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ON APPROXIMATIVE PROPERTIES OF LOCALLY

CHEBYSHEV SETS

ALEXEY R. ALIMOV

Abstract. A locally Chebyshev set is a set whose intersection with some
closed neighbourhood with center at any point of this set is a Cheby-
shev set. The paper is concerned with local and global approximative
properties of sets. A number of new properties of locally Chebyshev sets
and local strict suns are put forward. We give an elementary proof of
the recent Flerov’s result to the effect that in a two-dimensional normed
linear space a connected locally Chebyshev set is a Chebyshev set.

1. Introduction

Below X is a real normed linear space. We shall follow the definitions from
the survey [3]. The main definitions will be given below.

A set M is a Chebyshev set if it is a set of existence and uniqueness (see [8], [3]);
that is, for any x ∈ X the set PMx of nearest points from M to x is a singleton.

The best approximation, that is, the distance of a given element x in a normed
linear space X from a given non-empty set M ⊂ X is, by definition ρ(x,M) :=
infy∈M ‖x − y‖. The set of all nearest points (elements of best approximation)
in M for a given x ∈ X is denoted by PMx. So,

PMx :=
{
y ∈M | ρ(x,M) = ‖x− y‖

}
.

In what follows, X is a normed linear space, B(x, r) is the closed ball with

center x and radius r, B̊(x, r) is the open ball; S(x, r) is the sphere with center x
and radius r. For brevity, we put S := S(0, 1).

For a set ∅ 6= M ⊂ X, a point x ∈ X \M is called a solar point if there exists
a point y ∈ PMx 6= ∅ (a luminosity point) such that

y ∈ PM

(
(1− λ)y + λx

)
for all λ ≥ 0 (1.1)

(geometrically, this means that there is a ‘solar’ ray emanating from y and passing
through x such that y is a point of best approximation in M for any point from
this ray).

A point x ∈ X \M is called a strict solar point if PMx 6= ∅ and condition (1.1)
holds for any point y ∈ PMx. A set M is an existence set (or proximinal) if
PMx 6= ∅ for any x ∈ X.
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A set M ⊂ X is a sun (respectively, a strict sun) if any point x ∈ X \M is
a solar point (respectively, strict solar point) for M .

In a finite-dimensional space any Chebyshev set is a sun (that is, a Chebyshev
sun). This is no longer true in the infinite-dimensional setting [3].

The concept of a locally Chebyshev set was proposed by M. V. Balashov in
analogy with that of a locally convex set: a set M ⊂ X is called locally convex
[12, § 1.4] if, for any point y ∈ M , there exists a number r = r(y) > 0 such
that the set M ∩ B(y, r) is convex (see, for example, [12, § 1.10]). A connected
locally convex set is well known to be convex. Perusing this analogy further,
a set M ⊂ X will be called a locally Chebyshev set if, for any y ∈M , there exists
a closed solid neighbourhood O(y) of the point y such that the set M ∩ O(y) is
a Chebyshev set.

A locally Chebyshev set is necessarily closed and possesses a Chebyshev layer
(of possibly nonuniform size). Recall, that a set M in a normed space X has

Chebyshev layer of size R > 0 if, for any point u ∈ Ů(R,M) := {x ∈ X | 0 <
ρ(x,M) < R} the set PMu consists of one point [11]. Clearly, in the finite-
dimensional (or reflexive setting), in the definition of a locally Chebyshev set it
suffices to consider only convex neighbourhoods.

Remark 1.1. Our definition of the local Chebyshev property is more general than
that by Balashov and Flerov [9], in which the local Chebyshev property of a set
is defined in terms of intersections with balls; however, this cannot be considered
fairly natural, because this definition drastically narrows the class of spaces in
which locally Chebyshev sets may exist: if a point lies inside a set, then Balashov–
Flerov’s definition implicitly requires that the ball of the space be strictly convex
[9, § 4]. Flerov (using the definition of the local Chebyshev property in terms of
intersection with balls) proved that in a two-dimensional space any connected lo-
cally Chebyshev set is a Chebyshev set. The requirement that a set be connected
cannot be dropped [9]: a two-point set is a locally Chebyshev set which is not
a Chebyshev set.

