Proceedings of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan Volume 43, Number 2, 2017, Pages 188–196

ON MULTIPLE COMPLETENESS OF EIGEN AND ASSOCIATED VECTORS OF A CLASS OF OPERATOR PENCILS

SABIR S. MIRZOYEV AND HASAN I. ZAMANOV

Abstract. In the paper we obtain conditions providing multiple completeness of eigen and associated elements of higher order operator pencils on a finite interval. These conditions are directly expressed by properties of coefficients of the operator pencil.

1. Introduction

On separable Hilbert space H we consider a polynomial operator pencil of n-th order

$$P(\lambda) = (-1)^k \lambda^n E + \lambda^{n-1} A_1 + \dots + A_n + A^n, \tag{1.1}$$

where n = 2k, (k = 1, 2, ...), λ is a spectral parameter, E is a unit operator in H, the remaining coefficients of the operator pencil (1.1) satisfy the conditions:

- 1) A is a positive-definite operator with completely continuous inverse A^{-1} ;
- 2) The operators $B_j = A_j A^{-j}$ (j = 1, ..., n) are bounded in H;
- 3) The operator $E + B_n$ is invertible in H.

Note that subject to conditions 1)-3), the operator pencil has a discrete spectrum with a unique limit point at infinity. Indeed,

$$P(\lambda) = (E + B_n) \left(\sum_{j=1}^{n-1} \lambda^{n-j} (E + B_n)^{-1} (A_j A^{-j}) \cdot A^{-n+j} \right)$$

$$+ (-1)^k \lambda^n (E + B_n)^{-1} A^{-n} + E \Big) A^n = (E + B_n) (E + L(\lambda)) A^n,$$

where

$$L(\lambda) = (-1)^k \lambda^n (E + B_n)^{-1} A^{-n} + \sum_{i=1}^{n-1} \lambda^{n-i} (E + B_n)^{-1} B_j A^{-n+j}.$$

As L(0) = 0, the coefficients $(E + B_n)^{-1}A^{-n}$ and $(E + B_n)^{-1}B_nA^{-n+j}$ (j = 1, n-1) are completely continuous in H, then $E + L(\lambda)$ by the Keldysh lemma [4] has only a discrete spectrum with a unique limit point at infinity. Then the operator pencil $P(\lambda) = (E + B_n)^{-1}(E + L(\lambda))A^n$ also possesses this property.

²⁰¹⁰ Mathematics Subject Classification. 35P05, 47A10, 35P10.

Key words and phrases. operator pencil, eigen-value, complete systems, resolvent.

Obviously, the domain of definition of the operator A^{γ} ($\gamma \geq 0$) is Hilbert space H_{γ} with respect to the scalar product $(x,y)_{\gamma} = (A^{\gamma}x, A^{\gamma}y), x, y \in H_{\gamma}$. For $\gamma = 0$ we assume $H_0 = H$.

Denote by $L_2(R_+: H)$ Hilbert space of all vector-functions f(t) determined almost everywhere in the interval (0, 1) with values in H, for which

$$||f||_{L_2((0,1):H)} = \left(\int_0^1 ||f(t)||^2 dt\right)^{1/2} < +\infty.$$

Further, following the monograph [5] we introduce Hilbert space

$$W_2^n((0,1):H) = \left\{ u: \ u^{(n)} \in L_2((0,1):H), \ A^n u \in L_2((0,1):H) \right\}$$

with the norm

$$||u||_{W_2^n((0,1):H)} = \left(||A^n u||_{L_2((0,1):H)}^2 + ||u^n||_{L_2((0,1):H)}^2\right)^{1/2}.$$

Here and in the sequel, the derivatives are understood in the sense of theory of distributions in abstract Hilbert spaces [5].

