <& at A € [0, \].

As the mapping F' : X — Y satisfies S — (3, 0) locally Lipschitz condition with
the constant K at the point xg, then

IF (zo + y) = F(z0) — S| < K [|y°
at y € B. Therefore
|IF (20 + Az + 01(z,\)) — F(z0) — SOz + 01 (z, \)|| < K || Az + o1 (z, N)||?
at A € [0, \z]. From here we receive
ISz + o1(@, A < [F (2o + Az + 01(2, )| + K Az + or(z, NI (3.1)

at A € [0,\z]. As F(zp+ Az + o1(z,\)) = 0 and S is a continuous positively
homogeneous mapping of degree «, and 8 > «, then from (3.1) we have that

A ||S (@ + "1(;”3)))” < K|z + o1(z, \)|?
at A € [0, A\;]. From here we receive ||S(z)|| = 0.
The remaining part of the proof repeats the proof of lemma 3.1. The lemma
is proved.
Further we consider that g > 0, @1 > 0,...,,, > 0 and y* € Y* simul-
taneously are non zero. The case ag = a1 = -+ = o, = 0 and y* = 0 is
trivial.

Vector v € X is called hypertangent to the set C' at the point zg € C, if for
some ¢ > 0 and for all y € (xg +eB)(C, w € v+¢eB, t € (0,¢) the ratio
y +tw € C is fulfilled(see [3]). The set of all hypertangents to the set C' at the
point zy € C' is denoted by Ic(zg). If Z € Io(xp), by definition I (xg) there
exists ag > 0 such that xg +tz 4+ r(t) € C at t € [0, ap], where r(t) — 0 at ¢ | 0.

Lemma 3.3. Let X and Y be Banach spaces, C = {xz € Cy: fi(z) <0,
i=1,...,m, F(x) = 0}, where f; : X - R,i€ J,F: X =Y and C; C X,
the functions f; satisfy p; — (8,9) locally Lipschitz condition with the constant
K; at the point xg, p; and be ¢ continuous positively homogeneous functions,
B> 1, p> 0 and the mapping F' a be strictly differentiable and regular at the
point xg € X, fi(xg) =0 ati € J. Then

K1, (20; C, ) D {x € Iy (m0) : pi(x) <0, i € J, p(x) <0, F'(z¢)x = 0}.
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Proof. Let x € {x € Ig,(x0) : pi(z) <0, i € J, p(x) <0, F'(xg)x = 0}. If
F'(z9)x = 0, then according to Lyusternik’s theorem there exists I\, > 0,
Jor (2, A) : [0, A;] = X, where 2&A) 5 0 at X | 0, that F(zo+ Az +o01(z, X)) = 0
at A € [0, \z]. Besides let \; > 0 such that || Az + o1(z, \)|| <0 at A € [0, A\z]. As
the functions f; satisfy ¢; — (3, 9) locally Lipschitz condition with the constant
K; at the point zg, then

| fi(zo +y) = filwo) — @i(y)] < Ki [lyll’
at y € §B. Therefore
| fi(wo + Az + o1(w, \)) — fi(z0) — 0i( Az + 01, N)| < K [|Az + 01 (2, V)|
at A € [0, \;]. From here we receive that
filwo + Az + 01(x,\) < pi(Ax + o1 (2, \) + K; [z + o1 (2, )|

at A € [0, A\;]. As p; is a positively homogeneous function, then

o1(z, \))
A

By the condition ¢; is a continuous function and S > 1. Let € > 0 such that
vi(z) +€ < 0. Then for ¢ > 0 there exists J, > 0 such that p;(z + M) <
©i(z) + e at A € [0,0,]. Therefore based on the ratio (3.2) there exists A\, > 0
such that f;(zo + Az +o01(z,A)) <0at A€ [0,\,] and i € J.

By the condition ¢(z) < 0, and ¢ is a continuous positively homogeneous
function. Let € > 0 such that ¢(z) +¢& < 0. Then for & > 0 there exists A, > 0
such that p(z + M) <p(r)+eat Ae [0, Az]. Therefore Ap(z + M) <
AMp(z)+¢e) <0at Ae|0,N,].

If z € Ig,(xp), then by definition of I¢, (zp) there exists ag > 0 such that
xo+tx+o1(x,\) € O at t € [0, ap]. Having put A\, = min{\, Aas ap} we receive
that x € K1 ,(z0;C, ). The lemma is proved.