In analogy with a locally Chebyshev set a local sun (local strict sun, respec-
tively) is defined as a set M such that, for any y ∈ M , there exists a closed
neighbourhood O(y) such that the intersection M ∩ O(y) is a sun (strict sun).
(A local (strict) sun is necessarily closed.)

Remark 1.2. A connected local sun which is not a sun can be easily constructed
even in the two-dimensional setting: the unit sphere in `∞2 .

In the present paper, we shall establish some new properties of locally Cheby-
shev sets in normed linear spaces (Theorems 3.2 and 3.1) and involve the machin-
ery of geometric approximation theory to give an elementary proof of Flerov’s
result [9] to the effect that in a two-dimensional normed linear space a connected
locally Chebyshev set is a Chebyshev set (Theorem 3.2).

It is also worth mentioning that local approximative properties of sets proved
to be useful in the study of their global approximative and geometric properties
and of stability of best and near-best approximation operators [7].



38 ALEXEY R. ALIMOV

2. Definitions and notation

Following L. P. Vlasov, if Q is some property (for example, ‘connectedness’),
then we say that a closed set M has the property

P -Q if, for all x ∈ X, the set PMx is nonempty and has the property Q.

For example, a set M is P -connected if PMx is nonempty and connected for
any x /∈M .

Let k(τ), 0 6 τ 6 1, be a continuous curve in a normed linear space X.
A curve k( · ) is called monotone if f(k(τ)) is a monotone function in τ for any
f ∈ extS∗, where extS∗ is the set of all extreme points of the unit sphere S∗

of the dual space (see [3]). A set M ⊂ X is monotone path-connected [3] if
any two points from M can be joined by a continuous monotone curve (arc)
k( · ) from M . A monotone path-connected set is always extreme monotone path-
connected (that is, its intersection with any intersection of hyper-layers generated
by extreme functionals of the dual unit sphere is monotone path-connected [3]).

The concept of monotone path-connectedness was found to be important in
many problems of the approximation theory. For example, with the help of
monotone path-connectedness the solarity of Chebyshev sets was first proved
under connection-type constraints (see [3, § 9.2]).

We recall that a set M is locally compact if every point in M has a neighbour-
hood in M which is a compact set. A set is boundedly compact if its intersection
with any closed ball is compact. A set M will be called locally monotone path-
connected if any point x ∈M has a neighbourhood whose intersection with M is
monotone path-connected.

3. Main results and proofs

Theorem 3.1. In a normed linear space a locally Chebyshev set M is a Chebyshev
set if M is P -connected, locally compact and locally monotone path-connected.

Note that in Theorem 3.1 M is an existence set.

Remark 3.1. The well-known Dunham’s example of a disconnected Chebyshev
set in C[0, 1] was modified by Flerov to construct a connected locally Chebyshev
set M in C[0, 1] which is not a Chebyshev set. Recall Dunham’s construction. In
C[0, 1] consider the set

M = {f0} ∪ {fa | a > 0},

where fa(t) = (1 + a)e−t/a, a > 0, f0(t) ≡ 0

(as f( · ) one may also take f(t) = (1 + t)−1). Such a set M has an isolated point
{f0} and hence is not a sun. The set M is locally compact (but not boundedly
compact). Flerov [10] proved that M1 := M \ {f0} is a locally Chebyshev set
(and hence a locally Chebyshev sun, since a boundedly compact Chebyshev set
is a sun). The author proved in [2] that a boundedly compact strict sun in the
space C(Q) is monotone path-connected. Hence, the set M1 (and, of course, M)
is locally monotone path-connected. Besides, a direct verification shows that M1

itself is monotone path-connected (but not M) and hence M1 is a strict protosun.
However, M1 is not an existence set, since PM1(f0) = ∅. It is also worth noting
that M1 is P -connected on C[0, 1] \ {f0}, because M is a Chebyshev set and
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PM1(f0) = ∅. This example of the set M1 shows that the proximinality condition
in Theorem 3.1 cannot be discarded.

