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VECTOR AND AFFINOR FIELDS ON CROSS-SECTIONS IN

THE SEMI-COTANGENT BUNDLE

FURKAN YILDIRIM, MANOUCHEHR BEHBOUDI ASL, AND FIDAN JABRAILZADE

Abstract. The main purpose of this paper is to study the behavior
of complete lifts of vector and affinor (tensor of type (1,1)) fields on
cross-sections for pull-back (semi-cotangent) bundle t*B.

1. Introduction

Let an n−dimensional differentiable manifold Mn of class C
∞

is a fiber bundle
(Mn, π1, Bm) with projection π1 : Mn → Bm. We use the notation (xi) = (xa, xα),
where the indices i, j, ... run from 1 to n, the indices a, b, ... from 1 to n−m and
the indices α, β, ... from n −m + 1 to n, xα are coordinates in Bm, xa are fibre
coordinates of the bundle π1 : Mn → Bm.

Let (T ∗(Bm), π̃, Bm) be a cotangent bundle with base space Bm. Then the
semi-cotangent [9], [10] bundle (induced or pull-back) of (T ∗(Bm), π̃, Bm) is the
bundle (t∗(Bm), π2,Mn) over Mn with a total space

t∗(Bm) = {((xa, xα) , xα) ∈Mn × T ∗x (Bm) : π1 (xa, xα) = π̃ (xα, xα) = (xα)}
⊂ Mn × T ∗x (Bm)

and with the projection map π2 : t∗(Bm) → Mn defined by π2 (xa, xα, xα) =
(xa, xα) , where T ∗x (Bm) (x = π1 (x̃) , x̃ = ( xa, xα) ∈Mn) is the cotangent space
at a point x of Bm (for definition of the pull-back bundle, see for example [1], [3],
[5], [6]), where xα = pα (α, β, ... = n+ 1, ...,m) are fiber coordinates of cotangent
bundle T ∗(Bm). We denote by =pq(Mn) and =pq(Bm) the modules over F (Mn)
and F (Bm) of all tensor fields of type (p, q) on Mn and Bm, respectively, where
F (Mn) and F (Bm) denote the rings of real-valued C

∞−functions on Mn and
Bm, respectively.

If π1 : Mn → Bm is a differentiable map between the manifolds Mn and Bm
then the functions on Bm can be pulled back by π1 to give functions on Mn.
βθ is differentiable as a mapping Mn → t∗(Bm) if and only if Φ ∈ C∞(Bm)
implies βθ (Φ) ∈ C∞(Mn), where (βθ (Φ)) (p) = Φ (π1 (p)) for all p ∈ Mn. Let θ
be a covector field in an n−dimensional manifold Mn. Then the transformation
p → θp, θp being the value of θ at p ∈ Mn, determines a cross-section βθ of
the semi-cotangent bundle. Thus if σ : Bm → T ∗(Bm) is a cross-section of
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(T ∗(Bm), π̃, Bm), such that π̃ ◦ σ = I(Bm), an associated cross-section βθ : Mn →
t∗(Bm) of semi-cotangent bundle (t∗(Bm), π2,Mn) defined by [[2], p. 217-218],
[[8], p. 301]:

βθ (xa, xα) = (xa, xα, σ ◦ π1 (xa, xα)) = (xa, xα, σ (xα)) =
(
xa, xα, θα

(
xβ
))

.

2. Lifts of Vector Fields on a Cross-Section in the
Semi-Cotangent Bundle

If the covector field θ has the local components θα
(
xβ
)
, the cross-section

βθ (Mn) of t∗(Bm) is locally expressed by
xa = xa,
xα = xα,
xα = pα = θα

(
xβ
)
,

(2.1)

with respect to the coordinates xA = (xa, xα, xα) on t∗(Bm). xa being consid-
ered as parameters. Taking the derivative with respect to xb, we have k−local
vector fields B(b) (k = 1, ..., n−m) with the components

B(b) =
∂xA

∂xb
= ∂bx

A =

 ∂bx
a

∂bx
α

∂bθα

 ,

which are tangent to the cross-section βθ (Mn). Thus B(b) has the components

B(b) :
(
BA

(b)

)
=

 δab
0
0


with respect to the coordinates (xa, xα, xα) on t∗(Bm). Where

δab = Aab =
∂xa

∂xb
.