The following lemma 3.4 is similarly proved.

filxo + Az + 01(z, ) < Api(x + )+Ki||)\x+01(x,)\)HB. (3.2)

Lemma 3.4. Let X and Y be Banach spaces, C = {x € Cy : fi(x) <0, i € J},
fi : X = R, i1 € J, and C1 C X, the functions f; satisfy p; — (8,0) locally
Lipschitz condition with the constant K; at the point xg, w; and @ be continuous
positively homogeneous functions of degree a, > o > 1, p > 0 and fi(xg) =0
ati € J. Then

Ka,#(x0507 90) ) {x € Ka($0;cl) : sz(x) < 07 (S J> gO(.Z') < O}

Lemma 3.5. Let X and Y be Banach spaces, C = {x € X : fi(x) <0, i € J,
F(x)=0,z€Cy}, where f; : X - R,i€J, F: X =»Y,C; CX, the functions
fi satisfy o; — (2,0) locally Lipschitz condition with the constant K; at the point
xg, where i € J, ; are continuous positively homogeneous functions at i € 1, the
mapping F satisfy S — (2,9) locally Lipschitz condition with the constant K at
the point xg, S : X — 'Y be continuous positively homogeneous mapping, xg € C,

fi(xo) =0 ati € J, and p(x) = — f: a;fi(xo +x) — (y*, F(zo+x)) +
i=1
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+ 3 aipi(z)+ (y*, S(x)), where ag >0, a1 > 0,...,0p >0 and y* € Y*. Then
=0

Ki(z0;C, ) C {z € K¢y (w0) : pix) <0, i € J, agpo(r) <0, S(z) =0}

Proof. Let © € Kj 2(x0; C, ). Then there exists I\, > 0, Jo1(z, ) : [0, A\z] —
X, Jos(z,A) : [0,A] = Ry, where 2 5 0 and 282 5 0 at A | 0, that
fi(zo+Ax+o01(z,N) <0,i € J, Fzo+Ax+o1(z,A) =0, zo+Ax+o01(z,\) € Cy
and p(Az + o1(x,N)) < o2(x,\) at A € [0,\;]. Besides let A\, > 0 such that
IAx + o1(x, N)|| < d at A € [0, \;]. As the function f; satisfies ¢; — (2,6) locally
Lipschitz condition at the point xq, then

|fi(wo +y) — filwo) — @i(y)| < K[|yl

at y € 0B. Therefore

|fi(wo + Az + 01(w, \)) — fi(z0) — pi(Az + 01 (2, V)| < K; [|Az + o1 (z, V)|
at A € [0, A\;]. From here we receive

@i \x + 01(z,\) < fi(zo + Az + 01(z, \)) + Ki [ Az 4 o1 (2, \)||?

at A € [0,\z]. As ; is a continuous positively homogeneous function, then
Api(x + M) < Ki|[Az 4 o1(z, \)||* at A € [0,\,]. From here we receive that

ei(x) <0 at i € J. By the condition p(Az + 01(z,A)) < oa(z, A) at A € [0, Az].
Therefore
oAz +o1(x,N) = = 3 aifi(zo + Az + o1(x, X)) — (y*, F(zo+ Az + o1(x, \)))
i=1

+ i::oai%()\:n +o1(x,N) + (y*, S(Az + o1(x, N))) < 02(z, A)

at A € [0, \z]. From here we have that

> aigi(Ax +o1(x, N) + (¥, S(Ax + 01(x, A)))
=0

< g sz'fi(l“o + Ax + 01(937)‘)) + <y*7 F(xo + Az + 01(1"7)‘)» + 02(567 >‘)
=1

at A € [0, A\;]. Therefore
filzo + Az + 01(z,N) < @i(Az + o1(z, \) + Ki [ Az + o1 (z, )|
(o + Az -+ o1, X)) — Flao) — SO+ o, M| < LAz + o1, NP
at A € [0, A\;]. Then we have that S(z) =0 and
(y*, F(zo + Az + o1(x, ) — F(z0) — S(Az + 01(z, N)))
< [y [HIEF (zo + Az + 01(2, A)) — F(zo) = S(Az 4 01 (2, A))]|
< Ly*|| | Az + o1(z, N)|*

at A € [0, \z]. Then we receive that

D aipi(Ar + o1(z, A) + (1, SOz + 01(,0)) <Y ailpi(Ax + o1 (2, 1))
=0 i=1
I [ A+ o1 (2, NIP) + (s SOz + o1 (2, V) + L ly*|| [|Az + o1 (2, M) ||*
at A € [0, \z]. From here we have that agpo(z) < 0.
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From xo + Az + o1(x,\) € Cy at A € [0, \;] we have that x € K¢, (x0). The
lemma is proved.
Lemma 3.6. Let X and Y be Banach spaces, C = {x € X : fi(x) <0, i € J,
F(z)=0, z € Cy}, where f; : X - R,ie€ J, F: X =Y, Cy C X, the functions
fi satisfy vi — (2,0) locally Lipschitz condition with the constant K; at the point
xo, where i € J, p; be continuous positively homogeneous functions at i € J and
derivative F'(z) in Frechet’s sense exist at z € xo + 2B and there will be L > 0
such that ||F'(u) — F'(v)|] < L|jlu—v]| at u,v € xo+ 26B, fi(xg) =0 at i € J,

m

and p(z) = — > aifi(zo + ) — (y*, F(xo + x)), where a1 > 0,...,am, > 0 and
i=1

y*eY*. Then

m
K 2(x0;C, @) C {x € K¢, (20) : pi(x) <0, i€ J, Zaicpi(a:) >0, F'(zg)xr =0}
i=1
={z € K¢, (w0) : pi(z) <0, aypi(x) =0, i € J, F'(zo)x = 0}.

