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BEREZIN SYMBOLS, HÖLDER-MCCARTHY AND YOUNG

INEQUALITIES AND THEIR APPLICATIONS

MUBARIZ T. GARAYEV

Abstract. We give in terms of Berezin symbols some refinements of
Hölder-McCarthy inequality and Young inequality for positive operators
on the reproducing kernel Hilbert space. By applying these inequalities
we prove some new estimates for the Berezin number of operators. We
also discuss the power inequalities ber (An) ≤ cber (A)

n
and ber (A)

n ≤
Cber (An) for integers n ≥ 1, which is not well studied yet.

1. Introduction and Background

In this article, we give in terms of Berezin symbols some refinements of Hölder-
McCarthy inequality and Young inequality for positive operators on the repro-
ducing kernel Hilbert space (shortly, RKHS). We also apply these inequalities to
prove some power inequalities for Berezin number of some operators.

Recall that a reproducing kernel Hilbert spaceH = H (Ω) is the Hilbert space of
complex-valued functions on some set Ω such that the evaluation functionals f →
f (λ) , λ ∈ Ω, are continuous on H. Then by the classical Riesz representation
theorem for any λ ∈ Ω there exists a unique function kλ ∈ H such that

f (λ) = 〈f, kλ〉 for all f ∈ H.
The collection {kλ : λ ∈ Ω} is called the reproducing kernel of the space H. The
reproducing kernel kλ has the following representation in terms of any orthonor-
mal basis (en)n≥0 of the space H (Ω) as follows ( see Aronzajn [1] ):

kλ (z) =
∞∑
n=0

en (λ)en (z) .

It follows from this representation in particular that if H (Ω) = H2 (D) (the
Hardy-Hilbert space ) then kλ (z) = 1

1−λz (λ, z ∈ D) , because (zn)n≥0 is the

orthonormal basis for H2 (D) ; and if H (Ω) = L2
a (D) (the Bergman-Hilbert space

) then kλ (z) = 1

(1−λz)
2 (λ, z ∈ D) , since

(√
n+ 1zn

)
n≥0

is the orthonormal

basis of L2
a (D) (see Aronzajn [1], Hedenmalm, Korenblum and Zhu [14] ). Let k̂λ

denote the normalized reproducing kernel defined by k̂λ = kλ
‖kλ‖ . For any operator
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A ∈ B (H (Ω)) (the Banach algebra of all bounded linear operators on H (Ω)) its

Berezin symbol Ã is defined by (see [2, 3, 5, 22] )

Ã (λ) := 〈Ak̂λ, k̂λ〉, λ ∈ Ω.

The author introduced [15, 16] the following two new numerical values for oper-
ators on H (Ω) as follows:

Ber (A) : = Range
(
Ã
)

(the Berezin set of A )

ber (A) : = sup
λ∈Ω

∣∣∣Ã (λ)
∣∣∣ (the Berezin number of A ).

Clearly Ber (A) ⊂ W (A) = {〈Ax, x〉 : x ∈ H (Ω) and ‖x‖ = 1} (the numerical
range of A ) and ber (A) ≤ w (A) = sup {|〈Ax, x〉| : x ∈ H (Ω) and ‖x‖ = 1} (the
numerical radius of A ). Some first results concerning to the study of these new
numerical characteristics of operators are obtained by the author in [17, 18]; for
further results, the reader can be found in [8, 9, 10, 11, 12]. Here, in particular,
we prove new results for the Berezin number of some positive operators.

First we prove in terms of Berezin symbols an analog of McCarthy inequality
[21], Hölder-McCarthy inequality [6] and Young inequality [7] for positive oper-
ators. After these, as biproduct, we prove some inequalities for Berezin number
of operators by applying these inequalities.

2. Analogues of some classical inequalities for the Berezin
symbols

Recall that a bounded linear operator A acting on a Hilbert space H is said
to be positive, denoted by A ≥ 0, if 〈Ax, x〉 ≥ 0 for all x ∈ H. In his paper [21],
McCarthy proved the following inequalities for a positive operator A ∈ B (H)
(the Banach algebra of all bounded linear operators on H ):

1) 〈Aµx, x〉 ≤ 〈Ax, x〉µ ‖x‖2(1−µ) for µ ∈ [0, 1] and x ∈ H.
2) 〈Aµx, x〉 ≥ 〈Ax, x〉µ ‖x‖2(1−µ) for µ > 1 and x ∈ H.
1) and 2) can be simplified to the following 3) and 4), respectively:
3) 〈Aµx, x〉 ≤ 〈Ax, x〉µ for µ ∈ [0, 1] and x ∈ H.
4) 〈Aµx, x〉 ≥ 〈Ax, x〉µ for µ > 1 and x ∈ H.
Note that the proofs of inequalities 1) and 2) use the integral representation

of A and Hölder inequality, and therefore they are called the Hölder-McCarthy
inequality. The following inequality is named as the Young inequality (see Furuta
[7] ):

For A,B ≥ 0,

µA+ (1− µ)B ≥ B#µA for 0 ≤ µ ≤ 1,

where B#µA := B1/2
(
B−1/2AB−1/2

)µ
B1/2 is the µ− operator geometric mean.