Let X̃ ∈ =1
0 (Mn) be a projectable vector field [7] with projectionX = Xα(xα)∂α

i.e. X̃ = X̃a(xa, xα)∂a +Xα(xα)∂α, we denote by BX the vector field with local
components

BX :
(
BA

(b)X̃
b
)

=

 δab X̃
b

0
0

 =

 Aab X̃
b

0
0

 (2.2)

with respect to the coordinates (xa, xα, xα) on t∗(Bm), which is defined globally
along βθ (Mn). Then a mapping

B : =1
0(Mn)→ =1

0(βθ (Mn))

is defined by (2.2). The mapping B is the differential of βθ : Mn → t∗(Bm) and
so an isomorphism of =1

0(Mn) onto =1
0(βθ (Mn)).
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Since a cross-section is locally expressed by xa = const.,
xα = pα = const.,
xα = xα,

xα being considered as parameters. Taking the derivative with respect to xβ, we
have r−local vector fields C(β) (r = n−m+ 1, ..., n) with the components

C(β) =
∂xA

∂xβ
= ∂βx

A =

 ∂βx
a

∂βx
α

∂βθα

 ,

which are tangent to the cross-section βθ (Mn).
Thus C(β) has the components

C(β) :
(
CA(β)

)
=

 Aaβ
δαβ
∂βθα


with respect to the coordinates (xa, xα, xα) on t∗(Bm). Where

Aaβ =
∂xa

∂xβ
, δαβ = Aαβ =

∂xα

∂xβ
.

Let X̃ ∈ =1
0 (Mn) be a projectable vector field [7] with projectionX = Xα(xα)∂α

i.e. X̃ = X̃a(xa, xα)∂a+Xα(xα)∂α. Then we denote by CX the vector field with
local components

CX :
(
CA(β)X

β
)

=

 AaβX
β

Xα

Xβ∂βθα

 (2.3)

with respect to the coordinates (xa, xα, xα) on t∗(Bm), which is defined globally
along βθ (Mn). Then a mapping

C : =1
0(Mn)→ =1

0(βθ (Mn))

is defined by (2.3). The mapping C is the differential of βθ : Mn → t∗(Bm) and
so an isomorphism of =1

0(Mn) onto =1
0(βθ (Mn)).

Now, consider ω ∈ =0
1(Bm) and projectable vector field X̃ ∈ =1

0 (Mn), then
vv
ω (vertical lift) and ccX̃ (complete lift) have respectively, components on the

semi-cotangent bundle t∗(Bm) [10]:

vv
ω =

 0
0
ωα

 , ccX̃ =

 X̃a

Xα

−pε(∂αXε)

 (2.4)

with respect to the coordinates (xa, xα, xα).
On the other hand, the fibre is locally represented by xa = const.,

xα = const.,
xα = pα = pα,
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pα being considered as parameters. Thus, by differentiating with respect to pα,
we easily see that the l−local vector fields E(β) =vv

(
dxβ

)
(l = n+ 1, ...,m) with

components

E(β) :
(
EA(β)

)
= ∂βx

A =

 ∂βx
a

∂βx
α

∂βpα

 =

 0
0

δβα


is tangent to the fibre, where

δβα = Aβα =
∂xβ

∂xα
.

Let ω be an 1-form with local components ωα on Bm, so that ω is a 1-form
with local expression ω = ωαdx

α. We denote by Eω the vector field with local
components

Eω :
(
EA(β)ωβ

)
=

 0
0
ωα

 , (2.5)

which is tangent to the fibre. Then a mapping

E : =0
1(Bm)→ =1

0(t
∗(Bm))

is defined by (2.5) and so an isomorphism of =0
1(Bm) in to =1

0(t
∗(Bm)).