Associate the pencil (1.1) with the boundary value problem

$$P(d/dt)u(t) = (-1)^k u^{(n)} + A^n u + \sum_{j=1}^{n-1} A_{n-j} u^{(j)} = 0, \quad t \in (0, 1)$$
 (1.2)

$$u^{(2\nu)}(0) = \varphi_{\nu}, u^{(2\nu)}(1) = \psi_{\nu}, \nu = \overline{0, k-1}. \tag{1.3}$$

Definition 1.1. If $u(t) \in W_2^n((0,1) : H)$ satisfies the equation (1.2) almost everywhere in (0,1), then u(t) it said to be a regular solution of equation (1.2).

Definition 1.2. If for any collection of n vectors $\varphi_{\nu} \in H_{n-2\nu-1/2}$, $\psi_{\nu} \in H_{n-2\nu-1/2}$, $(\nu = \overline{0, k-1})$ there exists the regular solution u(t) of equation (1.2) satisfying boundary conditions (1.3) in the sense of convergence

$$\lim_{t \to +0} \left\| u^{(2\,\nu)}(t) - \psi_\nu \right\|_{n-2\,\nu-1/2} = 0, \lim_{t \to 1-0} \left\| u^{(2\,\nu)}(t) - \psi_\nu \right\|_{n-2\,\nu-1/2} = 0, \nu = \overline{0, k-1}$$

and the estimation

$$||u(t)||_{W_2^n((0,1):H)} \le const \sum_{\nu=0}^{k-1} \left(||\varphi_{\nu}||_{n-2\nu-1/2} + ||\psi_{\nu}||_{n-2\nu-1/2} \right),$$

then problem (1.2), (1.3) is said to be regularly solvable.

Definition 1.3. If the equation $P(\lambda_i) x_{0,i,j} = 0$ has nonzero solution $x_{0,i,j}$, then λ_i is called a characteristic number of $P(\lambda)$, and $x_{0,i,j}$ an eigen-vector of the operator pencil $P(\lambda)$, corresponding to λ_i . If the vectors $x_{0,i,j}$, $x_{1,i,j}$, ..., $x_{h,i,j}$, $h = \overline{0, m_{i,j}}$, $j = \overline{1, q_i}$ satisfy the equations

$$\sum_{p=0}^{h} \frac{\partial^{p} P(\lambda)}{\partial \lambda^{p}} \bigg|_{\lambda = \lambda_{i}} x_{h-p,i,j} = 0, h = \overline{0, m_{i,j}}, j = \overline{1, q_{i}},$$

then $x_{0,i,j}$, ..., $x_{h,i,j}$ are said to be eigen and associated vectors of the pencil $P(\lambda)$, corresponding to the characteristic number λ_i .

The vector-functions

$$u_{h,i,j}(t) = e^{\lambda_i t} \left(\frac{t^h}{h!} x_{0,i,j} + \frac{t^{h-1}}{(h-1)!} x_{1,i,j} + \ldots + x_{h,i,j} \right), h = \overline{0, \ m_{i,j}}, j = \overline{1, \ q_i}$$

belong to the space $W_2^n((0, 1): H)$, satisfy equation (1.2) and are called elementary solutions of equation (1.2).

In the space $\bigoplus_{\nu=0}^{k-1} H_{n-2\nu-1/2} \times \bigoplus_{\nu=0}^{n-1} H_{n-2\nu-1/2}$ let us construct the system

$$\{\tilde{x}_{h,i,j}\}_{i=1,h=\overline{0,m_{i,j}},\,j=\overline{1,\,q_m}}^{\infty} \equiv \left\{u_{h,i,j}^{(2\,\nu)}(0),u_{h,i,j}^{(2\,\nu)}(1)\right\}_{i=1,h=\overline{0,\,m_{i,j}},\,j=\overline{1,\,q_i}}^{\infty}.$$

Definition 1.4. If the system $\{\tilde{x}_{h,i,j}\}_{i=1,h=\overline{0,m_{i,j}},j=\overline{1,q_i}}^{\infty}$ is complete in the space $\overset{k-1}{\underset{\nu=0}{\oplus}}H_{n-2\,\nu-1/2}\times\overset{n-1}{\underset{\nu=0}{\oplus}}\bar{H}_{n-2\,\nu-1/2}$, we say that the system of eigen and associated vectors $P(\lambda)$ is n-fold complete in the space of traces of regular solutions of equation (1.2).

