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VECTOR AND AFFINOR FIELDS ON CROSS-SECTIONS IN
THE SEMI-COTANGENT BUNDLE

FURKAN YILDIRIM, MANOUCHEHR BEHBOUDI ASL, AND FIDAN JABRAILZADE

Abstract. The main purpose of this paper is to study the behavior
of complete lifts of vector and affinor (tensor of type (1,1)) fields on
cross-sections for pull-back (semi-cotangent) bundle t*B.

1. Introduction

Let an n—dimensional differentiable manifold M,, of class C" is a fiber bundle
(M, 71, By,) with projection 71 : M,, — B,,. We use the notation (z?) = (2%, z%),
where the indices 4, j, ... run from 1 to n, the indices a, b, ... from 1 to n — m and
the indices a, 3, ... from n —m + 1 to n, =% are coordinates in B,,, % are fibre
coordinates of the bundle w1 : M,, — B,,.

Let (T*(Bm), T, Bm) be a cotangent bundle with base space By,. Then the
semi-cotangent [9], [10] bundle (induced or pull-back) of (T™(B,,), 7, By,) is the
bundle (¢*(B,,), w2, M,,) over M, with a total space

t*(Bn) = {((z%x%),2%) € M), x T;(By,) : m (2%, 2%) =7 (2%, 2%) = ()}
C M, xT;(Bn)

and with the projection map my : t*(B,) — M, defined by mo (2%, 2% 2%) =
(x*, 2%), where T (Bp,) (r = m (Z),7 = (2% 2%) € M,) is the cotangent space
at a point x of By, (for definition of the pull-back bundle, see for example [1], [3],
5], [6]), where 2% = p, (@, 3,... = n+1,...,m) are fiber coordinates of cotangent
bundle T*(B,,). We denote by 3%(M,,) and 3%(B,,) the modules over F (M,,)
and F' (B,,) of all tensor fields of type (p,q) on M, and B,,, respectively, where
F (M,) and F (B,,) denote the rings of real-valued C” —functions on M,, and
B,,,, respectively.

If my : M,, — B,, is a differentiable map between the manifolds M,, and B,,
then the functions on B,, can be pulled back by 7 to give functions on M,,.
Py is differentiable as a mapping M, — t*(B,,) if and only if ® € C*(By,)
implies g (®) € C°(M,,), where (B (®)) (p) = © (m1 (p)) for all p € M,,. Let 0
be a covector field in an n—dimensional manifold M,,. Then the transformation
p — 0p, 0, being the value of 6 at p € M,, determines a cross-section 3y of
the semi-cotangent bundle. Thus if o : B,, — T*(B,,) is a cross-section of
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(T*(Bm), T, Bp), such that T oo = I(p, ), an associated cross-section g : M, —
t*(By,) of semi-cotangent bundle (t*(By,), T2, M) defined by [[2], p. 217-218],
18], p. 301]:

Bo (x,2%) = (x% 2% o om (2% z%)) = (2%, 2%, 0 (%)) = (wa,xaﬂa (ar:ﬁ)) .

2. Lifts of Vector Fields on a Cross-Section in the
Semi-Cotangent Bundle

If the covector field # has the local components 6, (mﬁ), the cross-section
Bo (My,) of t*(B,,) is locally expressed by

x
x

o 2 =

8

x?,
x®, (2.1)
Pa = Oa («Tﬂ) )

with respect to the coordinates z4 = (22, 2% @) on t*(B,,). z® being consid-
ered as parameters. Taking the derivative with respect to ¥, we have k—local
vector fields B (k= 1,...,n —m) with the components

Opx®
axA b
B(b) = W = 31,1"4 = 8b$a s
8beoz

which are tangent to the cross-section 8 (My). Thus B has the components
A o
B+ (Bh) = )

with respect to the coordinates (z%, %, z%) on t*(B,,). Where

ox®
0 =A) = —.
b b axb
Let X € 3¢ (M) be a projectable vector field [7] with projection X = X%(x%)d,
le. X = X%2% 2%)0, + X¥(x%)0q, we denote by BX the vector field with local
components

B sox? Ag X
BX : (BA Xb> ~| o —[ o (2.2)
(b) X ’

with respect to the coordinates (x®, %, %) on t*(B,,), which is defined globally
along By (M,,). Then a mapping

is defined by (2.2). The mapping B is the differential of gy : M,, — t*(B,,) and
so an isomorphism of S§(M,,) onto I3(Bg (My,)).
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Since a cross-section is locally expressed by
x?® = const.,
% = p, = const.,
$0( — $a7
x® being considered as parameters. Taking the derivative with respect to 2, we
have r—local vector fields Cg) (r=n—m++1,...,n) with the components