Its simplified form is as follows: for A ≥ 0,

µA+ (1− µ) ≥ Aµ for 0 ≤ µ ≤ 1.

It is well known [6, 7] that the Hölder-McCarthy inequality 3) and Young in-
equality are equivalent. Some refinement and generalization of Young inequalities
are proved by Kittaneh and Manasrah [19].
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Theorem 2.1. Let A be a positive operator on a reproducing kernel Hilbert space

H (Ω) and λ ∈ Ω with Ak̂λ 6= 0.

a) If f (µ) := Ãµ(λ)

Ã(λ)µ
, then f (µ) is a convex function on R+ := [0,∞).

b) If Ã (λ) ≥ δ > 0 for all λ ∈ Ω and some δ > 0, then

ber
(
A

µ+ν
2

)
ber (A)

µ+ν
2

≤ 1

2

[
ber (Aµ)

δµ
+
ber (Aν)

δν

]
.

Proof. (a) The proof is similar to the proof in [6]. Indeed, first of all, we note

that Ãµ (λ) = 〈Aµk̂λ, k̂λ〉 is log-convex, i.e.,

〈A
µ+ν
2 k̂λ, k̂λ〉 ≤ 〈Aµk̂λ, k̂λ〉1/2〈Aν k̂λ, k̂λ〉1/2.

Since A
µ
2 and A

ν
2 are self-adjoint (because A is bounded positive operator on

H (Ω)), we have by using Schwartz inequality that

˜
A

µ+ν
2 (λ) = 〈A

µ+ν
2 k̂λ, k̂λ〉 = 〈A

ν
2 k̂λ, A

µ
2 k̂λ〉

≤
∥∥∥Aµ

2 k̂λ

∥∥∥∥∥∥A ν
2 k̂λ

∥∥∥ = 〈A
µ
2 k̂λ, A

µ
2 k̂λ〉1/2〈A

ν
2 k̂λ, A

ν
2 k̂λ〉1/2

= 〈Aµk̂λ, k̂λ〉1/2〈Aν k̂λ, k̂λ〉1/2.
By considering this and arithmetic-geometric mean inequality, we obtain for any
µ, ν ∈ R+ that

1

2

[
〈Aµk̂λ, k̂λ〉
〈Ak̂λ, k̂λ〉µ

+
〈Aν k̂λ, k̂λ〉
〈Ak̂λ, k̂λ〉ν

]
≥ 〈Aµk̂λ, k̂λ〉1/2〈Aν k̂λ, k̂λ〉1/2

〈Ak̂λ, k̂λ〉
µ+ν
2

≥ 〈A
µ+ν
2 k̂λ, k̂λ〉

〈Ak̂λ, k̂λ〉
µ+ν
2

=

˜
A

µ+ν
2 (λ)

Ã (λ)
µ+ν
2

,

and hence,
˜

A
µ+ν
2 (λ)

Ã (λ)
µ+ν
2

≤ 1

2

[
Ãµ (λ)

Ã (λ)µ
+
Ãν (λ)

Ã (λ)ν

]
,

that is, f
(µ+ν

2

)
≤ 1

2 [f (µ) + f (ν)] , which proves (a).

(b) Since by condition Ã (λ) ≥ δ > 0 for all λ ∈ Ω, that is the Berezin symbol

is away from zero and
∣∣∣Ã (λ)

∣∣∣ ≤ ∥∥∥Ak̂λ∥∥∥ , we conclude that Ak̂λ 6= 0 for all λ ∈ Ω.