In the present paper we find conditions on the coefficients of the operator pencil $P(\lambda)$, that provide *n*-fold completeness of the system of eigen and associated vectors of the pencil $P(\lambda)$ in the space of traces of solutions.

To this end we study regular solvability of problem (1.2), (1.3) and estimate the norms of the resolvent $P^{-1}(\lambda)$ on some rays.

Similar problems were studied for example in the papers [1]-[4], [6]-[8], [10]-[12].

2. On regular solvability of problem (1.2), (1.3).

At first we consider the problem

$$(-1)^k u^{(n)}(t) + A^n u(t) = 0, t \in (0, 1)$$
(2.1)

$$u^{(2\nu)}(0) = \varphi_{\nu}, u^{(2\nu)}(1) = \psi_{\nu}, \nu = \overline{0, k-1}$$
(2.2)

It holds

Theorem 2.1. Problem (2.1), (2.2) is regularly solvable.

Proof. Let $\omega_0, \omega_1, ..., \omega_{n-1}$ be the solution of the equation $(-1)^n \omega^n + 1 = 0$, moreover $Re\omega_l < 0$ (l = 0, ..., k-1), $Re\omega_l > 0$ (l = k, ..., n-1). Then the general solution of equation (2.1) from the space $W_2^n((0, 1) : H)$ has the form

$$u_0(t) = \sum_{l=0}^{k-1} e^{\omega_l t A} c_l + \sum_{l=k}^{n-1} e^{\omega_l (t-1)A} c_l,$$
 (2.3)

where the vectors $c_l \in H_{n-1/2}$. From condition (2.2) it follows that

$$\sum_{l=0}^{k-1} \omega_l^{2\nu} A^{2\nu} c_l + \sum_{l=k}^{n-1} (\omega_e)^{2\nu} A^{2\nu} e^{-\omega_l A} c_l = \varphi_{\nu}, \nu = \overline{0, \ k-1},$$

$$\sum_{l=0}^{k-1} \omega_l^{2\nu} A^{2\nu} l^{\omega_l A} c_l + \sum_{l=k}^{n-1} \omega_l^{2\nu} A^{2\nu} c_l = \psi_{\nu}, \nu = \overline{0, \ k-1},$$

or

$$\sum_{l=0}^{k-1} \omega_l^{2\nu} c_l + \sum_{l=k}^{n-1} \omega_l^{2\nu} A^{-\omega_l A} c_l = A^{-2\nu} \varphi_{\nu}, \nu = \overline{0, k-1},$$

$$\sum_{l=0}^{k-1} \omega_l^{2\nu} e^{\omega_l A} c_l + \sum_{l=l}^{n-1} \omega_l^{2\nu} c_l = A^{-2\nu} \psi_{\nu}, \nu = \overline{0, k-1}.$$

Thus, we get the equation
$$\Delta(A)$$
 $\tilde{c} = \bar{\theta}$, $\tilde{\theta} = (\varphi_0, ..., A^{-2\nu} \varphi_{k-1}, \ \psi_0, ..., A^{-2\nu} \psi_{n-1}...)$,

$$\Delta(A) = \begin{pmatrix} E & E & e^{-\omega_k A} & e^{-\omega_{n-1} A} \\ \omega_0^2 E & \cdots & \omega_{k-1}^2 E & \omega_k^2 e^{-\omega_k A} & \cdots & \omega_{n-1}^2 e^{\omega_{n-1} A} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \omega_0^{2(k-1)} E & \omega_{k-1}^{2(k-1)} E & \omega_k^{2(k-1)} e^{-\omega_k A} & \omega_{n-1}^{2(k-1)} e^{-\omega_{n-1} A} \\ e^{\omega_0 A} & e^{\omega_{k-1} A} & E & E \\ \omega_0^2 e^{\omega_0 A} & \omega_{k-1}^2 e^{\omega_{k-1} A} & \omega_k^2 E & \omega_{n-1}^2 E \\ \vdots & \vdots & \vdots & \vdots \\ \omega_0^{2(k-1)} e^{\omega_0 A} & \cdots & \omega_{k-1}^{2(k-1)} e^{\omega_{k-1} A} & \omega_k^{2(k-1)} E & \cdots & \omega_{n-1}^2 E \end{pmatrix}$$
 (2.4)

