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TRANSCENDENTAL FIRST INTEGRALS OF SOME CLASSES

OF DYNAMICAL SYSTEMS

MAXIM V. SHAMOLIN

Abstract. We examine the existence of transcendental first integrals
for some classes of systems with symmetries. We obtain sufficient con-
ditions of existence of first integrals of second-order non-autonomous
homogeneous systems that are transcendental functions (in the sense of
the theory of elementary functions and in the sense of complex analysis)
expressed as finite combinations of elementary functions.

1. Preliminary Results

We introduce a class of autonomous dynamical systems with one periodic phase
coordinate possessing certain symmetries that are typical for pendulum-type sys-
tems. We show that this class of systems can be naturally embedded in the
class of systems with variable dissipation with zero mean, i.e., on the average for
the period with respect to the periodic coordinate, the dissipation in the system
is equal to zero, although in various domains of the phase space, either energy
pumping or dissipation can occur, but they balance to each other in a certain
sense. We present some examples of pendulum-type systems on lower-dimension
manifolds from dynamics of a rigid body in a nonconservative field.

Then we study certain general conditions of the integrability in elementary
functions for systems on the two-dimensional plane and the tangent bundles of a
one-dimensional sphere (i.e., the two-dimensional cylinder) and a two-dimensional
sphere (a four-dimensional manifold). Therefore, we propose an interesting ex-
ample of a three-dimensional phase portrait of a pendulum-like system which
describes the motion of a spherical pendulum in a flowing medium (see also
[11, 12, 13, 14, 15]).

For multi-parametric third-order systems, we present sufficient conditions of
the existence of first integrals that are expressed through finite combinations of
elementary functions.

We deal with three properties that seem, at first glance, to be independent:

• a class of systems with symmetries specified above;
• the fact that this class consists of systems with variable dissipation with

zero mean (with respect to the existing periodic variable), which allows
us to consider them as almost conservative systems;
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• in certain (although lower-dimensional) cases, these systems have a com-
plete set of first integrals, which, in general, are transcendental (in the
sense of complex analysis).

As is well known, the concept of integrability, generally speaking, is quite
vague. It is necessary to consider the sense in which it is meant (i.e., a certain
criterion that allows one to conclude that trajectories of a dynamical system have
an especially “attractive and simple structure”), and in which class of functions
first integrals are taken, and so on (see also [1]).

In this activity, we accept an approach in which the class of first integrals
consists of elementary transcendental functions. Here the transcendence is meant
not only in the sense of the elementary functions (e.g., trigonometric) but in the
sense of complex analysis, i.e., as functions of a complex variable possessing
essential singular points. In this case these functions must be formally continued
in the complex domain (see also [2, 3]).

2. Systems with Symmetries and Variable Dissipation with Zero
Mean

We consider systems of the following form (the dot denotes the derivative with
respect to time):

α̇ = fα(ω, sinα, cosα),

ω̇k = fk(ω, sinα, cosα), k = 1, . . . , n,
(2.1)

defined on the set

S1{α mod 2π}\K ×Rn{ω}, (2.2)

ω = (ω1, . . . , ωn), where sufficiently smooth functions fλ(u1, u2, u3), λ = α, 1, . . . , n,
of three variables u1, u2, u3 are as follows:

fλ(−u1,−u2, u3) = −fλ(u1, u2, u3),

fα(u1, u2,−u3) = fα(u1, u2, u3),

fk(u1, u2,−u3) = −fk(u1, u2, u3),
(2.3)

while the functions fk(u1, u2, u3) are defined at u3 = 0 for all k = 1, . . . , n.
The set K is either empty or consists of a finite number of points of the circle

S1{α mod 2π}.
The last two variables u2, and u3 of the functions fλ(u1, u2, u3) depend on a

single parameter α, but they are distinguished in distinct groups for the following
reasons. First, they are uniquely expressed through each other not in the whole
domain, and, second, the first of them is odd whereas the second is an even
function of α, this has a different effect on the symmetry of the system (2.1).

We associate the system (2.1) with the following non-autonomous system:

dωk
dα

=
fk(ω, sinα, cosα)

fα(ω, sinα, cosα)
, k = 1, . . . , n. (2.4)

Substituting τ = sinα we reduce it to the form

dωk
dτ

=
fk(ω, τ, ϕk(τ))

fα(ω, τ, ϕα(τ))
, k = 1, . . . , n, (2.5)
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ϕλ(−τ) = ϕλ(τ), λ = α, 1, . . . , n.

The last system may have, in particular, an algebraic right-hand side (i.e.,
the ratio of two polynomials), which sometimes allows one to calculate its first
integrals in the explicit form.