Then by item (a), we have

˜
A

µ+ν
2 (λ)

Ã (λ)
µ+ν
2

≤ 1

2

[
Ãµ (λ)

Ã (λ)µ
+
Ãν (λ)

Ã (λ)ν

]
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for all λ ∈ Ω. From this, by using the inequality,

˜
A

µ+ν
2 (λ)

Ã (λ)
µ+ν
2

≤ 1

2

[
ber (Aµ)

δµ
+
ber (Aν)

δν

]
,

and hence, since A
µ+ν
2 is also positive, we have

˜
A

µ+ν
2 (λ) ≤ 1

2
Ã (λ)

µ+ν
2

[
ber (Aµ)

δµ
+
ber (Aν)

δν

]

≤ 1

2
ber (A)

µ+ν
2

[
ber (Aµ)

δµ
+
ber (Aν)

δν

]
for all λ ∈ Ω. Consequently, by taking the supremum from the left hand, we
obtain

ber
(
A

µ+ν
2

)
≤ 1

2
ber (A)

µ+ν
2

[
ber (Aµ)

δµ
+
ber (Aν)

δν

]
,

or equivalently,

ber
(
A

µ+ν
2

)
ber (A)

µ+ν
2

≤ 1

2

[
ber (Aµ)

δµ
+
ber (Aν)

δν

]
,

as desired. �

Note that a fundamental power inequality for the numerical radius w (A) of
operators on a Hilbert space H is the following which originally was proved by
Berger [4] ( see also, Halmos [13] and Pearcy [23]):

w (An) ≤ w (A)n (∀n ≥ 1) .

However, the inequality

ber (An) ≤ ber (A)n (∀n ≥ 1) ,

or its reverse

ber (A)n ≤ Cber (An)

for some constant C > 0, for the Berezin number of operators is not well inves-
tigated; for some particular results on these inequalities, see for instance in [10,
11]. The following corollary of Theorem 2.1 gives some particular results in these
directions.

Corollary 2.1. ber (Aµ) ≤ ber (A)µ for 0 ≤ µ ≤ 1, and ber (Aµ) ≥ ber (A)µ for
µ ∈ (1,+∞) .

Proof. Indeed, the convexity of f (µ) implies the desired inequalities. As a matter
of fact, f (µ) defined as in above satisfies f (0) = f (1) = 1. Hence the convexity
of it implies the required inequalities for the Berezin number of A. �

For our further results, we need to the following analog of a refinement of the
Hölder-McCarthy inequality (see [6, Theorem 2.3 ]).
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Theorem 2.2. Let A ≥ 0 and η ≥ 1. Then

m (µ, ν)

(
1−

(
Ãν (λ)

Ã (λ)ν

)η)
≤ 1−

(
Ãν (λ)

Ã (λ)ν

)η

≤ M (µ, ν)

(
1−

(
Ãν (λ)

Ã (λ)ν

)η)

for all µ, ν ∈ (0, 1) ; here m (µ, ν) := min
{

1−µ
1−ν ,

µ
ν

}
and M (µ, ν) := max

{
1−µ
1−ν ,

µ
ν

}
.

Moreover two inequalities in above are equivalent.

Proof. It follows from Theorem 2.1 that fη (µ) is a convex function by η ≥ 1.
If ν ≥ µ, then we have

fη (µ)− fη (0)

µ− 0
≤ fη (ν)− fη (0)

ν − 0
,

that is,

fη (µ)− 1

µ
≤ fη (ν)− 1

ν
,

whence

1− fη (µ) ≥ µ

ν
(1− fη (ν)) .

Next, if µ ≥ ν, then we have

fη (1)− fη (µ)

1− µ
≥ fη (1)− fη (ν)

1− ν
,

that is,

1− fη (µ) ≥ 1− µ
1− ν

(1− fη (ν)) .

For the completing the proof of the theorem, it remains only to use the same
arguments as in the proof of Theorem 2.3 of the paper [6] ( we omit it ). �

In the next result we consider Theorem 2.2 under tha case η = 1.

Proposition 2.1. Let A ∈ B (H (Ω)) be an operator such that A ≥ 0 and Ã (λ) ≥
δ > 0 for all λ ∈ Ω and some δ > 0. If 1 ≥ ν ≥ µ > 0, then

ber (Aµ)

ber (A)µ
+
µ

ν

(
1− ber (Aν)

δν

)
≤ 1. (2.1)

Proof. Indeed, it follows again from the arithmetic-geometric mean inequality
that

1− µ

ν
+
µ

ν

Ãν (λ)

Ã (λ)ν
≥

(
Ãν (λ)

Ã (λ)ν

)µ
ν

=
Ãν (λ)

µ
ν

Ã (λ)ν
µ
ν

≥ Ãµ (λ)

Ã (λ)µ
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by µ
ν ∈ (0, 1) . Hence

1− Ãµ (λ)

Ã (λ)µ
≥ µ

ν

(
1− Ãν (λ)

Ã (λ)ν

)
.

From this

1− µ

ν
+
µ

ν

Ãν (λ)

Ã (λ)ν
≥ Ãµ (λ)

Ã (λ)µ
≥ Ãµ (λ)

ber (A)µ
,

and hence

1− µ

ν
+
µ

ν

ber (Aν)

Ã (λ)ν
≥ Ãµ (λ)

ber (A)µ
.