Let $\sigma \geq \mu_0$, i.e. $\sigma \in [\mu_0, \infty)$, where μ_0 is the lower bound of spectrum A and consider the scalar matrix $\Delta(\sigma)$ in the domain $[\mu_0, \infty)$. Obviously, as $\sigma \to \infty$ $|\det \Delta(\sigma)| = |wronskian(\omega_0^2, ..., \omega_{k-1}^2)| \times |wronskian(\omega_k^2, ..., \omega_{n-1}^2)| \neq 0$. Therefore, there exists $R_0 > 0$ such that for $\sigma \in [R_0, \infty)$ $|\det \Delta(\sigma)| > c > 0$. Now show that for any $\sigma \in [\mu_0, R_0]$ det $\Delta(\sigma) \neq 0$. If it is not so, then det $\Delta(\sigma_0) = 0$ for some $\sigma_0 \in [\mu_0, R_0]$.

Then the equation $\Delta(\sigma_0)\bar{\xi}=0$ has the nonzero solution $\bar{\xi}=(\xi_0,\xi_1,...,\xi_{n-1})$. This means that the scalar function

$$\xi(t) = \sum_{l=0}^{k-1} e^{\omega_l t \sigma_0} \xi_l + \sum_{l=k}^{n-1} e^{\omega_l (t-1)\sigma_0} \xi_l$$

satisfies the equation

$$(-1)^{k}\xi^{(n)}(t) + \sigma_0^n\xi(t) = 0, t \in (0, 1)$$
(2.5)

and the boundary condition

 $\tilde{c} = (c_0, c_1, ..., c_{n-1}), \text{ where }$

$$\xi^{(2\nu)}(0) = 0, \xi^{(2\nu)}(1) = 0, \ \nu = \overline{0, k-1}.$$
 (2.6)

Multiplying the equation (2.5) scalarly by the function $\xi(t)$ in $L_2(0, 1)$ and taking into account condition (2.6), after integrating by parts, we get

$$\left\| \xi^{(k)} \right\|_{L_2(0,1)}^2 + \sigma_0^n \left\| \xi \right\|_{L_2(0,1)}^2 = 0.$$

Hence we get $\xi(t)=0$, i.e. $\bar{\xi}=(\xi_0,...,\xi_{n-1})=0$ and this contradicts the condition $\bar{\xi}\neq 0$. As $|\det\Delta(\sigma)|$ is a continuous function on $[\mu_0,R_0]$, then $\inf_{\sigma}|\det\Delta(\sigma)|\geq d_0>0$. Then we get that for all $\sigma\in[\mu_0,\infty)$ the inequality $|\det\Delta(\sigma)|>d>0$ is valid.

Using spectral expansion of A we get that $\Delta^{-1}(A)$ exists and takes the space $\bigoplus H_{n-1/2}$ to $\bigoplus H_{n-1/2}$ and $\|\Delta^{-1}(A)\| \leq const$. Here the n copies of direct sum of

spaces $H_{n-1/2}$ is taken. Then, obviously

$$\begin{split} \sum_{l=0}^{n-1} \|c_l\|_{n-1/2} &\leq const \left| \left| \Delta^{-1}(A) \right| \right| \left(\sum_{l=0}^{n-1} \left\| A^{-2\nu} \varphi_{\nu} \right\| + \sum_{l=0}^{n-1} \left\| A^{-2\nu} \psi_{\nu} \right\|_{n-1/2}^{2} \right) \\ &\leq const \left(\sum_{l=0}^{n-1} \left\| \varphi_{\nu} \right\|_{n-2\nu-1/2} + \sum_{l=k}^{k+1} \left\| \psi_{\nu} \right\|_{n-2\nu-1/2} \right). \end{split}$$

Hence we get

$$||u_0(t)||_{W_2^n((0,1):H)} \le const \left(\sum_{l=0}^k ||\varphi_\nu||_{n-2\nu-1/2} + \sum_{l=0}^{n-1} ||\psi_\nu||_{n-2\nu-1/2} \right). \tag{2.7}$$

The theorem is proved.