Proof. Let x € Kj 2(x0; C, ). Then there exists I\, > 0, Joq(z, ) : [0, A\z] —
X, 3oa(x,A) : [0, ;] — Ry, where 282 5 0 and 202 5 0 at A | 0, that
filzo+Ax+o01(z,N) <0,i € J, F(zo+Ax+o1(z,N) =0, zo+Ax+o01(z,\) € Cy
and p(Az + o1(z,\)) < o2(x,\) at A € [0,\;]. Besides let A, > 0 such that
Az + o1(z, N)|| <& at A € [0, \].

As the function f; satisfies ¢; — (2, ) locally Lipschitz condition at the point
xq, then

| filzo + ) — fi(zo) — @i(y)] < Killy||?
at y € §B. Therefore
|filzo + Az + 01(z,\) — fi(wo) — i(Az + o1(x, N))| < K [|Az + o1(z, \)|?
at A € [0, \;z]. From here we receive that
wi(Az +01(z, ) < fi(zo + Az + 01(z,\) + K; [ Az + o1 (z, )|
at A € [0,\;z]. As ; is a continuous positively homogeneous function, then

Api(x + %A))) < Ki|[Ax 4 o1(z,\)|* at A € [0,)\;]. Then we receive that

vi(z) <0atield.
By lemma 2.1 we have

HF(:CO +Ar +o1(z,\) — F(x) — F'(w0)( Az + 01(, A))H < LAz + oy (z, N
at A € [0, \z]. Then we have that F'(zp)x = 0 and
(y*, F(zo + Az + 01(z, N)) — F(mo) — F'(w0)(Az + 01(z, \)))
< Iy [H[F (w0 + Az + 01(x, X)) = F(x0) — F'(z0)(Ax + 01(x, A))|
< Lyl Az + ox(z, )|*
at A € [0,\;]. Also we have that
filzo + Az + 01 (x,N)) — filzo) — pi(Az + o1(x, N)) < K | Az + o (z, N)||?
at A € [0, \;z]. Then we receive that

= aifi(zo + Az + o1(2, X)) — (Y, Flag + Az + 01(z, \)))
=1
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+3 aipi(Ax + 01(z,A) + (¥, F'(wo)(Ax + 01(x, A)))
=1

~(Q_ @K+ ||y L) | Az + o1 (2, NI
i=1
at A € [0, Az].
By the condition ¢(Az + o1(x, ) < 02(z, A) at A € [0, \;]. Therefore

o(Ax + 01(z, \)) Zazfl xo + Ax + o1(z, N))
=1

—(y*, F(zo + Az + o1(z, N))) < 02(x, \)
at A € [0, A\;]. Therefore

> aigi(Ax +o1(, N) + (v, F(z0) (Az + o1 (2, 1))

i=1
~(Q_ K+ |y*| L) [ Az + o1 (2, )||* = 02(x, 3)
i=1
at A € [0,\;]. From here we will receive that > a;p;(z) + (y*, F'(xo)(x)) > 0.
i=1

As F'(zg)x = 0, we have that Z a;pi(z) > 0.

From zo + Az 4+ o1(z, \) € C'l at A € [0, \z] we have that x € K¢, (29). The
lemma, is proved.

It is possible to receive similar statements in classes of S — (a, 8, v, d,w) and
S — (0(B),0) locally Lipschitz mappings at the point.

Let’s note that the results received in Section 3 are used for receiving rela-
tions between the results received in Section 4 and mathematical programming
problems.

4. The necessary condition of higher order in terms of
approximate cone and Lagrange’s function

Let X be a Banach space, CC X, f: X - R, op: X > R, p1: X - R.

Theorem 4.1. If X is a Banach space, xq is the minimum point of the function
f on the set C, there exist o >0, v >0, 8>v, u >0, 0 >0, where u > 5 — av,
o> M, finite positively homogeneous function w1 of degree u, the function

o: Ry — Ry, where hﬂr)l g) =0, the numbers 6 > 0 and K are such that

[f(zo+ 2 +y) — flao + ) — @ +y) + o@)] < K ly|” (p1(z)+]y|7)+o(|]|”)
for x € Ko g(w0;C,0) (v € Tap(w0;C, ), [z <6,y € X, [lyll <[z,
xo+x+y € C, then

1 (s ) = lifJA L (f (w0 + Az) — p(Ax) — F(x0)) > 0 at @ € Ko p(w0; C, ),

L;B}Jr(cvg; x) = hm w7 (f(zo + Az) — p(Az) — f(20)) > 0 at z € Ty g(w0; C, p).
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Proof. If z € K, g(xo;C,¢), by definition there will be A\, > 0, o1(z,\) :
[0,\s] = X, o2(x,\) : [0,\;] = Ry, where % — 0 and % — 0 at
A} 0, that g + Az + o1(x,\) € C and p(Ax + 01(x, N)) < o2(x, ) at A € [0, Az].