Definition 2.1. Consider a smooth autonomous system of the (n + 1)th order
of the normal form defined on the cylinder Rn{x} × S1{α mod T}, where α is
a periodic coordinate of period T > 0 (for simplicity, T = 2π). Let V(x, α)
is the right-hand side of the system considered (its vector field). We denote the
divergence of it (which, generally speaking, is a function of all phase variables and
is not identically equal to zero), by divV(x, α). Such systems are called systems
with variable dissipation with zero (respectively, nonzero) mean if the function∫ T

0
divV(x, α)dα (2.6)

identically vanishes (respectively, does not vanish). Thus, in some cases (for
example, when singularities appear at certain points of the circle S1{α mod 2π}
this integral is understood in the sense of the principal value.

Note that it is quite difficult to define the general notion of a system with
variable dissipation with zero (nonzero) mean. The above definition is based on
the notion of the divergence (as we know, the divergence of the right-hand side
of the normal-form system characterizes the change of the phase volume in the
phase space of this system).

The following statement puts this class of systems (2.1) in the class of dynam-
ical systems with a variable dissipation with zero mean. The converse inclusion,
generally speaking, does not hold.

Theorem 2.1. Systems of the form (2.1) are dynamical systems with variable
dissipation with zero mean.

This theorem is proved by using only some of mentioned symmetries (2.3) of
the system (2.1), and is based on the periodicity of the right-hand side of the
system with respect to α.

Indeed, we calculate the divergence indicated of the vector field of system (2.1):

∂fα(ω, sinα, cosα)

∂u2
cosα− ∂fα(ω, sinα, cosα)

∂u3
sinα+

n∑
k=1

∂fk(ω, sinα, cosα)

∂u1
.

(2.7)
The next integral of the first two summands in (2.7) vanishes:∫ 2π

0

{
∂fα(ω, sinα, cosα)

∂u2
d sinα+

∂fα(ω, sinα, cosα)

∂u3
d cosα

}
=

=

∫ 2π

0

∂fα(ω, sinα, cosα)

∂α
dα = hα(ω) ≡ 0, (2.8)

since the function fα(ω, sinα, cosα) is periodic with respect to α.
Further, due to the third equation (2.3) for any k = 1, . . . , n, the condition

∂fk(ω, sinα, cosα)

∂u1
= cosα · ∂gk(ω, sinα)

∂u1
, (2.9)
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is fulfilled since the certain function gk(u1, u2) is sufficiently smooth for any k =
1, . . . , n.

Then the integral over the period 2π of the right-hand side of Eq. (2.9) yields∫ 2π

0

∂gk(ω, sinα)

∂u1
d sinα = hk(ω) ≡ 0 (2.10)

for any k = 1, . . . , n. Equations (2.8) and (2.10) imply Theorem 2.1.
In this paper, we consider the case where the functions fλ(ω, τ, ϕk(τ)) (λ =

α, 1, . . . , n) are polynomials in ω and τ .

Example 2.1. The paper [4] presents pendulum systems on the two-dimensional
cylinder S1{α mod 2π} ×R1{ω} with the parameter b > 0:

α̇ = −ω + b sinα, ω̇ = sinα cosα, (2.11)

and

α̇ = −ω + b sinα cos2 α+ bω2 sinα,

ω̇ = sinα cosα− bω sin2 α cosα+ bω3 cosα.
(2.12)

In the variables (ω, τ) we can assign to these systems equations with the algebraic
right-hand sides

dω

dτ
=

τ

−ω + bτ
, (2.13)

and
dω

dτ
=

τ + bω[ω2 − τ2]
−ω + bτ + bτ [ω2 − τ2]

(2.14)

of the form (2.5), respectively. At the same time, these systems are dynamical
systems with variable dissipation with zero mean; this can be easily verified by a
direct calculation.

Indeed, the divergences of the right-hand sides are equal to

b cosα, b cosα[4ω2 + cos2 α− 3 sin2 α],

respectively; they are contained in the class of systems (2.1).
Moreover, each of them has a first integral that is a transcendental function (in

the sense of complex analysis), expressed as a finite combination of elementary
functions.

Example 2.2. In the three-dimensional field

{0 < α < π} ×R2{z1, z2} (2.15)

we consider the following system with the parameter b (such a system is derived
from the system on the tangent bundle of T∗S

2{z2, z1;α, β} of two-dimensional
sphere S2{α, β}):

α̇ = −z2 + b sinα,

ż2 = sinα cosα− z21
cosα

sinα
,

ż1 = z1z2
cosα

sinα
,

(2.16)
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(see also [5, 6]). To this system, we assign the following nonautonomous system
with the algebraic right-hand side (τ = sinα):

dz2
dτ

=
τ − z21/τ
−z2 + bτ

,
dz1
dτ

=
z1z2/τ

−z2 + bτ
. (2.17)

Let us consider the following system with the parameters b and H1 (such a
system is also separated from the system on the tangent bundle T∗S

2{z2, z1;α, β}
of two-dimensional sphere S2{α, β}) in the three-dimensional region (2.15):

α̇ = −(1 + bH1)z2 + b sinα,

ż2 = sinα cosα− (1 + bH1)z
2
1

cosα

sinα
−H1z2 cosα,

ż1 = (1 + bH1)z1z2
cosα

sinα
−H1z1 cosα.

