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TRAVELLING-WAVE SOLUTIONS FOR KLEIN-GORDON AND

HELMHOLTZ EQUATIONS ON CANTOR SETS
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AND NATAVAN ALLAHVERDIYEVA

Abstract. In the present paper, a class of the partial differential equa-
tions (PDEs) on Cantor sets is investigated for the first time. The
travelling-wave solutions for the Klein-Gordon and Helmholtz equations
on Cantor sets are graphically discussed. The travelling-wave transfor-
mation technology is accurate and efficient for finding the exact solutions
of the PDEs in mathematical physics.

1. Introduction

Local fractional calculus (LFC) has been successful as one of important mathe-
matical tools to describe the complexities and non-differentiability of the physical
phenomena in nature (see [1,4,6,7] and the cited references therein). For example,
the fractal Burgers’ equation (FBE) in a class of fluid flows was proposed in [9].
The fractional Korteweg-de Vries equation (FKdV) on non-differentiable shallow
water surface was developed in [8]. The fractal heat-transfer equations (FHE)
were reported in [3,10]. The fractional Tricomi equation (FTE) in the transonic
flow was demonstrated in [5].

The travelling-wave transformation of the non-differentiable type was for the
first time proposed to find the exact solutions for the FKdV (see, for exam-
ple, [8]). However, the travelling-wave solutions for the linear partial differential
equations (PDEs) have not reported. Motivated by the idea, this study aims to
find travelling-wave solutions for the linear Klein-Gordon equation (KGE) and
Helmholtz equation (HE) within local fractional derivative (LFD).

The structures of this paper are arranged as follows. In Section 2, the concept
and properties of the LFD are given. In Section 3, the travelling-wave transfor-
mation of non-differentiable type is proposed. In Section 4, the travelling-wave
solutions for a class of local fractional PDEs are presented. Finally, the conclusion
is outlined in Section 5.

2. Theory of LFD

Let Cϑ(a, b) be a set of the non-differentiable functions (see, for example, [6,7]).
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Let Λϑ (x) ∈ Cϑ(a, b). The LFD of Λϑ (x) of order ϑ (0 < ϑ < 1) at the point
x = x0 is defined by (see, for example, [6,7]):

D(ϑ)Λϑ (x0) =
dϑΛϑ (x0)

dxϑ
= lim

x→x0

∆ϑ (Λϑ (x)− Λϑ (x0))

(x− x0)ϑ
, (2.1)

where
∆ϑ (Λϑ (x)− Λϑ (x0)) ∼= Γ (1 + ϑ) [Λϑ (x)− Λϑ (x0)] . (2.2)

Let Λϑ (x0) ,Πϑ (x0) ∈ Cϑ(a, b). The properties of the LFD are listed as follows
(see, for example, [7]) :

(a) D(ϑ) [Λϑ (x0)±Πϑ (x0)] = D(ϑ)Λϑ (x0)±D(ϑ)Πϑ (x0);

(b) D(ϑ) [Λϑ (x0) Πϑ (x0)] = Πϑ (x0)D
(ϑ)Λϑ (x0) + Λϑ (x0)D

(ϑ)Πϑ (x0);

(c)D(ϑ) [Λϑ (x0) /Πϑ (x0)] =
{

Πϑ (x0)D
(ϑ)Λϑ (x0) + Λϑ (x0)D

(ϑ)Πϑ (x0)
}
/Π2

ϑ (x0),
provided that Πϑ (x0) 6= 0.

The special functions on Cantor sets are as (see, for example, [7]):

Mϑ

(
xϑ
)

=
∞∑
n=0

xnϑ

Γ (1 + nϑ)
, (2.3)

sinϑ

(
xϑ
)

=
∞∑
n=0

(−1)n
x(2n+1)ϑ

Γ (1 + (2n+ 1)ϑ)
(2.4)

cosϑ

(
xϑ
)

=
∞∑
n=0

(−1)n
x2nϑ

Γ (1 + 2nϑ)
. (2.5)

Useful formulas of the LFD of non-differentiable functions (see, e.g., [7]) are listed
in Table 1.