Ogx®
x4 s
C(,B) = T a7 = ngA = 85$a
P ’
080
which are tangent to the cross-section Sy (My,).
Thus C(g) has the components
A A:,B
Cl) (C(ﬁ)) — | o3
080
with respect to the coordinates (%, x, %) on t*(B,,). Where
o Ox° 5o o Ox“
o BN

Let X € 3¢ (M) be a projectable vector field [7] with projection X = X*(2%)d,
fe. X = Xz% xY)04 + X“(x%)0s. Then we denote by C'X the vector field with
local components

Al XP
A v s
cx: (cfhyx”) = | xe (2.3)
XP050,
with respect to the coordinates (z%,z, %) on t*(By,), which is defined globally
along Sy (M,,). Then a mapping

O+ §(Ma) — S5(B (Mn))
is defined by (2.3). The mapping C' is the differential of gy : M,, — t*(B,,) and
so an isomorphism of S§(M,,) onto I3(Bg (My,)).
Now, consider w € S9(B,,) and projectable vector field X € S (M,,), then

"w (vertical lift) and “X (complete lift) have respectively, components on the
semi-cotangent bundle t*(B,,) [10]:

0 B X
“w=10 , X =| Xx¢ (2.4)
Wa _ps(aozXE)

with respect to the coordinates (%, z%, z%).
On the other hand, the fibre is locally represented by

z% = const.,
% = const.,

7 = Pa = Pa,

a
«
o
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Do being considered as parameters. Thus, by differentiating with respect to pq,
we easily see that the [—local vector fields E(g) = (d:z:fB) (l=n+1,...,m) with
components

ot \ (0
. A _ A a _
By (Blp) =o' = | 9" | = | O,
aﬁpa Oar
is tangent to the fibre, where
oz
08 = A8 =
@ > Oxo

Let w be an 1-form with local components w, on B,,, so that w is a 1-form
with local expression w = wydx®. We denote by Ew the vector field with local
components

0
Ew: (EE%)W’B) =10 , (2.5)

which is tangent to the fibre. Then a mapping
B 9Y(Byn) = SH(t"(Bn)

is defined by (2.5) and so an isomorphism of $Y(By,) in to S§(t*(Bm)).
According to (2.2) and (2.3), we define new projectable vector field HX by

BX +CX = HX

with respect to the coordinates (%, x, z%) in t*(B,,), where

~ AgX? AgXP AgXP + A2XP Xe
HX =10 + [ xe — | xo — | xe
0 XP050, X050, X050,

(2.6)
From (2.5) and (2.6), we obtain

Theorem 2.1. Let X and Y be projectable vector fields on M, with projections
X andY on B,,, respectively. For the Lie product, we have

() [HX HY]= HIX,Y],
(1) [BY, Ew] =0
for any v, w € IY(B).

~ ~1b
[HX, HY

=

=

Proof. (i) If X and Y are projectable vector field on M, and [H X, H }7}
[HX, Hﬂ

are the components of [H X JH 17} with respect to the coordinates (x%, z”, .%‘E) on
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t*(By,), then we have

[H)?,Hf/r - (HX)[aI(H?)J — (HY)op(HX)’.

Firstly, if J = b, we have

~ ~1b
[HX, HY] -

~\ ! ~ ~ ~
(HX) O (HY) — (HY)! 81(HX)b
(H)Nf)ac?a(H}N/)b + (H)?)aa b+ (H )
—(HY)*0u(HX)" — (HY)*0(HX)" — (HY ) 0g(HX)"
X9,Y + X0, Y + XP030,05Y"
Y9, X" — Y0, X" — YP030,05 X"
X®0,Y? —Y?0,X"
—~~—5b
(X, Y]

by virtue of (2.6). Secondly, if J = 3, we have

Y
[HX,HY} -

(H)?)Ial([ﬂ?)ﬁ - (H?)I&(Hf)ﬁ

by virtue of (2.6). Thirdly, if J = 3 then we have

~ _~1B
[HX, HY} -

(H)?)aaa(m?)ﬁ + (Hf()aa (H ( )
—(HY)*0u(HX)” — (HY )" 0o (H ) — (HY)" (HX)ﬁ
X9,V P + X0, Y7 + XP0p0,0:Y"

Y9, XP — Y0, X% — YP030,0:X"°

X99,YP — Y29, X"

X, Y]

(H)?) oYY - (H?)faI(H)?)E

(Hf(’)“aa(ﬂff)ﬂ (H)Z)aa (HY) + (H ) Y)?