(2.18)

To this system, we assign the following nonautonomous system with the algebraic
right-hand side (τ = sinα):

dz2
dτ

=
τ − (1 + bH1)z

2
1/τ −H1z2

−(1 + bH1)z2 + bτ
,
dz1
dτ

=
(1 + bH1)z1z2/τ −H1z1
−(1 + bH1)z2 + bτ

. (2.19)

In these cases, we see that the system (2.16) (or (2.18)) is a system with
variable dissipation with zero mean; to fully comply with the definition, it suffices
to introduce the new phase variable z∗1 = ln |z1|.

If we calculate the divergence of the right-hand side of (2.16) in the Cartesian
coordinates α, z∗1 , z2, we find that it is equal to b cosα. At the same time, taking
into account (2.15), in the sense of the principal value, we have

lim
ε→0

∫ π−ε

ε
b cosα+ lim

ε→0

∫ 2π−ε

π+ε
b cosα = 0.

Moreover, it has two first integrals (i.e., a complete list) that are transcenden-
tal functions expressed as finite combinations of elementary functions; this be-
comes possible after assigning the system (generally speaking, non-autonomous)
of equations with algebraic (polynomial) right-hand side (2.17) to it.

The above systems (2.11), (2.12), (2.16), are contained in the class of systems
(2.1) and have the variable dissipation with zero mean. Moreover, they possess
a complete list of transcendental first integrals expressed as finite combinations
of elementary functions (see [7]).

So, to find the first integral of the systems considered, it is convenient to
transform systems of the form (2.1) to systems with polynomial right-hand sides
(2.5). The integrability of the original system in elementary functions depends on
the form of these right-hand sides. So we proceed as follows: we search sufficient
conditions for the integrability of systems with polynomial right-hand sides in
elementary functions while exploring the systems of the most general form.

3. Nonautonomous Homogeneous Second-Order Systems

Now we discuss the possibilities of integration in elementary functions of the
following system of a more general form, including the above systems (2.17) and
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(2.19) in three-dimensional phase domains and having a singularity of the type
1/x:

dz

dx
=
ax+ by + cz + c1z

2/x+ c2zy/x+ c3y
2/x

d1x+ ey + fz
,

dy

dx
=
gx+ hy + iz + i1z

2/x+ i2zy/x+ i3y
2/x

d1x+ ey + fz
.

(3.1)

In other words, we study the existence of first integrals for the class of non
autonomous homogeneous second-order systems. A number of results on the
subject have already been obtained (see also [8, 9]).

Introducing the substitutions

y = ux, z = vx, (3.2)

we see that the system (3.1) can be reduced to the following system:

x
dv

dx
+ v =

ax+ bux+ cvx+ c1v
2x+ c2vux+ c3u

2x

d1x+ eux+ fvx
, (3.3)

x
du

dx
+ u =

gx+ hux+ ivx+ i1v
2x+ i2vux+ i3u

2x

d1x+ eux+ fvx
, (3.4)

which is equivalent to

x
dv

dx
=
ax+ bux+ (c− d1)vx+ (c1 − f)v2x+ (c2 − e)vux+ c3u

2x

d1x+ eux+ fvx
, (3.5)

x
du

dx
=
gx+ (h− d1)ux+ ivx+ i1v

2x+ (i2 − f)vux+ (i3 − e)u2x
d1x+ eux+ fvx

. (3.6)

To this system, we put in correspondence the following nonautonomous equation
with an algebraic right-hand side:

dv

du
=
a+ bu+ cv + c1v

2 + c2vu+ c3u
2 − v[d1 + eu+ fv]

g + hu+ iv + i1v2 + i2vu+ i3u2 − u[d1 + eu+ fv]
. (3.7)

Integration of the last equation is reduced to integration of the following com-
plete differential equation:

[g + hu+ iv + i1v
2 + i2vu+ i3u

2 − d1u− eu2 − fuv]dv =

= [a+ bu+ cv + c1v
2 + c2vu+ c3u

2 − d1v − euv − fv2]du,
(3.8)

or
[g + (h− d1)u+ iv + i1v

2 + (i2 − f)uv + (i3 − e)u2]dv =

= [a+ bu+ (c− d1)v + (c1 − f)v2 + (c2 − e)uv + c3u
2]du.

(3.9)

Generally speaking, we obtain a 15-parametric family of equations (or (3.9)).

4. Particular Cases of Existence of Rational First Integrals

In the considered cases, the nonautonomous second-order system studied has a
complete set of (two) first integrals expressed as finite combinations of elementary
functions. Both these two first integrals are, generally speaking, transcendental
functions of their arguments in terms of complex analysis. Moreover, one of them
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is a rational homogeneous function, i.e., the ratio of two polynomials of the same
degree:

Pm(x, y, z)

Qm(x, y, z)
, (4.1)

where Pm(x, y, z) and Qm(x, y, z) are homogeneous polynomials of degree m.