Table 1. The basic formulas of the LFD

Non-differentiable functions LFDs

Mϑ

(
xϑ
)

Mϑ

(
xϑ
)

sinϑ

(
xϑ
)

cosϑ
(
xϑ
)

cosϑ
(
xϑ
)

− sinϑ

(
xϑ
)

3. Travelling-wave transformation technology applied

In this section, we present the travelling-wave transformation technology for
finding the linear local fractional PDEs.

Let us consider the local fractional PDE in the form:

Ω

(
∂2ϑT (x, t)

∂x2ϑ
,
∂2ϑT (x, t)

∂t2ϑ
,
∂ϑT (x, t)

∂xϑ
,
∂ϑT (x, t)

∂tϑ
,T (x, t)

)
= 0, (3.1)

where both ∂2ϑT (x, t) /∂x2ϑ and ∂2ϑT (x, t) /∂t2ϑ are the local fractional partial
derivatives (LFPDs) of 2ϑ order with respect to x and t, respectively, and both
∂ϑT (x, t) /∂xϑ and ∂ϑT (x, t) /∂tϑ are the LFPDs of ϑ order with respect to x
and t, respectively.

Traveling wave transformation of non-differentiability is defined by:

ψϑ = xϑ − µϑtϑ, (3.2)
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where
lim
ϑ→1

ψ = x− µt. (3.3)

From Eq.(3.2) and Eq.(3.3), we have the following:

T (x, t) = T (ψ) . (3.4)

Making use of the chain rule of the LFD, we have

∂ϑT (x, t)

∂tϑ
=
∂ϑT (ψ)

∂ψϑ

(
∂ψ

∂t

)ϑ

= −µϑ∂
ϑT (ψ)

∂ψϑ
, (3.5)

∂ϑT (x, t)

∂xϑ
=
∂ϑT (ψ)

∂ψϑ
, (3.6)

∂2ϑT (x, t)

∂x2ϑ
=
∂2ϑT (ψ)

∂ψ2ϑ
. (3.7)

Thus, with the aid of Eq.(3.5), (3.6) and (3.7), Eq.(3.1) can be written as

Ω

(
d2ϑT (ψ)

dψ2ϑ
,
dϑT (ψ)

dψϑ
,T (ψ)

)
= 0, (3.8)

where d2ϑT (ψ) /dψ2ϑ and dϑT (ψ) /dψϑ are the LFDs of the orders 2ϑ and ϑ
with respect to ψ, respectively.

In this case, we easily present solution of Eq.(3.8). Thus, we easily obtain the
exact travelling-wave solutions of Eq.(3.1).

4. Exact solutions for local fractional PDEs

In this section, two examples for solving the local fractional PDEs are discussed.
Let us consider the local fractional KGE on Cantor sets (see[7])

∂2ϑT (ζ, t)

∂ζ2ϑ
− ∂2ϑT (ζ, t)

∂t2ϑ
= T (ζ, t) . (4.1)

With the help of the travelling-wave transformation given as

ψϑ = ζϑ − µϑtϑ, (4.2)

we have
∂ϑT (ζ, t)

∂tϑ
=
∂ϑT (ψ)

∂ψϑ

(
∂ψ

∂t

)ϑ

= −µϑ∂
ϑT (ψ)

∂ψϑ
, (4.3)

∂2ϑT (x, t)

∂t2ϑ
= µ2ϑ

∂ϑT (ψ)

∂ψ2ϑ
, (4.4)

∂2ϑT (x, t)

∂x2ϑ
=
∂2ϑT (ψ)

∂ψ2ϑ
, (4.5)

such that (
1− µ2ϑ

) d2ϑT (ψ)

dψ2ϑ
= T (ψ) . (4.6)

The non-differentiable solution of Eq.(4.6) can be written as (see [6]):

T (ψ) = φ1Mϑ

(√
(1− µ2ϑ)ψϑ

)
+ φ2Mϑ

(
−
√

(1− µ2ϑ)ψϑ

)
, (4.7)

where φ1 and φ2 are two coefficients.
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From Eq.(4.6), the exact travelling-wave solution of Eq.(4.1) takes the form:

