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THE WELL-POSEDNESS OF THE CAUCHY PROBLEM FOR A

SYSTEM OF THERMOELASTICITY WITH SINGULAR

COEFFICIENTS

AKBAR B. ALIEV AND GUNAY R. GADIROVA

Abstract. We consider the Cauchy problem for a system of thermoe-
lasticity with some non-Lipschitz coefficients. We prove well-posedness
of the corresponding Cauchy problem in some functional spaces.

1. Introduction and main results.

The various problems of thermoelasticity are reduced to the Cauchy problem
or the mixed problem of hyperbolic-parabolic coupled systems. When coefficients
are sufficiently smooth, these problems where studied by various authors [5], [8]-
[20]. In the mentioned works the well-posedness of the corresponding Cauchy
problem or the mixed problem, and the behavior of solutions, were investigated.
In this paper, we consider the Cauchy problem:{

utt − a(t)∆u+ divθ = 0
θt −∆θ + div ut = 0

t ∈ [0, T ] , x ∈ Rn (1.1)

with initial conditions

u(0, x) = u0(x), ut(0, x) = u1(x), θ(0, x) = θ0(x). (1.2)

It is known that if a(t) ≥ a0 > 0 satisfies the Lipschitz condition and u0 ∈
Hs(Rn), u1 ∈ Hs−1(Rn), θ0 ∈ Hs(Rn), then problem (1.1)-(1.2) has a unique
solution u ∈ C ([0, T ] ;Hs(Rn))

⋂
C1
(
[0, T ] ;Hs−1(Rn)

)
θ ∈ C ([0, T ] , Hs(Rn))

[1]-[4].
If we reject the Lipschitz condition, then this result, generally speaking is not

valid. In this paper our interest is to investigate the case when a(t) is not from
the class C1 at t = 0. Naturally, to investigate such problem there must be
some condition on the singularity order of a′(t) at t→0. But then it is necessary
to understand the relation between this singular behavior and the right classes
of well-posedness. Indeed, the results for the hyperbolic equation with singular
coefficient in this direction for example were obtained in the works [1]-[4], [7].
Studies of hyperbolic-parabolic coupled system in this direction are few. In the
article [6], the loss of smoothness of the solutions to the one class system of
thermoelasticity with logarithmical Lipschitz coefficient is investigated. In this
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paper we investigate the Cauchy problem for the system (1.1), (1.2) with singular
coefficients a(t).

At first we give some auxiliary notations.
⋂
β>0

Hβ(Rn) is denoted by H∞.

For s ≥ 1 we’ll denote by γ
(s)
β the functional space with the norm ‖f‖γsβ ={∫

Rn exp(β |ξ|
1
s )
∣∣∣f̂(ξ)

∣∣∣2 dξ} 1
2

, where f̂(ξ) is the Fourier transformation of f(x),

i.e. f̂(ξ) = F [f ] (ξ)

By γ(s) we denote γ(s) =
⋂
β>0

γ
(s)
β .

Theorem 1.1. Let

a(t) ∈ C1 (0, T ] , a(t) ≥ a0, t ∈ (0, T ] , (1.3)

t · |a′(t)| ≤ c, t ∈ (0, T ] (1.4)

where a0, c ∈ (0,∞), then Cauchy problem (1.1), (1.2) is well-posed in
H∞ ×H∞ ×H∞.

Theorem 1.2. Let (1.3) be satisfied. Suppose that there exist c1, c2 > 0 such
that, for all t ∈ [0, T ]

tq
∣∣a′(t)∣∣ ≤ c1, (1.5)

tpa(t) ≤ c2, (1.6)

where q > 1 and p ∈ [0, 1) with p < q− 1, then the Cauchy problem (1.1)-(1.2) is

γ(s) × γ(s) × γ(s) well-posed for all s < q−p
q−1 .

2. Proof of theorem 1.1.

The proof of theorem 1.1 and 1.2 is carried out by standard regularization
method that based on some energetic estimation.