4.1. Case m = 2. I.

4.1.1. Integration of Eq. (3.9). We integrate Eq. (3.9) by using an integrating
factor (final Jacobi multiplier) of the following form:

%(u) =
1

us
, s = 2. (4.2)

Then Eq. (3.9) takes the form[
g

u2
+
h− d1
u

+
iv

u2
+
i1v

2

u2
+

(i2 − f)v

u
+ (i3 − e)

]
dv =

=

[
a

u2
+
b

u
+

(c− d1)v
u2

+
(c1 − f)v2

u2
+

(c2 − e)v
u

+ c3

]
du.

(4.3)

A sufficient condition of integrability of the last identity in elementary functions
is the set of the following six independent relations:

g = 0, i = 0, i1 = 0, e = c2, h = c, i2 = 2c1 − f. (4.4)

Introduce nine independent parameters β1, . . . , β9:

β1 = a, β2 = b, β3 = c, β4 = c1, β5 = c2,

β6 = c3, β7 = d1, β8 = f, β9 = i3.
(4.5)

Thus, Eq. (3.9) under the conditions (4.4) and (4.5) is reduced to the form

dv

du
=
β1 + β2u+ (β3 − β7)v + (β4 − β8)v2 + β6u

2

(β3 − β7)u+ 2(β4 − β8)vu+ (β9 − β5)u2
, (4.6)

and the system (3.5), (3.6), respectively, to the form

x
dv

dx
=
β1 + β2u+ (β3 − β7)v + (β4 − β8)v2 + β6u

2

β7 + β5u+ β8v
, (4.7)

x
du

dx
=

(β3 − β7)u+ 2(β4 − β8)vu+ (β9 − β5)u2

β7 + β5u+ β8v
. (4.8)

Then Eq. (4.6) is integrated as a finite combination of elementary functions.
Indeed, integrating the identity (4.3), we obtain the following relation:

d

[
(β3 − β7)v

u

]
+ d

[
(β4 − β8)v2

u

]
+ d[(β9 − β5)v] + d

[
β1
u

]
−

− d[β2 ln |u|]− d[β6u] = 0,

(4.9)

which allows us to obtain the following invariant relation:

(β3 − β7)v
u

+
(β4 − β8)v2

u
+ (β9 − β5)v +

β1
u
−

− β2 ln |u| − β6u = C1 = const,
(4.10)
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and then in the coordinates (x, y, z) the first integral of the system (3.1) is

(β4 − β8)z2 − β6y2 + (β3 − β7)zx+ (β9 − β5)zy + β1x
2

yx
−

− β2 ln
∣∣∣y
x

∣∣∣ = C1 = const.

(4.11)

Thus, we conclude on the integrability in elementary functions of the following
(generally speaking, nonconservative) third-order system, which depends on nine
parameters:

dz

dx
=
β1x+ β2y + β3z + β4z

2/x+ β5zy/x+ β6y
2/x

β7x+ β5y + β8z
,

dy

dx
=
β3y + (2β4 − β8)zy/x+ β9y

2/x

β7x+ β5y + β8z
.

(4.12)

Corollary 4.1. The third-order system

α̇ = β7 sinα+ β5z1 + β8z2,

ż2 = β1 sinα cosα+ β2z1 cosα+ β3z2 cosα+

+ β4z
2
2

cosα

sinα
+ β5z1z2

cosα

sinα
+ β6z

2
1

cosα

sinα
,

ż1 = β3z1 cosα+ (2β4 − β8)z1z2
cosα

sinα
+ β9z

2
1

cosα

sinα
,

(4.13)

depending on nine parameters β1, . . . , β9, considered on the set

{α ∈ R1 : 0 < α < π} ×R2{z1, z2}, (4.14)

has, generally speaking, a transcendental first integral expressed through elemen-
tary functions:

(β4 − β8)z22 − β6z21 + (β3 − β7)z2 sinα+ (β9 − β5)z2z1 + β1 sin2 α

z1 sinα
−

− β2 ln
∣∣∣ z1
sinα

∣∣∣ = C1 = const.

(4.15)

In particular, the system (4.13):

• with β1 = 1, β2 = β3 = β4 = β5 = β9 = 0, β6 = β8 = −1, and β7 = b has
the form of the system (2.16);
• with β1 = 1, β2 = β4 = β5 = β9 = 0, β3 = −H1, β6 = β8 = −(1 + bH1),

and β7 = b has the form of the system (2.18).

4.1.2. Search for an additional invariant relation. The first integral (4.11) ex-
pressed as a finite combination of elementary functions can be used to find an
additional first integral of the non-autonomous system (4.12).

We transform the first equation (4.10) as follows:

(β4 − β8)v2 + [(β9 − β5)u+ (β3 − β7)] v + f1(u) = 0, (4.16)

where
f1(u) = β1 − β6u2 − β2u ln |u| − C1u.