Therefore
F3P (z0; 2) = lim %(f(fﬂo +Ar) — p(Az) — f(x0))
ALO

> liim%(f(xo + Az + o1(x, N) — f(z0) — p(Az 4+ 01(x, N)) + 02(z, \))
L0

Hlim 5 (— fmo + Az + 01(2, 1) + (w0 +A2) + ¢z + 01(z, )
20

PN0) = 0a(, ) 2 im =5 (0 + A+ 01w, 1) = fa0) = ¢(Aa +01(z, 1)
A0

—02(2,A)) = % %[Hm (. V" M1(@) + llor (2, M)|7) + 02, A) + o | Az]|)]

— K v —av yu—B+av Boow oo
= —lim ~5{lloy (z, A (AT VNV oy (2) - [lon (2, V)| Jlon(z, V)7 =)

+oa(z, \) + o[ Az]|?)] = 0.
Let’s prove the second part of the theorem. If x € T, g(zo;C, ), then by def-

inition there will be 3oa(z,A) : [0,A,] — R, where 2&2 5 0 at X | 0 and

X 1 0, Ju; € X, where ﬁ |vi—z|| = 0 at i — 400, that zo + \jv; € C,
©(Aivi) < 0a(x, \;) for all i. Therefore

£ (o) = T (w0 + M) — p(\) = f(a)

> Tim 5 (F(ao-+Nia) = ) = F(a0) 2 Jim 5 (F o+ Awi) = plhevs) = (o)

+o2(z,A;)) + lim iﬁ(—f(iﬂo + Aivi) + f(zo + Aiz) + o(Aivi) — p(Aiz) — 02(x, Ai))

> — lim i(K (i = 2) [ (Weor (@) + ][ Ai(vi = @) 7)oz, Ai)+o(|[hiz ]| ) = .

The theorem is proved.

Remark 4.1. From the proof of theorem 4.1 we have that if for any x €
Ko g(x0; C, @) there exists IA, > 0, Joi(x, A) : [0, Az] = X, Joa(x, A) : [0, Az] =
Ry, Jo(z,A) : [0,A;] — Ry, where 2&N g 2l@A) g o@D g a6 ) |0,
that xo + Az + 01(z, A) € C and p(Az + 01(z, A)) < 0a(x, A) as A € [0, A;] and

|f(xo+ Ax 4+ 01(z, N) — f(xo + Ax) — o(Ax + 01(x, N)) + o(Ax)| < o(z, A)
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at A € [0, \;] and z¢ is the minimum point of the function f on the set C, then
the statement of theorem 4.1 is also true.

If o1(x) = [|z||", where u > B — av, the following corollary 4.1 follows from
theorem 4.1.

Corollary 4.1. If X is a Banach space, xq is the minimum point of the function
f on the set C | there exista > 0, v >0, u >0, 8> v, 0 >0, where u > 5 — av,

o> %, the functions o : Ry — Ry, where ltii%l@ =0and p : X — R,
numbers § > 0 and K are such that

|[f(@o+ 2 +y) = flzo+ ) — p(@+y) + o@)] <K [ly|” (l* + |yl|7) +ol|z]”)
for @ € Kap(a0:C ) (2 € Tas(w0; Cy), 2ll <6,y € X, Iyl < lle], a0+ +
y € C, then

éﬁ}*(xg;x) = %A%(f(xo + Az) — p(Ax) — f(z0)) > 0 at x € K, p(x0;C, @),

(£ ose) =Tim 55 (f (0 + M) = 9(Ax) = f(20)) 2 0 0t & € T (03 C, ).

Let’s note that theorem 4.1 and corollary 4.1 are generalizations of theorem
6.1 and corollary 6.1 of [6]. For simplicity further we will consider the use of the
first part of theorem 4.1, when a > 1l and py =0 =5 —v.

Let X and Y be banach spaces, f; : X - R, 1€, F: X —-Y,CC X.

Let’s consider the problem

fo(x) — min, (4.1)
P={zxeX: fi(x)<0, i=1,...,m, F(z)=0, z € C}.
Theorem 4.2. Let X and Y be Banach spaces, f; : X - R, i €1, and F: X —
Y, the functions f; satisfy ;i —(1,2,1,0,0;(2)) locally Lipschitz condition with the
constant K; at the point xo, where the functions p; satisfy the Lipschitz condition
with the constant M; in the set 26 B and derivative F'(z) in Frechet’s sense exists
at z € o + 26B and there will be L > 0 such that |[F'(u) — F'(v)|| < L |lu—v||

at u,v € 9+ 20B, ag > 0, a1 > 0,...,apy, > 0 and y* € Y*, and x¢ be the
minimum point of fo on the set P. Then