Now solve the problem (1.2), (1.3). Denote by

$$\overset{\circ}{W_2^n} = \left\{ u : u \in W_2^n((0, 1)H), \ u^{(2\nu)}(0) = u^{(2\nu)}(1) = 0 \right\}$$

and consider the operators

$$P_0 u = P_0(d/dt)u = (-1)^{(k)} u^{(n)}(t) + A^n u(t),$$

$$P_1 u = P_1(d/dt)u = \sum_{i=0}^{n-1} A_{n-i} u^{(i)}(t), u \in \mathring{W}_2^n((0, 1) : H).$$

After substitution $u(t) = \omega(t) + u_0(t)$, where $\omega(t)$ is an unknown function from $W_2^n((0, 1) : H)$, and $u_0(t)$ is determined from (2.3) as the solution of problem (2.1), (2.2). From boundary condition (1.2), (1.3) we get

$$(P_0(d/dt) + P_1(d/dt))\,\omega(t) = g(t), t \in (0, 1)$$
(2.8)

$$\omega^{(2\nu)}(0) = 0, \omega^{(2\nu)}(1) = 0, \tag{2.9}$$

where $\omega \in W_2^n((0, 1) : H)$, while $g(t) \in L_2((0, 1) : H)$.

Indeed, after substitution $\omega(t) = u(t) - u_0(t)$ we have:

$$(P_0(d/dt) + P_1(d/dt)) \omega(t) = -P_1(d/dt)u_0(t),$$

$$\omega^{(2\nu)}(0) = 0, \omega^{(2\nu)}(1) = 0$$

moreover

$$\begin{split} & \|g(t)\|_{L_2((0,1):H)} = \|P_1(d/dt)u_0(t)\|_{L_2((0,1):H)} \\ & \leq \sum_{j=0}^{n-1} \|B_j\| \cdot \left\|A^{n-j}u_0^{(j)}(t)\right\| \leq const \, \|u_0(t)\|_{W_2^n((0,1):H)} \\ & \leq const \left(\sum_{\nu=0}^{k-1} \|\varphi_\nu\|_{n-2\,\nu-1/2} + \sum_{\nu=k}^{n-1} \|\psi_\nu\|_{n-2\,\nu-1/2}\right). \end{split}$$

Here we used the theorem on intermediate derivatives [5] and inequality (2.7). Thus, we obtained problem (2.8), (2.9).

Now we will use the following result from the paper [9].

Theorem 2.2. [9] Let conditions 1), 2) be fulfilled, and the inequality

$$q = \sum_{j=0}^{n-1} d_{n,j} \|B_j\| < 1, \tag{2.10}$$

where

$$d_{n,j} = \begin{cases} \left(\frac{n-j}{n}\right)^{\frac{n-j}{n}} \left(\frac{j}{n}\right)^{j/n}, & j = 1, \dots n-1\\ 1, & j = 0 \end{cases} , \qquad (2.11)$$

hold. Then for any $g(t) \in L_2((0,1):H)$ there exists $\omega(t) \in W_2^n((0,1):H)$ that satisfies equation (2.8) almost everywhere and the estimation

$$\|\omega\|_{\dot{W}_{2}^{n}((0,1):H)} \leq const \|g(t)\|_{L_{2}((0,1):H)}.$$

Thus, we obtain

Theorem 2.3. Let all conditions of theorem 2.2 be fulfilled. Then problem (1.2), (1.3) is regularly solvable.