We can formally find the value of v from the following equations:

v1,2(u) =
1

2(β4 − β8)

{
(β5 − β9)u+ (β7 − β3)±

√
f2(u)

}
, β4 6= β8, (4.17)
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where

f2(u) = A1 +A2u+A3u
2 +A4u ln |u|,

A1 = (β3 − β7)2 − 4β1(β4 − β8), A2 = 2(β9 − β5)(β3 − β7) + 4C1(β4 − β8),

A3 = (β9 − β5)2 + 4β6(β4 − β8), A4 = 4β2(β4 − β8),
or

v0(u) = − f1(u)

(β9 − β5)u+ (β3 − β7)
, β4 = β8, (β9 − β5)u+ (β3 − β7) 6= 0. (4.18)

Then (in the case β4 6= β8) the quadrature required to find an additional
(generally speaking, transcendental) first integral of the system (4.7), (4.8) takes
the following form (in this case, Eq. (4.8) is used):∫

dx

x
=

∫
[β7 + β5u+ β8vi(u)]du

(β3 − β7)u+ (β9 − β5)u2 + 2(β4 − β8)uvi(u)
=

= ±
∫

[B1 +B2u+B3

√
f2(u)]du

u
√
f2(u)

, i = 1, 2, 0, (4.19)

where

B1 = β7 +
β8(β7 − β3)
2(β4 − β8)

, B2 = β5 +
β8(β5 − β9)
2(β4 − β8)

, B3 = ± β8
2(β4 − β8)

.

If β4 = β8, then the quadrature takes the form∫
dx

x
=

∫
{(β7 + β5u)[(β9 − β5)u+ (β3 − β7)]− β8f1(u)}du
(β3 − β7)u+ (β9 − β5)u2[(β9 − β5)u+ (β3 − β7)]

. (4.20)

The quadrature needed for the search for an additional (in general, transcen-
dental) first integral of the system (4.7), (4.8) takes the following form (in this
case, we use Eq. (4.7)):∫

dx

x
=

∫
[β7 + β5u(v) + β8v]dv

β1 + β2u(v) + (β3 − β7)v + (β4 − β8)v2 + β6u2(v)
; (4.21)

the function u(v) must be obtained as the result of solution of the implicit equa-
tion (4.10) with respect to u (which in general is not always obvious).

The integrals (4.19) can be expressed as finite combinations of elementary
functions under the following sufficient conditions.

Lemma 4.1. If A4 = 0, i.e., if

β2 = 0 (4.22)

or

β4 = β8 (4.23)

the indefinite integral in (4.19) is expressed through a finite combination of ele-
mentary functions.

We state another important consequence of Lemma 4.1.

Theorem 4.1. Under the condition (4.22), the system (4.12) (and (4.13)) has
a complete set of first integrals expressed as finite combinations of elementary
functions.
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4.1.3. Conditions of absence of the final Jacobi multiplier. In this section, we use
the integrating factor (final Jacobi multiplier) of the form (4.2). In particular,
it allows us to find the first integral of the system (2.16). Now we examine
the question on the existence of integrating factors (final Jacobi multipliers) of
another type, independent of (4.2), that also allows one to integrate Eq. (4.6).

The following two lemmas partially answer this question.

Lemma 4.2. Equation (4.6) does not have any integrating factor (final Jacobi
multipliers) of the form

% = %(u), (4.24)

except for the case (4.2).

First, we present a general equation that must satisfy the integrating factor
%(u, v) of Eq. (4.6):

[β1 + β2u+ (β3 − β7)v + (β4 − β8)v2 + β6u
2]%(u, v)du =

= [(β3 − β7)u+ 2(β4 − β8)vu+ (β9 − β5)u2]%(u, v)dv.
(4.25)

If %(u, v) is a required integrating factor, the following equality must hold:

[(β3 − β7) + 2(β4 − β8)v + 2(β9 − β5)u]%(u, v)+

+ [(β3 − β7)u+ 2(β4 − β8)vu+ (β9 − β5)u2]
∂%(u, v)

∂u
=

= −[(β3 − β7) + 2(β4 − β8)v]%(u, v)−

− [β1 + β2u+ (β3 − β7)v + (β4 − β8)v2 + β6u
2]
∂%(u, v)

∂v
.

(4.26)

If we search for the integrating factor of the form (4.24), then (4.26) is expressed
as follows:

[(β3 − β7) + 2(β4 − β8)v + (β9 − β5)u]

[
2%(u) + u

d%(u)

du

]
= 0, (4.27)

it must hold on the whole of its domain. This implies that the following equation
must hold:

2%(u) + u
d%(u)

du
= 0. (4.28)

Its general solution has the form

%(u) =
C

u2
, C = const, (4.29)

corresponding to the case (4.2). Lemma 4.2 is proved.

Lemma 4.3. Equation (4.6) does not have integrating factors (final Jacobi mul-
tipliers) of the form

% = %(u, v) =
1

umvn
, m, n ∈ R, (4.30)

except for the case m = 2, n = 0 (i.e., (4.2)).