First of all, we observe that (1.4) implies that a(·) ∈ L1(0, T ), and there exist
c1, c2 > 0 such that

|a(t)| ≤ c1 + c2 ln(1 +
1

t
), (2.1)

We define for all (t, ξ) ∈ [0, T ]×Rn \ {0}

ã(t, ξ) =


a(T ) if T |ξ| ≤ 1,

a(|ξ|−1) if T |ξ| > 1 and
a(t) if t |ξ| > 1,

t |ξ| ≤ 1, (2.2)

For all (t, ξ) ∈ [0, T ]×Rn \ {0} we define also

d(t, ξ) =

{
|ã(t, ξ)− a(t)| · |ξ| if t | ξ| ≤ 1,
|a′(t)|
a(t) if t |ξ| > 1,

(2.3)

and kλ(t, ξ) = (1 + |ξ|2)λ exp(−
∫ t
0 d(s, ξ)ds).
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We denote by v(t, ξ) and w(t, ξ) a Fourier transformation of u(t, x) and θ(t, x),
respectively with respect to the variable x, i.e. v(t, ξ) = F [u] (t, ξ), w(t, ξ) =
F [θ] (t, ξ). Let’s define the weighted energetic function in the following way

Eλ(t) =

∫
Rn

Eλ(t, ξ)dξ,

where

Eλ(t, ξ) =
[
|v̇(t, ξ)|2 + (1 + ã(t, ξ) |ξ|2) · |v(t, ξ)|2 + · |w(t, ξ)|2

]
· kλ(t, ξ) (2.4)

From (2.1) and (2.2) we deduced that for all (t, ξ) ∈ [0, T ]×Rn \ {0}
ã(t, ξ) ≤ c3 + c4 ln(1 + |ξ|). (2.5)

Lemma 2.1. There exists M > 0, such that

Eλ(t) ≤MEλ(0), t ∈ [0, T ] .

Proof. After simple transformations we get

dEλ(t, ξ)

dt
=
[
2Rev̇(t, ξ).v̈(t, ξ) + 2Rew(t, ξ). ˙̄w(t, ξ)

+ ˙̃a(t, ξ) |ξ|2 · |v(t, ξ)|2 +
(

1 + ã(t, ξ) |ξ|2
)

2 ·Rev(t, ξ). ˙̄v(t, ξ)
]

×k(t, ξ)− Eλ(t, ξ) · d(t, ξ). (2.6)

Since

Re

n∑
k=1

iξk [w · ˙̄v + ẇ · v̄] = 0,

the equalities (1.1) and (2.6) show that

dEλ(t, ξ)

dt
=
[
[1 + (ã(t, ξ)− a(t)) |ξ|2] |.v(t, ξ)|2

+ ˙̃a(t, ξ) · |ξ|2 |v(t, ξ)|2 − |ξ|2 · |w(t, ξ)|2
]
· k(t, ξ)− Eλ(t, ξ)d(t, ξ). (2.7)

If t |ξ| > 1 ,by (2.2) and (2.3) we obtain that

ã(t, ξ)− a(t) = 0, d(t, ξ) =
|ȧ(t)|
a(t)

(2.8)

and hence

˙̃a(t, ξ) |ξ|2 k(t, ξ)− Eλ(t, ξ)d(t, ξ) ≤ (ȧ(t)− |ȧ(t)|) |ξ|2 k(t, ξ) ≤ 0. (2.9)

By virtue of (1.1), (2.8) and (2.9), it follows from (2.7) that

dEλ(t, ξ)

dt
≤ 0. (2.10)

As t |ξ| < 1, then we have

2( ˙̃a(t, ξ)− a(t))Rev̇(t, ξ)v̄(t, ς)− ( ˙̃a(t, ξ)− a(t))[|v̇(t, ξ)|2 + |v(t, ξ)|2] ≤ 0.

Therefore

dEλ(t, ξ)

dt
≤M

[
|v̇(t, ξ)|2 + |v(t, ξ)|2

]
· k(t, ξ) ≤M Eλ(t, ξ). (2.11)
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By applying the Gronwall inequality, from (2.10), (2.11) we get
Eλ(t, ξ) ≤MTE(0, ξ), where MT = eMT . Thus

Eλ(t) ≤MTE(0) (2.12)

�

Lemma 2.2. For any λ ≥ 0 and ε > 0

Eλ(t) ≤ Φλ+ε(t), t ∈ [0, T ] (2.13)

where

Φα(t) =

∫
Rn

(1 + |ξ|2)α
[
|v̇(t, ξ)|2 + (1 + |ξ|2) |v(t, ξ)|2 + |w(t.ξ)|2

]
dξ. (2.14)

Proof. Inequality (2.13) is resulted from inequality (2.5). �

Lemma 2.3. There exists N > 0 and Λ > 0 such that for all t ∈ [0, T ],

Eδ(t) ≥ Λ · Φδ−N (t).