According to (2.2) and (2.3), we define new projectable vector field HX̃ by

BX + CX = HX̃

with respect to the coordinates (xa, xα, xα) in t∗(Bm), where

HX̃ =

 Aab X̃
b

0
0

+

 AaβX
β

Xα

Xβ∂βθα

 =

 Aab X̃
b +AaβX

β

Xα

Xβ∂βθα

 =

 X̃a

Xα

Xβ∂βθα

 .

(2.6)
From (2.5) and (2.6), we obtain

Theorem 2.1. Let X̃ and Ỹ be projectable vector fields on Mn with projections
X and Y on Bm, respectively. For the Lie product, we have

(i)
[
HX̃,HỸ

]
= H [̃X,Y ],

(ii) [Eψ,Eω] = 0
for any ψ, ω ∈ =0

1(Bm).

Proof. (i) If X̃ and Ỹ are projectable vector field on Mn and


[
HX̃,HỸ

]b[
HX̃,HỸ

]β
[
HX̃,HỸ

]β


are the components of
[
HX̃,HỸ

]
with respect to the coordinates (xb, xβ, xβ) on
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t∗(Bm), then we have[
HX̃,HỸ

]J
=
(
HX̃

)I
∂I(HỸ )J − (HỸ )I∂I(HX̃)J .

Firstly, if J = b, we have[
HX̃,HỸ

]b
=

(
HX̃

)I
∂I(HỸ )b − (HỸ )I∂I(HX̃)b

=
(
HX̃

)a
∂a(HỸ )b +

(
HX̃

)α
∂α(HỸ )b +

(
HX̃

)α
∂α(HỸ )b

−(HỸ )a∂a(HX̃)b − (HỸ )α∂α(HX̃)b − (HỸ )α∂α(HX̃)b

= X̃a∂aỸ
b +Xα∂αỸ

b +Xβ∂βθα∂αỸ
b

−Ỹ a∂aX̃
b − Y α∂αX̃

b − Y β∂βθα∂αX̃
b

= Xα∂αỸ
b − Y α∂αX̃

b

= [̃X,Y ]
b

by virtue of (2.6). Secondly, if J = β, we have[
HX̃,HỸ

]β
=

(
HX̃

)I
∂I(HỸ )β − (HỸ )I∂I(HX̃)β

=
(
HX̃

)a
∂a(HỸ )β +

(
HX̃

)α
∂α(HỸ )β +

(
HX̃

)α
∂α(HỸ )β

−(HỸ )a∂a(HX̃)β − (HỸ )α∂α(HX̃)β − (HỸ )α∂α(HX̃)β

= X̃a∂aY
β +Xα∂αY

β +Xβ∂βθα∂αY
β

−Ỹ a∂aX
β − Y α∂αX

β − Y β∂βθα∂αX
β

= Xα∂αY
β − Y α∂αX

β

= [X,Y ]β

by virtue of (2.6). Thirdly, if J = β then we have[
HX̃,HỸ

]β
=

(
HX̃

)I
∂I(HỸ )β − (HỸ )I∂I(HX̃)β

=
(
HX̃

)a
∂a(HỸ )β +

(
HX̃

)α
∂α(HỸ )β +

(
HX̃

)α
∂α(HỸ )β

−(HỸ )a∂a(HX̃)β − (HỸ )α∂α(HX̃)β − (HỸ )α∂α(HX̃)β

= X̃a∂aY
γ∂γθβ +Xα∂αY

γ∂γθβ +Xβ∂βθα∂αY
γ∂γθβ

−Ỹ a∂aX
γ∂γθβ − Y α∂αX

γ∂γθβ − Y β∂βθα∂αX
γ∂γθβ

= Xα∂αY
γ∂γθβ − Y α∂αX

γ∂γθβ

= (Xα∂αY
γ − Y α∂αX

γ) ∂γθβ

= [X,Y ]γ ∂γθβ

by virtue of (2.6). On the other hand, we know that H [̃X,Y ] has the components

H [̃X,Y ] =

 [̃X,Y ]
b

[X,Y ]β

[X,Y ]γ ∂γθβ


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with respect to the coordinates (xb, xβ, xβ) on t∗(Bm). Thus, we have
[
HX̃,HỸ

]
=

H [̃X,Y ].