— o1
FIB 7 (zoy2) = I;Tmp(aofo(xo + Az) — p(Az) — aofo(zo)) > 0
0
m
at © € Kya(zo; P, @), where o(z) = — 3~ aifi(zo +x) — (¥, F(zo +2)), r > 2.
i=1
Proof. Using lemma 2.1 by the condition we have that

D aifilwo+z+y) + W Flro+z+y) — > cufi(zo+z) — (", Flzo+ 1))
=0 =0

= aipi(z+y) — (U, Flwo)(@ +v)) + Y ciilr) + (y*, F'(wo)(x))
=0 i=0

< Zai |fi(xo + 2 +y) — fi(xo + x) — @i(x +y) + pi()]
i=0
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+ [{y*, F(xo+ 2 +y) — Fzo +x) — F'(x0)(z +y) + F'(x0)(z)]

m m

* 2

< (O Kiai + Iy 1 L) Iyl (lyll + =) + > cioi(ll]®)
—0 =0

at z,y € 0B. Therefore

S aifi(wo+z+y)+ (" Floo+a+9) — 3 aufilwo+) — (5, Flao + x>>‘
i=0 =0

< (O Kii + Iy I1L) Nyl (lyll + ) + Z a;ioi(||z]?)
=0 ]

+Zai<pi(x+y)+<y*,F( (z+y)) Zam ,F’(xo)(w>>‘

Z i@ +y) — ei@)| + |(y*, F(wo) (@ +y) — F'(20)(2)]

m

* 2

+(Z Ko + [ly* 11 L) Iyl (lyll + ) + > cvioi(l]|*)
=0 =0

m
< (O Kii + Iy I1L) Iyl (lyll + Nzl
=0

+(Q_ Miai + |l | || F' (o) ) llyll + D avoi(ll]*)
i —

at x,y € dB. If v € K,2(xo; P, ), then by definition there will be A, > 0,
o1(x, ) : [0, \z] = X, 02(z, A) : [0, \;] = Ry, where M — 0 and 02(}\:”2’)‘) — 0
as A} 0, that xo+Ax+o1(z, ) € P and p(Ax+o01(x,\)) < 02(z, A) at X € [0, Az].
Let Ay > 0 such that A\, ||z]| < 0 and |lo1(z, A)|| < J at A € [0, A\,]. Then

Zaifi(xo + Az 4+ o1(x, N) + (y*, F(zo + Az + 01(z, N)))
=0

= aifi(zo + Az) — (v, F(zo+ Az))

1=0

< (Y Kiai + [ly*l| L) llox (a2, M| (lox (2, A)|| + [1Az])
=0

m m
(3 M + 7 | F o)) lor (e M+ 3 asos(Aal )
i=0 1=0
at A € [0, A\z]. If > 2, from remark 4.1 we have that

féQ}_(QZO; ) = hm %(Ozofo(xo + )\.CL’) - (P()‘x) - Oéofo($0)) >0

at © € K,a(zo; P, ), where o(z) = — > a;fi(zo + =) — (y*, F(zo+ x)). The
i=1
theorem is proved.
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Let us put L(z, o, y*) = Oéofo(x)Jri o fi(2)+(y", F(z)), o= (ao,ai,...,amn).

Corollary 4.2. If «;fi(z9) = 0, i € J, and the condition of theorem 4.2 is
satisfied, then

1
himig(L(l'O + )\l’, «, y*) - L($07aay*)) > 0
A0 A

at x € Ky 2(xo; P, ), where r > 2.

Proof. If «; fi(xg) = 0, ¢ € J, under the condition of theorem 4.2 we have that

1
ff}*(:cg; x) =lim —

(aofo(xo + Az) + azfz (zo + A\x)
Ao A2

1=1
+(y*, F(zo + Az)) — ao fo(zo) Zazfz o) , F(20)))

1
= lim — (L(zo + Az, o, y*) — Lo, o, y*)) > 0
A0 A

at x € K, 2(xo; P, ). The corollary is proved.

Let the condition of theorem 4.2 be satisfied and xg be the local minimum point
of fo ontheset P, ag >0, a; >0,...,ap, > 0 and y* € Y*. As Ky(zo; P,p) C
K, 2(xo; P, ), from theorem 2 we have that

£ (s ) = T g (o fo(wo + Ax) — () — aofo(o) > 0
AL0

at z € Ko(xo; P, ), where p(x) = — Z:zl a;ifi(xo + x) — (y*, F(zo + x)).