—(HY)*0u(HX)? = (HY )0 (HX)" — (H Y)E&(HX )?
X9, Y 0,05 + X0 Y 0,05 + XP030,05Y 70,05
—Y9,X78,05 — Y0aX"10,05 — Y?9500,05X70,05
XY 0,05 — Y0, X70,05

(X9, YT — Y99, X7) 8,05

(X, Y17 0,05

—_—

by virtue of (2.6). On the other hand, we know that H[X, Y] has the components

P

(X, Y]
H[X,Y]= (X, Y]’B
[X,Y]
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with respect to the coordinates (z?, 2%, #8) on t*(B,,). Thus, we have [Hf(, H?} =

H[X,Y].

By, Bu]’
(ii) If ¥,w € S(By,) and [Ed),Ew]f are the components of [E1, Ew]
By, Bw)”
with respect to the coordinates (2°, 2%, ) on t*(B,,), then we have

[,w]! = Yo’ —wlop’
= waaawj + waaawj + waaat«f] —w® awj —w® an - wa&ad)J
= YaOaw’ — wa Oz’

Firstly, if J = b, we have

[W,w]’ = Padaw® — wadzt)
= 0

by virtue of (2.5). Secondly, if J = /3, we have

[, 0] = $adaw’ — wadsy)?
= 0

by virtue of (2.5). Thirdly, if J = 3. Then we have

0,0’ = Padsw’ — wadst)®
= waaawﬁ - waaawﬂ
= 0

by virtue of (2.5). Thus, we have [Evy, Ew] = 0. O

We consider in 7=! (U)  n + m local vector fields By, C(s) and E(E) along
Bo (My,), which are respectively represented by

0 0
B(b) =B— C(ﬂ) = CW’ E(B)

o = Eda’.

Theorem 2.2. Let X be a projectable vector field on M, with projection X on
B,,. We have along By (M,,) the formulas

(i) “X = HX+E(—Lxb), (2.7)

(i) "“w = Ew

for any w € SY(B,), where Lx0 denotes the Lie derivative of § with respect to
X.
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Proof. (i) Using (2.4), (2.5) and (2.6), we have
N X 0
HX +E(—-Lx0) = | x° +[ o
XP050, —~XB050, — 050, X7

Ya
= X
—050, X7

_ ccjz"

Thus, we have Theorem 2.2.
(#4) This immediately follows from (2.4). O

On the other hand, on putting C(B) = E(B)’ we write the adapted frame of

Bg (Mn) as {B(b), C(ﬁ), C(E)} The adapted frame {B(b), C(B)’ C(B)} of ,89 (Mn)
is given by the matrix

o A% 0
A= <Ag) = o & o |. (2.8)
0 36, 08
Where
ox? ox® 9P ox®
a__ pqa _ T a __ A T B _ AB — a _
6b_Ab_8xb’ 5’8_Aﬁ_8:c5’ 5O‘_AO‘_8:U°“’ Aﬁ_@xﬁ'

Since the matrix A in (2.8) is non-singular, it has the inverse. Denoting this

inverse by <A>71, we have
(ﬁ>_1 - (gg) o ( 502 _5§2 8 ) , (2.9)
0 —0bp 52

since A g)
C = (c.0.9)

o ﬁ‘g (ﬁg)71 =04 = I. Where A = (a,a,@), B = (b,8,8),

Proof. In fact, from (2.8) and (2.9), we easily see that

(D) - ap(a)

boAY 0 st —Ab 0
— 0 65 0 0 & 0
0 b0 05 0 —0405 &

5¢ —Ag+AE 0 5 0 0 B
0 o5 0 |=| 0 ¢ 0 |=062=1I
0

0900 — 0p0s 09

«

0 0 &
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Then we see from (2.7) that the complete lift X of a projectable vector field

[7] with projection X = X (x®)9, on M,, has along Sy (M,,) components of the
form
xa
x| xeo (2.10)
—Lx0,

with respect to the adapted frame {B(b), Cp), C(B) }
BX,CX and Ew also have the components:

Xa 0 0
BX=1| o0 . CX=| X* |, Ew=|[0 (2.11)
0 0 Wey

respectively, with respect to the adapted frame {B(b), C(ﬁ)’c(ﬁ)} of the cross-

section By (M,,) determined by a 1-form € in M,,.
A vector field ““X on a differentiable map Q : M,, — t*(B,,) is a mapping

«X : M, — T (t*(By)) such that m4 o (CC)?> = (1, where 74 is the projec-
tion T (t*(By,)) — t*(By). Thus “X assigns to each point (z%,2%) = p €
M, a tangent vector to t*(B,,) at Q(p). “X is differentiable as a mapping
M, — T (t*(By,)) if and only if f € I (t*(B,,)) implies, “X f € I (M,,), where
(X 1) (p) = X (p) f for all p € My [4).

Thus, from (2.10), we have

Theorem 2.3. The complete lift ce of a projectable vector field X on M, to
t*(By,) is tangent to the cross-section By (My,) determined by a 1—form 6 in M,
if and only if the Lie derivative of 0 with respect to X wvanishes in M,, i.e., if
and only if Lx60 = 0.