Proof. Let T |ξ| ≤ 1. By the definition of d(s, ξ) we have

t∫
0

d(s, ξ)ds ≤
T∫
0

|ã(t, ξ)− a(t)| · 1

T
dt ≤ |ã(t, ξ)|+ 1

T
‖a(·)‖L1(0,T )

. (2.15)

Secondly, we consider the case T |ξ| > 1. From (2.2) and (2.15) we have that

t∫
0

d(s, ξ)ds ≤
T∫
0

d(s, ξ)dξ ≤
|ξ|−1∫
0

|ã(t, ξ)− a(t)| · |ξ| dt

+

T∫
|ξ|−1

|ȧ(t, ξ)|
a(t)

dt ≤ c1 + c2 ln(1 + |ξ|) + |ξ|
|ξ|−1∫
0

a(t)dt

+

T∫
|ξ|−1

C

t
dt ≤ c3 + c4 ln(1 + |ξ|). (2.16)

Hence, from (2.4) and (2.5) we get

e−
∫ t
0 d(s,ξ)ds ≥ c5(1 + |ξ|)−c4 . (2.17)

Hence there exist N > 0 and c > 0 such that for all t ∈ [0, 1]

Eλ(t) ≥ cΦλ−N (t)

From lemmas 2.1-2.3 it follows that the Cauchy problem (1.1), (1.2) is well-posed
in H∞ ×H∞ ×H∞. �
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3. Proof of theorem 1.2.

Let 1 < s < q−p
q−1 . At first we introduce some notation :

ã1(t, ξ) =


a(T ) if T |ξ|

1
s(q−1) ≤ 1,

a(|ξ|−
1

s(q−1) ) if T |ξ|
1

s(q−1) > 1, t |ξ|
1

s(q−1) ≤ 1,

a(t) if t |ξ|
1

s(q−1) > 1 ,

d1(t, ξ) =

 |ã(t, ξ)− a(t)| · |ξ| if t |ξ|
1

s(q−1) ≤ 1 ,
| ˙̃a(t,ξ|
a(t) if t |ξ|

1
s(q−1) > 1

and

φλ,β(t, ξ) = e−
∫ t
0 d1(s,ξ)ds+β |ξ|

1
λ ,

where β is a positive constant.
We also introduce the notation

Hλ,β(t) =

∫
Rn

Hλ,β(s, ξ)ds

where

Hλ,β(s, ξ) =
[
|v̇(t, ξ)|2 + (1 + ã(t, ξ) |ξ|2) |v(t, ξ|2 + |w(t, ξ)|2

]
φλ,β(t, ξ).

Using (2.6) we get that

Hλ,β(t) ≤M
∫
Rn

eβ
′|ξ|

1
λ
[
|v̇(t, ξ)|2 +(1 + |ξ|2)(|v(t, ξ)|2 + |w(t, ξ)|2

]
dξ. (3.1)

On the other hand
t∫

0

d1(s, ξ)ds ≤ δ(|ξ|
1
λ +1), i = 1, 2. (3.2)

Thus, we have

φλ,β(t, s) ≥ e−2δ+(β−2δ) |ξ|
1
λ

and

Hλ,β(t) ≥ e−2δ
∫
Rn

eβ
′|ξ|

1
λ
[
|v̇(t, ξ)|2 + (1 + |ξ|2)(|v(t, ξ)|2 + |w(t, ξ)|2)

]
dξ, (3.3)

where β′ = β − 2δ.
In the same way as lemma 2.1, we can show that there exists M > 0 such that

Hλ,β(t) ≤MHλ,β(0), t ∈ [0, T ] . (3.4)

From (3.1)-(3.4) it follows that the Cauchy problem (1.1), (1.2) is well-posed

in γ(s) × γ(s) × γ(s).
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