Indeed, the equation (4.6) has a structure for which there exists an integrating
factor only of the form (4.29).
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4.2. Case m = 2. II. We integrate Eq. (3.9) with the integrating factor (final
Jacobi multiplier) of the form

%(u) =
1

us
, s = 3. (4.31)

Then Eq. (3.9) takes the form[
g

u3
+
h− d1
u2

+
iv

u3
+
i1v

2

u3
+

(i2 − f)v

u2
+
i3 − e
u

]
dv =

=

[
a

u3
+

b

u2
+

(c− d1)v
u3

+
(c1 − f)v2

u3
+

(c2 − e)v
u2

+
c3
u

]
du.

(4.32)

The last identity is integrable in elementary functions under the following six
independent sufficient relations:

g = 0, i = 0, i1 = 0, h =
c+ d1

2
, i2 = c1, i3 = c2. (4.33)

We introduce nine independent parameters β1, . . . , β9:

β1 = a, β2 = b, β3 = c, β4 = c1, β5 = c2,

β6 = c3, β7 = d1, β8 = e, β9 = f.
(4.34)

Thus, Eq. (3.9) under the conditions (4.33) and (4.34) is reduced to the form

dv

du
=
β1 + β2u+ (β3 − β7)v + (β4 − β9)v2 + (β5 − β8)uv + β6u

2

(β3 − β7)u/2 + (β4 − β9)uv + (β5 − β8)u2
, (4.35)

and the system (3.5), (3.6), respectively, to the form

x
dv

dx
=
β1 + β2u+ (β3 − β7)v + (β4 − β9)v2 + (β5 − β8)uv + β6u

2

β7 + β8u+ β9v
, (4.36)

x
du

dx
=

(β3 − β7)u/2 + (β4 − β9)uv + (β5 − β8)u2

β7 + β8u+ β9v
. (4.37)

Then Eq. (4.35) can be integrated through a finite combination of elementary
functions.

Indeed, integrating the identity (4.32), we obtain the relation

d

[
(β5 − β8)v

u

]
+ d

[
(β4 − β9)v2

2u2

]
+ d

[
(β3 − β7)v

2u2

]
+ d

[
β1
2u2

]
+ d

[
β2
u

]
−

− d[β6 ln |u|] = 0,
(4.38)

which implies the following invariant relation:

(β5 − β8)uv + (β4 − β9)v2/2 + (β3 − β7)v/2 + β1/2 + β2u

u2
−

− β6 ln |u| = C1 = const.
(4.39)

Then in the coordinates (x, y, z) we obtain the first integral in the form

(β5 − β8)yz + (β4 − β9)z2/2 + (β3 − β7)zx/2 + β1x
2/2 + β2yx

y2
−

− β6 ln
∣∣∣y
x

∣∣∣ = C1 = const.

(4.40)



30 MAXIM V. SHAMOLIN

Thus, we can conclude on the integrability in elementary functions of the fol-
lowing, generally speaking, nonconservative third-order system, which depends
on nine parameters:

dz

dx
=
β1x+ β2y + β3z + β4z

2/x+ β5zy/x+ β6y
2/x

β7x+ β8y + β9z
,

dy

dx
=

(β3 + β7)y/2 + β4zy/x+ β5y
2/x

β7x+ β8y + β9z
.

(4.41)

Corollary 4.2. On the set

{α ∈ R1 : 0 < α < π} ×R2{z1, z2}, (4.42)

consider the following third-order system depending on nine parameters β1, . . . , β9:

α̇ = β7 sinα+ β8z1 + β9z2,

ż2 = β1 sinα cosα+ β2z1 cosα+ β3z2 cosα+

+ β4z
2
2

cosα

sinα
+ β5z1z2

cosα

sinα
+ β6z

2
1

cosα

sinα
,

ż1 = ((β3 + β7)/2)z1 cosα+ β4z1z2
cosα

sinα
+ β5z

2
1

cosα

sinα
.

(4.43)

It has a first integral (generally speaking, transcendental ) expressed through ele-
mentary functions:

(β5 − β8)z1z2 + (β4−β92 )z22 + ((β3 − β7)/2)z2 sinα+ (β1/2) sin2 α+ β2z1 sinα

z21
−

− β6 ln
∣∣∣ z1
sinα

∣∣∣ = C1 = const.

(4.44)

To find an additional first integral of the non-autonomous system (4.41), we use
the first integral (4.40) expressed as a finite combination of elementary functions.

4.3. Case m = 3. We integrate Eq. (3.9) with an integrating factor (final Jacobi
multiplier) of the following form:

%(u) =
1

us
, s = 4. (4.45)

Then Eq. (3.9) takes the form[
g

u4
+
h− d1
u3

+
iv

u4
+
i1v

2

u4
+

(i2 − f)v

u3
+
i3 − e
u2

]
dv =

=

[
a

u4
+

b

u3
+

(c− d1)v
u4

+
(c1 − f)v2

u4
+

(c2 − e)v
u3

+
c3
u2

]
du.