Theorem 4.3. Let X and Y be Banach spaces, f; : X - R, i €1, and F: X —
Y, the functions f; satisfy ¢; — (1,2,1,6,0;(2)) locally Lipschitz condition with
the constant K; at the point xg at i € I, derivative F'(z) in Frechet’s sense exist
at z € xo + 20B and there will be L > 0 such that ||F'(u) — F'(v)|| < L|ju — ||
at u,v € 9+ 208, ag > 0, a1 > 0,...,,, > 0 and y* € Y*, and x¢ be the
minimum point of the function fo on the set P. Then

1 (wg;2) = %%(aofo(% + Az) — p(A\z) — ap fo(wo)) > 0

m
at © € Ky 9(xo; P, @), where o(z) = — Y i fi(xo + ) — (y*, F(zo+ x)) +
i=1

+ 30 i) + (y*, F(wo)), r > 1.

i=0
Proof Using lemma 2.1 by the condition we have that

D aifilmo+a+y)+ (", Flzo+z+y) = D aifi(zo + ) — (", Flay + )
i=0 i=0

m
= aipi(w+y) — (¥ Fl(zo)(x +y >+chz )+ (y*, F'(zo)x)
] i=0

< Zai |fi(xo + 2 +y) — fi(xo + x) — @i(x + y) + pi()]
i=0
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+|(y*, F(zo+x+y) — F(zo +x) — F'(z0)(z +y) + F'(x0)z)|

m m
< (O Kiai + "1 L) iyl (lyll + el + ) cwoil(l)®)
=0 =0

at z,y € 0 B. Therefore

aofo(zo+ 2 +y) — aofo(zo +2) + > cifi(zo+ 2 +y)
=1

+{y*, Fzo+z+vy)) — Zazfl(flfo +x) — (y*, F(zo+x))

m
= gz +y) — (¥, F'(x0) fv+y>+2amz )+ (y*, F'(wo)z)

=0
m m
< (O Kiai + Iy 1 L) Iyl (lyll + ll=]) + > cioi(ll]®)
i=0 i=0
m m
at x,y € 0B, i.e. apfois — X aifi(zo + ) — (¥, Flzo+2)) + 3 aipi(z) +
=1 1=0
m
+(y*, F'(zo)z) —(1,2,1,8, > ;0;(2)) locally Lipschitz function with the constant
i=0
m
(3 K;a; + ||ly*|| L) at the point (.

=0
Then from the corollary 4.1 we have

fg{,2}_($0; ) = lim )\1 (aofo(l‘o + )\!L’) (>\-T) - aOfO(:L'O)) >0
A0

m
at © € K, 2(xo; P, ¢), where p(x) = — > a;fi(xvo+ x) — (v, F(zo +2)) +
i=1

+ Zazgoz( )+ (y*, F'(z0)x) . The theorem is proved.

Let the condition of theorem 4.3 be satisfied and xy be the local minimum
point of function fy on the set P, ag > 0, a1 > 0,...,n > 0 and y* € Y*. As
Ks(xo; P, ) C Kya(xo; P, ), from theorem 4.3 we have that

21 (2:.2) = lim 5 (o ol + Ar) — p(Aa) — aaf(zn)) > 0
A0

at x € Ko(xo;C, ), where p(x) = — > a;fi(xo + ) — (v*, Fxo+z)) +

+ 30 i) + (", (o))

i=0
m
If > aifi(zo) + (y*, F(x0)) = 0, having put that L(z, o, y*) = Z a; fi(z) +
i=1 =0
+ (y*, F(2)), a = (ap, a1,...,0), y* € Y* from theorem 4.3 we have that

1 *
L{} (o, 0,y x)—hm)\Q( (xo + Az, 0, y")
AL0
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- ZaiWi(Ax) - <y*: F/(xo)()\l’)> - L(x()va?y*)) >0

at x € K, 2(x0; P, ¢a,y~), where

m
oy Zazf@ 2o +) — (y", Flzo+)) + Y aipilw) + (", F'(wo)(x)).
i=1 =0
If the function z — Léa}y (zo, o, y*; x) is continuous and

A K, 2(zo; Pyo) D {x € Ko(zo) : pi(x) <0, i €1, agpo(x) <0, F'(zg)x =0},
then we have from here that L{ } (xo,a,y*;2) >0 at
z € {z € K¢(xo) : pi(x) § 0, i€, appo(x) <0, F'(zg)r =0}
Let C C X, 29 € C. Let’s put
Te (xg) ={v e X : Vhy, >0, h, = 0,Yx,, — x9, Ju, = v, T, + hpu, € C},

T (xzp;C)={ve X : 3h, >0, hy, =0, Ju, — v, g+ hpuy, € C},
where T¢ (z) is the tangent cone to C at the point zp, and T'(zo;C) is the
contingent cone to C' at the point x( (see [2]).

If C C X is a convex set, then T (o) = T (20;C) = cl [Jysq % (see [2]).

If C C X is a convex set and g € C, we will designate C = intC {0},
Sa(zo) = Uxso @ Let’s note that if intC # @ and C is a convex set, then
Te(wo) = clSa(o).