3. Complete Lift of Tensor Fields of Type (1,1) on a

Cross-Section in Semi-Cotangent Bundle

Let F € 31(M,,) be a projectable affinor field [7] with projection F' = Fg(z%)0a®
dzP, i.e. F has the components
~ ~ Fo(z®,2®) F2(z%, 2®)
F=(F}) = A" N
( 0 Fg (%)
with respect to the coordinates (z, ®). Then the semi-cotangent bundle t*(B,,)
admits the complete lift ““F of F' with components [10]:
g Fg 0
“pF=("Fh= 0 Fg 0 (3.1)
0 po(9sFg — 0uFg) FY
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with respect to the coordinates (z%, %, 2%) on t*(By,). Then “F has the com-

ponents Fg given by

N N Ey ﬁg 0
“F=("Ff)=| 0 F§ 0 (3.2)
0 ¢rf FY

with respect to the adapted frame {B(b), Cp), C(E)} of the cross-section Sy (My,)
determined by a 1-form 6 in M,,. Where A = (a,a,@), B = (b, 6,3) . Also, the
component Fg of chjé is defined as Tachibana operator ¢r8 of F, i.e.,

“E§ = 6w = (95F — 0aFg)00 — FJ0 00 + F1030,.

Proof. Let F € S(M,). Then we have by (2.8), (2.9) and (3.1):

cc

N =1 e~ ~
Fo= (A5) ("R (49)
b b a —a c c
g —Ab 0 F Fo 0 &5 A$
= (o & o 0 Fo 0 0 4
0 —0a0s 03 0 05(0yFS —0aF7) FI 0 040,
F? 0 0 55 A5 0
= 0 j28 0 0 &, 0
0 —F$0abp + 0,0,FF — 0,05F FJ 0 By, oY
F? AGF? 0
= | o F) 0
0 —F$0a0s + 0,0, FF — 0,05F] + FJoy0, FY
Fj Fy 0
= | 0o E 0
0 ¢p0 Fy
= ("Fp),
WhereA:(a,oz,a),B: (b7ﬁ73)702(07’777)7D: (d7¢7$) |:|

Theorem 3.1. Let F and X be projectable affinor and vector fields on M, with
projections F' and X on By, respectively, and w € SY(B,,). Then we have along
60 (Mn) _

(1) “F(BX+CX)=B(FX)+C(FX)+ FE(Px),

(i) “F(Ew)=E (woF),
where P € 3Y(B,,) with local components

Pﬂa = ¢F9 = (aﬁFg — (%Fg)@g - Fgafyea +Fgaﬁ9'y,

03 being the local components of 0, and Px € SY(By,) defined by Px (Y)

P(X,Y), for Y € S§(M,).
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Proof. (i) If F and X are projectable affinor and vector fields on M, with pro-
jections F and X on By, respectively, then by (2.11) and (3.2), we have

N Fg F3 0 Xt
“F(BX+CX) = 0 Fg 0 X7
0 ¢p0 FJ ) \O
Fexb+ Fyx?
= FEXB
XPOsF0, — XPOuFg0, — FiXP0,0, + FIX 050,
—~—Qa
(FX)
= (FX)"

XﬁaﬁFﬂe — X0, F30, — FXP0,0, + FiX 050,

(FX)

+ 1 (Fx)?
0

0
0

0
+1 0

XPOsFg0, — XPOuF0, — Fj X 8,04 + FA X 350,
B(FX)+C(FX)+ E(Py).
Thus, we have

“F(BX +CX)=B(FX)+C(FX)+ E(Px).

(ii) If w € SV(Bn), Fisa projectable affinor fields on M,, with projection
F € $1(B,,), then by (2.11) and (3.2), we have

Ep Fg 0 0
“F(Bw) = 0 Fg 0 0
0 (0sFZ — 0uFg)0s — FJ0,00 + FA0s0, Fi wg
0 0
W;aFg (wo F),
Thus, we have (i7) of Theorem 3.1. O

On the other hand, for an arbitrary symmetric affine connection V in B,,, we
have

Pﬁa = (VBFJ - VaF,é’)@o - F’yv 9@ + FJV/BQ,Y.

When ch (BX 4+ CX) is always tangent to Sy (M,,) for any projectable vector

field X € S S (M), ccF is said to leave the cross-section B (M,,) invariant.
Thus we have
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Theorem 3.2. The complete lift “F of an element of F € 31(M,,) leaves the
cross-section By (My,) invariant if and only if

(05FS — 0aF§)0s — FJ0,00 + FJ050, = 0 (i.c.0p0 = 0),

where Fg and 0s are the local components of F' and 6 respectively.
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