T (ζ, t) = φ1Mϑ

(√
(1− µ2ϑ)

(
ζϑ − µϑtϑ

))
+φ2Mϑ

(
−
√

(1− µ2ϑ)
(
ζϑ − µϑtϑ

))
,

(4.8)
where φ1 and φ2 are two coefficients. The chart of Eq.(4.8) for φ1 = 0, φ2 = 1
and µϑ = 0.5 is illustrated in Figure 1; The chart of Eq.(4.8) for φ1 = 1, φ2 = 0
and µϑ = 0.5 is illustrated in Figure 2; The chart of Eq.(4.8) for φ1 = 1, φ2 = 1
and µϑ = 0.5 is illustrated in Figure 3.

As the second example, we consider the local fractional HE on Cantor sets
(see[7]):

∂2ϑT (x, y)

∂x2ϑ
+
∂2ϑT (x, y)

∂y2ϑ
+ T (x, y) = 0. (4.9)

Making use of the travelling-wave transformation:

ψϑ = xϑ − µϑyϑ, (4.10)

we have
∂ϑT (x, y)

∂yϑ
=
∂ϑT (ψ)

∂ψϑ

(
∂ψ

∂y

)ϑ

= −µϑ∂
ϑT (ψ)

∂ψϑ
, (4.11)

∂2ϑT (x, y)

∂yϑ
= µ2ϑ

∂2ϑT (ψ)

∂ψ2ϑ
, (4.12)

∂2ϑT (x, t)

∂x2ϑ
=
∂2ϑT (ψ)

∂ψ2ϑ
, (4.13)

such that (
1 + µ2ϑ

) d2ϑT (ψ)

dψ2ϑ
= −T (ψ) . (4.14)

The non-differentiable solution of Eq.(4.14) is given as (see [6]):

T (ψ) = φ1 sinϑ

(
−
√

(1 + µ2ϑ)ψϑ

)
+ φ2 cosϑ

(
−
√

(1 + µ2ϑ)ψϑ

)
, (4.15)

where φ1 and φ2 are two coefficients.
From Eq.(4.15) , the exact travelling-wave solution of Eq.(4.9) reads

T (ζ, t) = φ1 sinϑ

(
−
√

(1 + µ2ϑ)
(
ζϑ − µϑtϑ

))
+φ2 cosϑ

(
−
√

(1 + µ2ϑ)
(
ζϑ − µϑtϑ

))
(4.16)

where φ1 and φ2 are two coefficients. The plot of Eq.(4.16) for φ1 = 0, φ2 = 1
and µϑ = 0.5 is shown in Figure 4; The plot of Eq.(4.16) for φ1 = 1, φ2 = 0
and µϑ = 0.5 is shown in Figure 5; The plot of Eq.(4.16) for φ1 = 1, φ2 = 1 and
µϑ = 0.5 is shown in Figure 6.

5. Conclusion

In this work we considered the KGE and HE on Cantor sets within local
fractional derivative. With the help of the travelling-wave transformation of
non-differentiable type, the exact solutions of them were graphically discussed in
detail. The presented method for the obtained results is accurate and efficient
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for us to find the exact solutions for the local fractional PDEs in mathematical
physics.
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Figure 1. Plot of the exact solution (4.8) for φ1 = 0, φ2 = 1 and
µϑ = 0.5.
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Figure 2. Plot of the exact solution (4.8) for φ1 = 1, φ2 = 0 and
µϑ = 0.5.
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Figure 3. Plot of the exact solution (4.8) for φ1 = 1, φ2 = 1 and
µϑ = 0.5.
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Figure 4. Plot of the exact solution (4.16) for φ1 = 0, φ2 = 1
and µϑ = 0.5.
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Figure 5. Plot of the exact solution (4.16) for φ1 = 1, φ2 = 0
and µϑ = 0.5.
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Figure 6. Plot of the exact solution (4.16) for φ1 = 1, φ2 = 1
and µϑ = 0.5.
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