Theorem 4.4. Let X and Y be Banach spaces, xg be the local minimum point in
the problem (4.1), B > 1, the function f; satisfy w; — (8, 9) locally semi-Lipschitz
condition with the constant K at the point xg, wherei € I, ¢; : X — R sublinear
continuous functions at i € I, fj(xo) =0 at j € J, the operator F' : X =Y
be strictly differentiable at the point xg and F'(x9)X =Y, C be a conver set,

intC # (), then there exist simultaneously non zero ag > 0, aq3 > 0,...,ap, > 0
m

and y* € Y* such that > a;pi(x) + (y*, F'(x0)z) > 0 at x € To(xo).
i=0

Proof. Let’s denote A = F’(xq). Let’s show that system

wo(z) < 0,01(x) <0,...,9om(z) <0,Az =0

has no solution on Sg(zg). Let’s assume the contrary. Let there exist z €
Sa(xo) such that ¢;(z) < 0ati € I and AT = 0. As AZ = F'(z)z = 0 and
F'(z9)X =Y, according to Lyusternik’s theorem there exists ¢ > 0 and the
mapping r : [0,e] — X such that T(t) —0ast ] 0and F(zg+tx+1r(t) =0
at t € [0,e]. By the condition the functlon fi satisfies ¢; — (3,0) locally semi-
Lipschitz condition with the constant K at the point xg, where ¢ € I, 8 > 1.
Then we have that

filwg + 12 +7(t) = filwg)—p:(tT +r(1)) < K ||tz +r(1)]°
at t € [0,¢], [tz +r(t)|| < 0,7 € I. As ¢; is a continuous function, there exists
0 < dp < 30 such that ‘goi(i”+ M) — %(,)‘ 3 pi(2)] MH < dpand i€ I.

Then we get that ¢;(Z + @) < 2901 ) at H H <dpandicl. As r(t) 0
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at t | 0, then there exists A, where 0 < A < 1, it that @H < dp at t € (0,)].

Then |tz +r(t)|| < 6 at t € [0, A\1], where A\; = min{], ﬁé,s}. Therefore we
have that

filzg +tz +7(t)) — filzy) < 0,5 tpi(z) + Kt°

=

< 0,5 tpi(z) + Kt°(||z]| + d0)°
at t € [0, A\1] and ¢ € I. From here we have that
fo(xg+tz+r(t)) — fo(zy) <O, fi(xg+tz+r(t) <0,j€J,Flaog+tz+r(t) =0
at rather small ¢t > 0. If € Sxz(20) = U, 5o %, then there exists A\g > 0 such
that T € CXO‘”O, ie. xg+ AT € C. Therefore ro + AoZ € int C. Then there

exists vg > 0, where \g > 1, such that xg + \gT + ()\0@) €int C at t € [0, 1p].
Therefore

r(t t t r(t
xo + t(T + Q) =(1-—)xo+ —(zo+ NoZT + )\O(Q
t Ao Ao t
i.e. we have that zg +tz +r(t) € C at t € [0,1p).
As x is the local minimum point in problem (4.1), we get contradiction. There-
fore the system o(z) < 0, p1(x) <0, ..., om(z) < 0, Az = 0 has no solution

on Si(x). According to theorem 5.5.3[9] there exists simultaneously non-zero

) € C,

ap >0, a1 >0,...,q, > 0and y* € Y* such that > a;pi(x)+(y*, F'(zo)z) > 0
i=0

at x € Sa(wg). As ¢; © X — R are continuous functions at i € I and

m
A = F'(x¢) is a linear continuous operator, then > a;p;(z) + (y*, F'(zo)z) > 0
i=0
at x € clSa(wg) = Te(xo). The theorem is proved.
From theorem 4.4 we have that the zero point minimizes the convex function

;)0@901(33)4' (y*, F'(20)2) + 07 (29) () in X. AS 007,,(2)(0) = Ne(zo), we will
get that

0€ 00> aipi(x) + (¥*, F'(20)x) + 674 () (%) =0
=0

= Z Oél'agoi((]) + F,({L‘o)*y* + Nc({l,‘o).
i=0

From the proof of theorem 4.4 we have that Jmax wi(z) >0 at
<i<m

z € To(xo) (N Ker F'(xp).

Let’s note that in theorem 4.4 we can replace the condition: function f; satisfies
i — (B8,6) locally semi-Lipschitz condition with the constant K as the point xo,
where § > 1, by: the function f; satisfies ¢; — (0(1), ) locally semi-Lipschitz
condition as the point z.

We denote the set of all hypertangents to the set C' at the point zg € C by
Ic(zg) (see [3]). If z € Io(xp) and 7 : Ry — X, where @ — 0attlO0, by
definition of I¢(zg) there exists ag > 0 such that zo+tz+7(t) € C at t € [0, ag].
Therefore from the proof of theorem 4.4 we have that if C C X is any set and



HIGHER ORDER CONDITIONS IN NONDIFFERENTIABLE ... 95

there exists a hypertangent vector to the set C at the point x¢ € C, theorem 4.4
remains true if in theorem 4.4 we replace the cone Sx(xg) by intTo(zo), where
To(x) is Clarke’s tangent cone to the set C' at the point g (see [3]), i.e. there
exists simultaneously non zero ag > 0, a1 > 0,...,a;, > 0 and y* € Y* such that

m
S ajpi(x) + (y*, F'(z0)x) > 0 at x € intTo(xg). As ¢; : X — R are sublinear
i=0

m

continuous functions at i € I, we will get that > a;pi(z) + (y*, F'(xg)x) > 0 at
i=0

WS Tc(xo).