(ii) If ψ, ω ∈ =0
1(Bm) and

 [Eψ,Eω]b

[Eψ,Eω]β

[Eψ,Eω]β

 are the components of [Eψ,Eω]

with respect to the coordinates (xb, xβ, xβ) on t∗(Bm), then we have

[ψ, ω]J = ψI∂Iω
J − ωI∂IψJ

= ψa∂aω
J + ψα∂αω

J + ψα∂αω
J − ωa∂aψJ − ωα∂αψJ − ωα∂αψJ

= ψα∂αω
J − ωα∂αψJ .

Firstly, if J = b, we have

[ψ, ω]b = ψα∂αω
b − ωα∂αψb

= 0

by virtue of (2.5). Secondly, if J = β, we have

[ψ, ω]β = ψα∂αω
β − ωα∂αψβ

= 0

by virtue of (2.5). Thirdly, if J = β. Then we have

[ψ, ω]β = ψα∂αω
β − ωα∂αψβ

= ψα∂αωβ − ωα∂αψβ
= 0

by virtue of (2.5). Thus, we have [Eψ,Eω] = 0. �

We consider in π−1 (U) n + m local vector fields B(b), C(β) and E(β) along

βθ (Mn), which are respectively represented by

B(b) = B
∂

∂xb
, C(β) = C

∂

∂xβ
, E(β) = Edxβ.

Theorem 2.2. Let X̃ be a projectable vector field on Mn with projection X on
Bm. We have along βθ (Mn) the formulas

(i) ccX̃ = HX̃ + E (−LXθ) , (2.7)

(ii) vvω = Eω

for any ω ∈ =0
1(Bm), where LXθ denotes the Lie derivative of θ with respect to

X.
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Proof. (i) Using (2.4), (2.5) and (2.6), we have

HX̃ + E ( −LXθ) =

 X̃a

Xα

Xβ∂βθα

+

 0
0
−Xβ∂βθα − θβ∂αXβ


=

 X̃a

Xα

−θβ∂αXβ


= ccX̃.

Thus, we have Theorem 2.2.
(ii) This immediately follows from (2.4). �

On the other hand, on putting C(β) = E(β), we write the adapted frame of

βθ (Mn) as
{
B(b), C(β), C(β)

}
. The adapted frame

{
B(b), C(β), C(β)

}
of βθ (Mn)

is given by the matrix

Ã =
(
ÃAB

)
=

 δab Aaβ 0

0 δαβ 0

0 ∂βθα δβα

 . (2.8)

Where

δab = Aab =
∂xa

∂xb
, δαβ = Aαβ =

∂xα

∂xβ
, δβα = Aβα =

∂xβ

∂xα
, Aaβ =

∂xa

∂xβ
.

Since the matrix Ã in (2.8) is non-singular, it has the inverse. Denoting this

inverse by
(
Ã
)−1

, we have

(
Ã
)−1

=
(
ÃBC

)−1
=

 δbc −Abθ 0

0 δβθ 0
0 −∂θθβ δθβ

 , (2.9)

since Ã
(
Ã
)−1

= ÃAB

(
ÃBC

)−1
= δAC = Ĩ. Where A = (a, α, α), B =

(
b, β, β

)
,

C =
(
c, θ, θ

)
.

Proof. In fact, from (2.8) and (2.9), we easily see that

Ã
(
Ã
)−1

= ÃAB

(
ÃBC

)−1
=

 δab Aaβ 0

0 δαβ 0

0 ∂βθα δβα

 δbc −Abθ 0

0 δβθ 0
0 −∂θθβ δθβ


=

 δac −Aaθ +Aaθ 0
0 δαθ 0
0 ∂θθα − ∂θθα δθα

 =

 δac 0 0
0 δαθ 0
0 0 δθα

 = δAC = Ĩ .