3. On completeness of eigen and associated vectors of the pencil $P(\lambda)$

At first we prove a theorem on estimation of the resolvent $P^{-1}(\lambda)$.

Theorem 3.1. Let conditions 1), 2) be fulfilled, $\omega_0, ..., \omega_{n-1}$ be the roots of the equation $(-1)^k \lambda^n + 1 = 0$ (n = 2k, k = 1, 2, ...) and the number $0 < \alpha \le \pi/n$. Then subject to the condition

$$q = \sum_{j=0}^{n-1} d_{n,j} \|B_j\| < \sin \frac{n\alpha}{2}, \tag{3.1}$$

on the rays $\Gamma_{s,\alpha}^{\pm} = \{\lambda : \arg \lambda = \arg \omega_s \pm \alpha\}, s = \overline{0, n-1} \text{ there exists the resolvent } P^{-1}(\lambda), \text{ and on these rays it holds the estimation}$

$$||A^{\beta}P^{-1}(\lambda)|| \le const (|\lambda|+1)^{-n+\beta}, 0 \le \beta \le n.$$

Here the numbers $d_{n,j}$ $(j = \overline{0, n-1})$ are determined from equality (2.11).

Proof. Obviously $||B_n|| < 1$, i.e. $E + B_n$ has a bounded inverse in H. Then $P(\lambda)$ has a discrete spectrum.

At first we show that on the rays $\Gamma_{s,\alpha}^{\pm} = \{\lambda : \arg \lambda = \arg \omega_s \pm \alpha\} \ s = \overline{0, n-1}$ the estimations

$$\left\| A^{n-j} \lambda^j \left((-1)^k \lambda^n E + A^n \right)^{-1} \right\| \le d_{n,j} \left(\sin \frac{n\alpha}{2} \right)^{-1} \tag{3.2}$$

hold.

Indeed, for $\lambda \in \Gamma_{s,\alpha}^{\pm}$ we have:

$$\left\| A^{n-j}\lambda^{j} \left((-1)^{k}\lambda^{n}E + A^{n} \right)^{-1} \right\| = \left\| A^{n-j}r^{j} \left(-r^{n}e^{\pm in\alpha}E + A^{n} \right)^{-1} \right\|$$

$$= \sup_{\mu \in \sigma(A)} \left| \mu^{n-j} r^j (-r^n e^{\pm i n \alpha} + \mu^n)^{-1} \right| = \sup_{\mu \in \sigma(A)} \left| \mu^{n-j} r^j (r^{2n} + \mu^{2n} - 2r^n \mu^n \cos n \alpha)^{-1/2} \right|.$$

After substitution $\tau = r/\mu$ and using the Cauchy inequality, we get that for $\lambda \in \Gamma_{\alpha}^{\pm}$ the following inequalities

$$\begin{aligned} \left\| A^{n-j} \lambda^{j} \left((-1)^{k} \lambda^{n} E + A^{n} \right)^{-1} \right\| &\leq \sup_{\tau > 0} \left| \tau^{j} (\tau^{2n} + 1 - 2\tau^{n} \cos n\alpha)^{-1/2} \right| \\ &= \sup_{\tau > 0} \left| \tau^{j} ((\tau^{n} + 1)^{2} - 2\tau^{n} (1 + \cos n\alpha))^{-1/2} \right| \\ &= \sup_{\tau > 0} \left| \tau^{j} (\tau^{n} + 1)^{-1} \left(1 - \frac{4\tau^{n}}{(\tau^{n} + 1)^{2}} \cos^{2} \frac{n\alpha}{2} \right)^{-1/2} \right| \\ &\leq \sup_{\tau > 0} \left| \tau^{j} (\tau^{n} + 1)^{-1} \right| \cdot \left(1 - \cos^{2} \frac{n\alpha}{2} \right)^{-1/2} \\ &= \left(\sin \frac{n\alpha}{2} \right)^{-1} \sup_{\tau > 0} \left| \tau^{j} (\tau^{n} + 1)^{-1} \right| = d_{n,j} \left(\sin \frac{n\alpha}{2} \right)^{-1} \end{aligned}$$

hold.