Theorem 4.4 remains true, if F' is an affine continuous operator, C' C X is a
convex set.

Let’s note that theorem 4.3 is true for all ag > 0, a7 > 0,...,,, > 0 and
y* € Y*, but in theorem 4.4 in which the necessary condition of the first order is
received, ag > 0, a1 > 0,...,ay, > 0 and y* € Y* is not arbitrary.

m

Let’s denote Vo« (z) = Y aipi(x) + (y*, F'(z0)x), o = (ag, vt - . . )
i=0

Q={(o,y"): ; >0, y* €Y*, > a;+|y*| =1, Vo (z) >0atz € Te(zo)}.
i=0

Corollary 4.3. If a;fi(xg) =0, i € J, and the condition of theorems 4.3 and 4.4
1s satisfied, then
sup{L(gzi; (o, o,y ;) : (a,y*) €Q} >0 atx € U(a,y*)EQ K, 2(x0; P, qay),
sup{Lé?yt (o, v, y*;2) : (o, y™) € QF 20 at x € U g yoyeq Tr2(0; P, day+)-

Using Section 3 the set U(a,y*)eﬂ K, 2(x0; P, gay+) may be substitute of by a
simpler set (see lemma 3.3 and lemma 3.4).

Theorem 4.5. If X and Y are Banach spaces, f; : X - R,i€1l,and F: X —
Y, the functions f; satisfy v;— (1, 8,v,0,0;(8)) locally Lipschitz condition with the
constant K; at the point xo ati € I, the mapping F'(x) satisfies S—(1, 5,v,9,0(5))
locally Lipschitz condition with the constant K at the point xg, a9 > 0, g >
0,....,ap 20 andy* € Y*, r>1, B> v >0 and xg is the minimum point in
problem (4.1), then

FP (wos ) = ETHS,\%(Oéofo(wo%—)\x)—<P(>\$)—Oéofo(9€o)) >0 atx € Ky g(xo; P, o),

éﬁH(m;x) = %)\iﬁ(agfg(xo—l—)\:c)—cp()\:c)—aofo(xo)) > 0atx € T, g(xo; P, p),

where p(x) = — 3 aif;(0 +2) = (", Flao +2)) + 3. augi(a) + (47, 5()).

i=1 =0
Proof. By the condition we have that
> aifi(ro+x+y)+ (", Flro+x+y)) — 3 aifi(zo +x)
i=0 i=0
— (", Fzo+2)) = 2 cugi(e +y) — (¥, S(z+y)) + Z()aiSDi(-T) +(y", S(x))
i=0 i=

< ioa filzo+ 2+ ) — filwo +2) — pi(w + ) + i(a)]

+ o +x+y) = Fro +2) = Sz +y) + 5(x)]
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m m

< O Kiai+ Iy 1) lyll” (lyll ™™ + 1)) + D cioilll®) + [ly* | (]| ”)
i=0 i=0

at x,y € B. From here we have that «q fy satisfies

- Z a;fi(zo +x) — (", Flzo +2)) + Zai%’(ff)

i=1 i=0
+{y", (@) = (1,5, v,4, Zazoz + vl o(B))

locally Lipschitz condition with the constant (Z Kia;+ ||ly*|| K) at the point xo.

=0
Validity of theorem 4.5 follows from corollary 4.1. The theorem is proved.
Let’s denote

(Pa,y Zazfz xO + x) <y*7 F(‘TO + x)) + Zai(pi(w) + <Z/*7 S(x)> )

i=1 =0

1
L)~ (w9, 0,y" ) = lim —

M0 A8 (L(x() + )\CU, «, y*)

= aipi(An) = (y", SO) Lizo, a,y")),

1
{ﬁ}+ = *
LY (w0, 0,y 7) = 1/\1111 NG (L(zo + Az, a, ")

=) — {57, SO — L, 5))

Corollary 4.4. If «;fi(zg) = 0, ¢ € J, and the condition of theorem 4.5 is
satisfied, then

LE (@0, 0,55 2) 2 0 at @ € Ko p(w0; Py @aye);

L%{fx}:_ (ZL'(),Oé,y*;fL‘) Z 0atze TTWB(ZL‘();P, QOmy*); where r Z 1’ B Z v>0.
Proof. If «; fi(z9) = 0, ¢ € J, under the condition of theorem 4.5 we have that

L{B} L(zo, Y™ x) = hm z:ozlfZ xo+ \x) + (y*, F(xo + A\x)) zjachZ (A\z)
A0 A

.1 N
—(y*, S(\x)) Zazflxo (W', F20))) = 1m g5(Lzo + Az, a.y")

- Z aipi(Az) — (¥, S(Az)) — L(zo, o, y")) > 0

at © € K, g(x0; P, Qa,y*)-

The second case is proved similarly. The corollary is proved.

Let’s note that all statements of Section 4 remain true if g is the local mini-
mum point.
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