(4.46)

This relations can be integrated in elementary functions under the following
six independent relations:

g = 0, i = 0, i1 = 0, h =
c+ 2d1

3
, i2 =

2c1 + f

3
, i3 =

c2 + e

2
. (4.47)

We introduce nine independent parameters β1, . . . , β9:

β1 = a, β2 = b, β3 = c, β4 = c1, β5 = c2,

β6 = c3, β7 = d1, β8 = e, β9 = f.
(4.48)
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Thus, Eq. (3.9) under the conditions (4.47) and (4.48) is reduced to the form

dv

du
=
β1 + β2u+ β6u

2 + (β3 − β7)v + (β4 − β9)v2 + (β5 − β8)uv
(β3 − β7)u/3 + 2(β4 − β9)uv/3 + (β5 − β8)u2/2

, (4.49)

and the system (3.5), (3.6), respectively, to the form

x
dv

dx
=
β1 + β2u+ β6u

2 + (β3 − β7)v + (β4 − β9)v2 + (β5 − β8)uv
β7 + β8u+ β9v

, (4.50)

x
du

dx
=

(β3 − β7)u/3 + 2(β4 − β9)uv/3 + (β5 − β8)u2/2
β7 + β8u+ β9v

. (4.51)

Then Eq. (4.49) is integrated through a finite combination of elementary func-
tions.

Indeed, integrating the identity (4.46), we obtain the relation

d

[
(β3 − β7)v

3u3

]
+ d

[
(β4 − β9)v2

3u3

]
+ d

[
(β5 − β8)v

2u2

]
+ d

[
β1
3u3

]
+ d

[
β2
2u2

]
+

+ d

[
β6
u

]
= 0,

(4.52)

then the invariant relation

((β3 − β7)/3)v + ((β4 − β9)/3)v2 + ((β5 − β8)/2)uv + β1/3 + β2u/2 + β6u
2

u3
=

= C1 = const,
(4.53)

and finally, in the coordinates (x, y, z), the first integral in the following form:

(β3−β73 )zx2 + (β4−β93 )z2x+ β5−β8
2 yzx+ β1x

3/3 + β2yx
2/2 + β6y

2x

y3
=

= C1 = const.

(4.54)

Thus, we can conclude on the integrability in elementary functions of the fol-
lowing (generally speaking, nonconservative) third-order system, which depends
on nine parameters:

dz

dx
=
β1x+ β2y + β3z + β4z

2/x+ β5zy/x+ β6y
2/x

β7x+ β8y + β9z
,

dy

dx
=

(β3 + 2β7)y/3 + ((2β4 + β9)/3)zy/x+ ((β5 + β8)/2)y2/x

β7x+ β8y + β9z
.

(4.55)

Corollary 4.3. Consider on the set

{α ∈ R1 : 0 < α < π} ×R2{z1, z2}, (4.56)

the following third-order system

α̇ = β7 sinα+ β8z1 + β9z2,

ż2 = β1 sinα cosα+ β2z1 cosα+ β3z2 cosα+

+ β4z
2
2

cosα

sinα
+ β5z1z2

cosα

sinα
+ β6z

2
1

cosα

sinα
,

ż1 =
β3 + 2β7

3
z1 cosα+

2β4 + β9
3

z1z2
cosα

sinα
+ ((β5 + β8)/2)z21

cosα

sinα
,

(4.57)
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depending on 9 parameters β1, . . . , β9.
It has a first integral (generally speaking, transcendental) expressed through

elementary functions:

P3(z2, z1, sinα)

z31
= C1 = const, (4.58)

where
P3(z2, z1, sinα) =

= ((β3 − β7)/3)z2 sin2 α+ ((β4 − β9)/3)z22 sinα+ ((β5 − β8)/2)z1z2 sinα+

+(β1/3) sin3 α+ (β2/2)z1 sin2 α+ β6z
2
1 sinα

is a homogeneous polynomial of 3rd degree of the variables (z2, z1, sinα).

To find an additional first integral of the non-autonomous system (4.55), we use
the first integral (4.54) expressed as a finite combination of elementary functions.

5. Particular Cases of the Existence of Transcendental First
Integrals

We integrate Eq. (3.9) with an integrating factor (final Jacobi multiplier) of
the following form:

%(u) =
1

us
, s > 1, s 6= 2, s 6= 3. (5.1)

Then Eq. (3.9) takes the form[
g

us
+
h− d1
us−1

+
iv

us
+
i1v

2

us
+

(i2 − f)v

us−1
+
i3 − e
us−2

]
dv =

=

[
a

us
+

b

us−1
+

(c− d1)v
us

+
(c1 − f)v2

us
+

(c2 − e)v
us−1

+
c3
us−2

]
du.