Then from the equality

$$P(\lambda) = P_0(\lambda) + P_1(\lambda) = (E + P_1(\lambda)P_0^{-1}(\lambda))P_0(\lambda)$$
(3.3)

we get that on the rays $\Gamma_{s,\alpha}^{\pm}$ there hold the estimations

$$||P_1(\lambda)P_0^{-1}(\lambda)|| = \left\| \sum_{j=0}^{n-1} \lambda^j A_{n-j} ((-1)^k \lambda^n E + A^n)^{-1} \right\|$$

$$= \sum_{j=0}^{n-1} ||B_{n-j}|| \left\| A^{n-j} \lambda^j ((-1)^k \lambda^n E + A^n)^{-1} \right\| \le \sum_{j=0}^{n-1} d_{n,j} \left(\sin \frac{n\alpha}{2} \right)^{-1} ||B_{n-j}||$$

$$= \sum_{j=0}^{n-1} d_{n,j} \left(\sin \frac{n\alpha}{2} \right)^{-1} ||B_j|| < 1.$$

Then from equality (3.3) it follows that

$$||A^{\beta}P^{-1}(\lambda)|| \le ||A^{\beta}P_0^{-1}(\lambda)|| ||(E+P_1(\lambda)P_0^{-1}(\lambda))|| \le const (|\lambda|^n + 1)^{-n+\beta}.$$

Now using the method of the papers [10], [11] we prove a theorem on n -fold completeness of eigen and associated vectors in the space of traces.

Theorem 3.2. Let conditions 1), 2), $A^1 \in \sigma_{\rho}$ (0 < ρ < ∞) be fulfilled and the inequality

$$q(\rho) = \sum_{j=0}^{n-1} d_{n,j} \|B_j\| < \begin{cases} 1, & \text{for } 0 < \rho \le k \\ \sin \frac{\pi n}{4\rho}, & \text{for } k \le \rho < \infty \end{cases}$$
(3.4)

hold. Then the system of eigen and associated vectors of the pencil $P(\lambda)$ is n-fold complete in the space of traces.

Proof. As $A^{-1} \in \sigma_{\rho}$ $(0 < \rho < \infty)$, the operators $B_{j} = A_{j}A^{-j}$ (j = 1, n) are completely continuous in H, then from the Keldysh theorem [4],[9] it follows that $A^{n}P^{-1}(\lambda)$ is represented in the form of ratio of two entire functions of order ρ and of minimal type of order ρ . Assume that the system of eigen and associated vectors of the operator-pencil $P(\lambda)$ is not n-fold complete in the space of traces. Then from the results of the paper of M.V. Keldysh [1], M.G. Gasymov and S.S. Mirzoyev [6] it follows that there exist the vectors $\chi_{\nu} \in H_{n-2\nu-1/2}$ $(\nu = \overline{0, n-1})$ such that $\sum_{\nu=0}^{n-1} \|\chi_{\nu}\|_{n-2\nu-1/2} \neq 0$, and the operator-function

$$g(\lambda) = \sum_{\nu=0}^{k-1} \lambda^{2\nu} \left(A^{n-2\nu-1/2} P_{\nu}^{-1}(\bar{\lambda}) \right)^* A^{n-\nu-1/2} \chi_{\nu}$$

$$+\sum_{\nu=k}^{n-1} \lambda^{2\nu} e^{\lambda} \left(A^{n-2\nu-1/2} P^{-1}(\bar{\lambda}) \right)^* A^{n-2\nu-1/2} \chi_{\nu}$$

is an entire function. From the theorem [2] on estimation of the resolvent for $0<\rho\leq k$ it follows that on the rays $\Gamma^\pm_{s,\pi/2k}=\left\{\lambda:\arg\lambda=\arg\omega_k+\frac{\pi}{2k}\right\}$ the estimations

$$||g(\lambda)|| \le const \cdot \lambda^{-1/2} (1 + e^{Re\lambda})$$
(3.5)

hold.