�
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Then we see from (2.7) that the complete lift ccX̃ of a projectable vector field

[7] with projection X = Xα(xα)∂α on Mn has along βθ (Mn) components of the
form

ccX̃ :

 X̃a

Xα

−LXθα

 (2.10)

with respect to the adapted frame
{
B(b), C(β), C(β)

}
.

BX,CX and Eω also have the components:

BX =

 X̃a

0
0

 , CX =

 0
Xα

0

 , Eω =

 0
0
ωα

 (2.11)

respectively, with respect to the adapted frame
{
B(b), C(β), C(β)

}
of the cross-

section βθ (Mn) determined by a 1-form θ in Mn.

A vector field ccX̃ on a differentiable map Ω : Mn → t∗(Bm) is a mapping
ccX̃ : Mn → T (t∗(Bm)) such that π4 ◦

(
ccX̃

)
= Ω, where π4 is the projec-

tion T (t∗(Bm)) → t∗(Bm). Thus ccX̃ assigns to each point (xa, xα) = p ∈
Mn a tangent vector to t∗(Bm) at Ω (p). ccX̃ is differentiable as a mapping

Mn → T (t∗(Bm)) if and only if f ∈ = (t∗(Bm)) implies, ccX̃f ∈ = (Mn), where(
ccX̃f

)
(p) =cc X̃ (p) f for all p ∈Mn [4].

Thus, from (2.10), we have

Theorem 2.3. The complete lift ccX̃ of a projectable vector field X̃ on Mn to
t∗(Bm) is tangent to the cross-section βθ (Mn) determined by a 1−form θ in Mn

if and only if the Lie derivative of θ with respect to X vanishes in Mn, i.e., if
and only if LXθ = 0.

3. Complete Lift of Tensor Fields of Type (1,1) on a

Cross-Section in Semi-Cotangent Bundle

Let F̃ ∈ =1
1(Mn) be a projectable affinor field [7] with projection F = Fαβ (xα)∂α⊗

dxβ, i.e. F̃ has the components

F̃ = (F̃ ij ) =

(
F̃ ab (xa, xα) F̃ aβ (xa, xα)

0 Fαβ (xα)

)
with respect to the coordinates (xa, xα). Then the semi-cotangent bundle t∗(Bm)

admits the complete lift ccF̃ of F̃ with components [10]:

ccF̃ = (
cc
F̃ IJ ) =

 F̃ ab F̃ aβ 0

0 Fαβ 0

0 pσ(∂βF
σ
α − ∂αF σβ ) F βα

 (3.1)
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with respect to the coordinates (xa, xα, xα) on t∗(Bm). Then ccF̃ has the com-

ponents F̃AB given by

ccF̃ = (
cc
F̃AB ) =

 F̃ ab F̃ aβ 0

0 Fαβ 0

0 φF θ F βα

 (3.2)

with respect to the adapted frame
{
B(b), C(β), C(β)

}
of the cross-section βθ (Mn)

determined by a 1-form θ in Mn. Where A = (a, α, α), B =
(
b, β, β

)
. Also, the

component
cc
F̃αβ of

cc
F̃AB is defined as Tachibana operator φF θ of F , i.e.,

cc
F̃αβ = φF θ = (∂βF

σ
α − ∂αF σβ )θσ − F γβ ∂γθα + F γα∂βθγ .

Proof. Let F ∈ =1
1(Mn). Then we have by (2.8), (2.9) and (3.1):

cc
F̃ =

(
ÃBA

)−1
(

cc
F̃AC )