(5.2)

The sufficient condition of integrability of the last identity in elementary func-
tions is the following six independent relations:

g = 0, i = 0, i1 = 0, h = c+(s−2)d1
s−1 ,

i2 = 2c1+(s−3)f
s−1 , i3 = c2+(s−3)e

s−2 .
(5.3)

Introduce nine independent parameters β1, . . . , β9:

β1 = a, β2 = b, β3 = c, β4 = c1, β5 = c2,

β6 = c3, β7 = d1, β8 = e, β9 = f.
(5.4)

Thus, Eq. (3.9) under the conditions (5.3) and (5.4) is reduced to the form

dv

du
=

β1 + β2u+ β6u
2 + (β3 − β7)v + (β4 − β9)v2 + (β5 − β8)uv

(β3 − β7)u/(s− 1) + 2(β4 − β9)uv/(s− 1) + (β5 − β8)u2/(s− 2)
, (5.5)

and the system (3.5), (3.6), respectively, to the form

x
dv

dx
=
β1 + β2u+ β6u

2 + (β3 − β7)v + (β4 − β9)v2 + (β5 − β8)uv
β7 + β8u+ β9v

, (5.6)

x
du

dx
=

(β3 − β7)u/(s− 1) + 2(β4 − β9)uv/(s− 1) + (β5 − β8)u2/(s− 2)

β7 + β8u+ β9v
. (5.7)

Then Eq. (5.5) is integrated through a finite combination of elementary functions.
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Indeed, integrating the identity (5.2), we obtain the relation

d

[
(β3 − β7)v
(s− 1)us−1

]
+ d

[
(β4 − β9)v2

(s− 1)us−1

]
+ d

[
(β5 − β8)v
(s− 2)us−2

]
+

+ d

[
β1

(s− 1)us−1

]
+ d

[
β2

(s− 2)us−2

]
+ d

[
β6

(s− 3)us−3

]
= 0,

(5.8)

which implies the invariant relation

β3−β7
s−1 v + β4−β9

s−1 v2 + β5−β8
s−2 uv + β1

s−1 + β2
s−2u+ β6

s−3u
2

us−1
= C1 = const, (5.9)

and then, in the coordinates (x, y, z), the first integral of the following form:

A

ys−1
= C1 = const, (5.10)

A =
β3 − β7
s− 1

zxs−2 +
β4 − β9
s− 1

z2xs−3 +
β5 − β8
s− 2

yzxs−3+

+
β1
s− 1

xs−1 +
β2
s− 2

yxs−2 +
β6
s− 3

y2xs−3.

Thus, we can conclude on the integrability in elementary functions of the fol-
lowing (generally speaking, nonconservative) third-order system, which depends
on nine parameters:

dz

dx
=
β1x+ β2y + β3z + β4z

2/x+ β5zy/x+ β6y
2/x

β7x+ β8y + β9z
,

dy

dx
=

β3+(s−2)β7
s−1 y + 2β4+(s−3)β9

s−1 zy/x+ β5+(s−3)β8
s−2 y2/x

β7x+ β8y + β9z
.

(5.11)

Corollary 5.1. Consider on the set

{α ∈ R1 : 0 < α < π} ×R2{z1, z2}, (5.12)

the third-order system

α̇ = β7 sinα+ β8z1 + β9z2,

ż2 = β1 sinα cosα+ β2z1 cosα+ β3z2 cosα+

+ β4z
2
2

cosα

sinα
+ β5z1z2

cosα

sinα
+ β6z

2
1

cosα

sinα
,

ż1 =
β3 + (s− 2)β7

s− 1
z1 cosα+

2β4 + (s− 3)β9
s− 1

z1z2
cosα

sinα
+

+
β5 + (s− 3)β8

s− 2
z21

cosα

sinα
,

(5.13)

depending on nine parameters β1, . . . , β9.
It has a first integral (generally speaking, transcendental) expressed through

elementary functions:

Ps−1(z2, z1, sinα)

zs−11

= C1 = const, (5.14)

where

Ps−1(z2, z1, sinα) =
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=
β3 − β7
s− 1

z2 sins−2 α+
β4 − β9
s− 1

z22 sins−3 α+
β5 − β8
s− 2

z1z2 sins−3 α+

+
β1
s− 1

sins−1 α+
β2
s− 2

z1 sins−2 α+
β6
s− 3

z21 sins−3 α

is a homogeneous function of degree s− 1 of the variables (z2, z1, sinα).

To find an additional first integral of the nonautonomous system (5.11), we use
the first integral (5.10) expressed as a finite combination of elementary functions.

6. Conclusion

The dynamical systems considered in this paper are systems with variable
dissipation with zero mean with respect to their periodic coordinate. Moreover,
such systems often possess a complete list of first integrals expressed through
elementary functions.

We also presented a method of reduction of systems with right-hand sides
containing polynomial of trigonometric functions to systems with polynomial
right-hand sides, which allows one to find first integrals (or prove their absence)
for systems of a more general form, not only those having specified symmetries
(see also [10]).
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