Then taking into account that the angle between these rays equals $\frac{\pi}{n}$, then for $\frac{\pi}{n} \leq \frac{\pi}{2p}$, i.e. when $0 < \rho \leq \frac{n}{2} = k$ applying the Fragmen-Lindeloff theorem we get that estimation (3.5) holds on the whole of complex plane. If $k \leq \rho < \infty$, then again using theorem 5 on estimation of the resolvent, and the Fragmen-Lindeloff theorem, we get that estimation (3.5) holds for all λ from the complex plane. Thus, in both cases, inequality (3.5) holds for all λ . Further it is obvious that for $\lambda = i\xi$, $\xi \in R$, $\lim_{\xi \to \infty} \|g(i\xi)\| = 0$.

As the boundary value problem (1.2), (1.3) is regularly solvable, we denote its solution by u(t) and assume

$$\hat{u}(\lambda) = \int_0^1 u(t)e^{-\lambda t}dt.$$

Obviously, $\hat{u}(\lambda)$ is an entire function. Further repeating all the reasonings from the paper [11, pp. 95-99] we get $\chi_{\nu} = 0$ ($\nu = \overline{0, n-1}$). And this contradicts the condition $\sum_{\nu=0}^{n-1} |\chi_{\nu}| \neq 0$. The theorem is proved.

References

- [1] M.G. Gasymov, S.S. Mirzoyev, On solvability of boundary value problems for second order operator-differential equation of elliptic type, *Diff. uravn.*, **28** (1992), no. 4, 651-661.
- [2] M.G. Gasymov, On multiple completeness of a part of eigen and associated vectors of polynomial operator pencils. *Izv. AS Arm. SSR*, ser. Mathematics 6 (1971), no. 2-3, 131-147.
- [3] M.G. Gasymov, To theory of polynomial operator pencils. *DAN SSSR*, **149** (1971), no. 44, 747-750.
- [4] M.V. Keldysh, On completeness of eigen functions of some classes of not self-adjoint operators, *UMN*, **27** (1971), no. 1, 15-47.

- [5] J.L. Lions, E. Magenes, Inhomogeneous boundary value problems and their applications. M.Mir, 1971.
- [6] S.S. Mirzoyev, M.D. Karaaslan, R.Z. Gumbataliyev, To theory of second order operator-differential equations, *Dokl. RAN*, 453 (2013), 610-612.
- [7] S.S. Mirzoyev, M.S. Salimov, On completeness of elementary solutions of a class of second order operator-differential equations, *Sibirskiy mat. zh.*, 51 (2010), no. 4, 815-828.
- [8] S.S. Mirzoyev, M.S. Salimov, On solvability of a boundary value problem with operator coefficient in the boundary condition, *Matem. zametki*, **91** (2012), no 6, 861-869.
- [9] S.S. Mirzoyev, G.I. Zamanov, On solvability of a boundary value problem for higher order operator-differential equations, *Vestnik Bakinskogo Universiteta*, (2015), no. 4, 13-17.
- [10] G.V. Radzievskiy, Problem on completeness of root vectors in spectral theory of operator-functions, *UMN*, **37** (1982), issue. 2(221), 81-145.
- [11] G.V. Radzievskiy, On completeness of derivative chains responding to boundary problems on finite interval, *Ukr. Mat. Zhurn.*, **34** (1979), no 4, 407-416.
- [12] A.I. Vbrozub, On energetic completeness of the system of elementary solutions of differential equation in Hilbert space, Funct. Analysis i ego priloz., 9 (1975), no 1, 52-53.

Sabir S. Mirzoyev

Institute of Mathematics and Mechanics, NAS of Azerbaijan, AZ 1141, Baku, Azerbaijan

Baku State University, AZ 1148, Baku, Azerbaijan

E-mail address: mirzoyevsabir@mail.ru

Hasan I. Zamanov

Baku University of Engineers, Baku, Azerbaijan

E-mail address: hasan_zamanli@yahoo.com

Received: April 1, 2017; Accepted: April 25, 2017