(
ÃCD

)
=

 δba −Abα 0

0 δβα 0
0 −∂αθβ δαβ

 F̃ ac F̃ aγ 0
0 Fαγ 0
0 θσ(∂γF

σ
α − ∂αF σγ ) F γα

 δcd Acψ 0

0 δγψ 0

0 ∂ψθγ δψγ


=

 F̃ bc 0 0

0 F βγ 0
0 −Fαγ ∂αθβ + θσ∂γF

σ
β − θσ∂βF σγ F γβ

 δcd Acψ 0

0 δγψ 0

0 ∂ψθγ δψγ



=

 F̃ bd AcψF̃
b
c 0

0 F βψ 0

0 −Fαψ ∂αθβ + θσ∂ψF
σ
β − θσ∂βF σψ + F γβ ∂ψθγ Fψβ


=

 F̃ bd F̃ bψ 0

0 F βψ 0

0 φF θ Fψβ


= (

cc
F̃BD ),

where A = (a, α, α), B =
(
b, β, β

)
, C = (c, γ, γ), D =

(
d, ψ, ψ

)
. �

Theorem 3.1. Let F̃ and X̃ be projectable affinor and vector fields on Mn with
projections F and X on Bm, respectively, and ω ∈ =0

1(Bm). Then we have along
βθ (Mn)

(i) ccF̃ (BX + CX) = B (FX) + C (FX) + E (PX) ,

(ii) ccF̃ (Eω) = E (ω ◦ F ) ,
where P ∈ =0

2(Bm) with local components

Pβα = φF θ = (∂βF
σ
α − ∂αF σβ )θσ − F γβ ∂γθα + F γα∂βθγ ,

θβ being the local components of θ, and PX ∈ =0
1(Bm) defined by PX (Y ) =

P (X,Y ), for Y ∈ =1
0(Mn).
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Proof. (i) If F̃ and X̃ are projectable affinor and vector fields on Mn with pro-
jections F and X on Bm, respectively, then by (2.11) and (3.2), we have

ccF̃ (BX + CX) =

 F̃ ab F̃ aβ 0

0 Fαβ 0

0 φF θ F βα


 X̃b

Xβ

0



=

 F̃ ab X̃
b + F̃ aβX

β

FαβX
β

Xβ∂βF
σ
α θσ −Xβ∂αF

σ
β θσ − F

γ
βX

β∂γθα + F γαXβ∂βθγ


=

 (̃FX)
a

(FX)α

Xβ∂βF
σ
α θσ −Xβ∂αF

σ
β θσ − F

γ
βX

β∂γθα + F γαXβ∂βθγ


=

 (̃FX)
b

0
0

+

 0

(FX)β

0


+

 0
0
Xβ∂βF

σ
α θσ −Xβ∂αF

σ
β θσ − F

γ
βX

β∂γθα + F γαXβ∂βθγ


= B (FX) + C (FX) + E (PX) .

Thus, we have

ccF̃ (BX + CX) = B (FX) + C (FX) + E (PX) .

(ii) If ω ∈ =0
1(Bm), F̃ is a projectable affinor fields on Mn with projection

F ∈ =1
1(Bm), then by (2.11) and (3.2), we have

ccF̃ (Eω) =

 F̃ ab F̃ aβ 0

0 Fαβ 0

0 (∂βF
σ
α − ∂αF σβ )θσ − F γβ ∂γθα + F γα∂βθγ F βα


 0

0
ωβ


=

 0
0

ωβF
β
α

 =

 0
0
(ω ◦ F )α

 = E (ω ◦ F ) .

Thus, we have (ii) of Theorem 3.1. �

On the other hand, for an arbitrary symmetric affine connection ∇ in Bm, we
have

Pβα = (∇βF σα −∇αF σβ )θσ − F γβ∇γθα + F γα∇βθγ .

When ccF̃ (BX + CX) is always tangent to βθ (Mn) for any projectable vector

field X̃ ∈ =1
0 (Mn), ccF̃ is said to leave the cross-section βθ (Mn) invariant.

Thus we have
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Theorem 3.2. The complete lift ccF̃ of an element of F̃ ∈ =1
1(Mn) leaves the

cross-section βθ (Mn) invariant if and only if

(∂βF
σ
α − ∂αF σβ )θσ − F γβ ∂γθα + F γα∂βθγ = 0 (i.e.φF θ = 0),

where Fαβ and θβ are the local components of F and θ respectively.
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