Now by using that Ã (λ) ≥ δ for all λ ∈ Ω,we have from this inequality that

1− µ

ν
+
µ

ν

ber (Aν)

δν
≥ ber (Aµ)

ber (A)µ
,

which means inequality (2.1). The proof is finished. �

Next result proves the equivalence between refined Hölder-McCarthy type in-
equality and refined Young type inequality.

Theorem 2.3. Refined Hölder-McCarthy type inequality and refined Young type
inequality are equivalent, i.e.,

1− Ãµ (λ)

Ã (λ)µ
≥ m (µ, ν)

(
1− Ãν (λ)

Ã (λ)ν

)
(2.2)

and

µÃ+ 1− µÃµ ≥ m (µ, ν)
(
νÃ+ 1− ν − Ãν

)
(2.3)

are equivalent for given µ, ν ∈ (0, 1) , where m (µ, ν) is as in Theorem 2.2.

Proof. Suppose that (2.2) holds and λ ∈ Ω is an arbitrary point. If ν ≥ µ, then
we have

µ〈Ak̂λ, k̂λ〉+ 1− µ− µ

ν

(
ν〈Ak̂λ, k̂λ〉+ 1− ν − 〈Aν k̂λ, k̂λ〉

)
=

ν − µ
ν

+
µ

ν
〈Aν k̂λ, k̂λ〉.

On the other hand, by applying classical Young and Hölder-McCarthy inequali-
ties, we obtain for all λ ∈ Ω that

ν − µ
ν

+
µ

ν
Ãν (λ) ≥ Ãν (λ)

µ
ν ≥ Ãµ (λ),

which together with the last equality implies the desired inequality (2.3).
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If now µ ≥ ν, then for all λ ∈ Ω we have

µ〈Ak̂λ, k̂λ〉+ 1− µ− 1− µ
1− ν

(
ν〈Ak̂λ, k̂λ〉+ 1− ν − 〈Aν k̂λ, k̂λ〉

)
= 〈

(
µ− ν
1− ν

A+
1− µ
1− ν

Aν
)
k̂λ, k̂λ〉 ≥ 〈A

µ−ν
1−ν A

ν(1−µ)
1−ν k̂λ, k̂λ〉

= Ãµ (λ),

which gives (2.3).
For the proof of reverse implication (2.3)⇒(2.2), we replace A by A

Ã(λ)
in (2.3).

Then we have

µ
〈Ak̂λ, k̂λ〉
〈Ak̂λ, k̂λ〉

+ 1− µ− 〈A
µk̂λ, k̂λ〉

〈Ak̂λ, k̂λ〉µ

≥ m (µ, ν)

(
ν
〈Ak̂λ, k̂λ〉
〈Ak̂λ, k̂λ〉

+ 1− ν − 〈A
ν k̂λ, k̂λ〉

〈Ak̂λ, k̂λ〉ν

)
,

which implies that

1− Ãµ (λ)

Ã (λ)µ
≥ m (µ, ν)

(
1− Ãν (λ)

Ã (λ)ν

)
.

Since λ ∈ Ω is arbitrary, this means (2.2), which proves the theorem. �

In conclusion, we give one more inequalities related Berezin numbers of positive
operators A,B and their fractional powers.

Proposition 2.2. For any two positive operators A,B on the reproducing kernel
Hilbert space H (Ω) , we have:

(a) µber (A) + (1− µ) ber (B) ≥ ber (B#µA) for all µ ∈ [0, 1] ; here, as men-

tioned above, B#µA := B1/2
(
B−1/2AB−1/2

)µ
B1/2 is the µ− operator geometric

mean.
(b) ber (Aµ)− 1 ≤ µ (ber (A)− 1) for 0 ≤ µ ≤ 1.

Proof. The proof of this proposition is immediate from the well known Young
inequalities ( see Fruta [7] ) for arbitrary two positive operators A,B ∈ B (H (Ω))
( see Furuta [7] ):

µA+ (1− µ)B ≥ B#µA for 0 ≤ µ ≤ 1

and

µA+ 1− µ ≥ Aµ for 0 ≤ µ ≤ 1.

�

Next result follows from the Kantorovich inequality [7].

Proposition 2.3. If A ∈ B (H (Ω)) is a positive operators such that M ≥ A ≥
m > 0, then

ber
(
A2
)
≤ (m+M)2

4mM
ber (A)2 .
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This constant (m+M)2

4mM is said to be the Kantorovich constant and it is easy to see

that (m+M)2

4mM ≥ 1.
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[11] M. T. Garayev, M. Gürdal, S. Saltan, Hardy type inequality for reproducing kernel
Hilbert space operators and related problems, Positivity, DOI 10.1007/s11117-017-
0489-6, 2017.
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