Remark 3.2. In a normed linear space a locally Chebyshev set is a Chebyshev sun
if it is boundedly compact and monotone path-connected. Consider such a set M .
To prove the claim, we first note that a monotone path-connected set is P -
monotone path-connected, and hence, P -connected (see [3, § 9.1]). Hence, the
set M satisfies all the hypotheses of Theorem 3.1, and therefore, is a Cheby-
shev set. The solarity of the set M in Theorem 3.1 follows from the fact that
a boundedly compact monotone path-connected set is a sun [3, § 9.1]. In the
above fact we can replace the monotone path-connectedness condition by the
Menger-connectedness condition; see [3, § 9.1].

Remark 3.3. Theorem 3.1 turns out to be futile in the finite-dimensional setting,
since in this case a locally Chebyshev set M is necessarily P -finite (that is, PMx
consists of finitely many points for any point x ∈ X). This fact, which was
noticed by A. Flerov, easily follows from compactness arguments.

The next theorem was proved by A. Flerov’s under a different more restrictive
definition of a locally Chebyshev set (see Remark 1.1). We give an elementary
geometric proof of this result. Theorem 3.3 extends Theorem 3.2 to the more
general setting of local strict suns.

Theorem 3.2. In a two-dimensional Banach space a connected locally Chebyshev
set is a Chebyshev set (a Chebyshev sun).

Theorem 3.3. In a two-dimensional Banach space a connected local strict sun
is a strict sun.

Remark 3.4. As was already mentioned above, a connected local sun need to ne
a sun. It would be interesting to find conditions to guarantee that a connected
local sun in a plane is a sun (cf. Remark 1.2).

Proof of Theorem 3.1. Assume on the contrary that for some point x there are
at least two nearest points in M , let y be one such a point. Note that PMx 6= ∅,
since M is an existence set. We assume without loss of generality that x = 0,
ρ(0,M) = 1.

Let O1(y) be a neighbourhood of y whose intersection with M is monotone
path-connected, let B(y, r1) be a ball lying in O1(y), r1 > 0. Next, let O2(y) be
a neighbourhood of y whose intersection with M is compact and let B(y, r2) be
a ball lying in the neighbourhood O2(y) and in the ball B(y, r1). Further, let
O(y) be a (closed) neighbourhood of y whose intersection with M is a Chebyshev
set and let B(y, r) be a ball lying in this neighbourhood, 0 < r < r2.

It is well known that the intersection of a monotone path-connected set with
a closed ball is monotone path-connected [3, § 9.1]. Hence the set

M1 :=
(
M ∩B(y, r)

)
∩B(0, 1)

is monotone path-connected. Here M ∩B(y, r) is monotone path-connected qua
the intersection of the monotone path-connected set O1(y) ∩ M with the ball
B(y, r), and M1 is monotone path-connected qua the intersection of the monotone
path-connected set M ∩B(y, r) with the ball B(0, 1).
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Since M1 lies in the sphere S(0, 1), since by the hypotheses the set PM0 is
connected and consists of at least two points, and since y ∈ PM0, it follows that
M1 is a nondegenerate continuum (by definition, a continuum is a nonsingleton
connected compact set). Hence, for sufficiently small 0 < ε < r, the intersection
B(y, ε) ∩M1 consists of at least two points y, y′ ∈ M1. We have y, y′ ∈ PM0,

y, y′ ∈M1, (O(y) ∩M) ∩ B̊(0, 1) = ∅, and hence

y, y′ ∈ PM10, and hence y, y′ ∈ PO(y)∩M .

The last inclusion contradicts the fact that O(y)∩M) is a Chebyshev set. So, our
assumption was false and M is a Chebyshev set. This proves Theorem 3.1. �

For a proof of Theorem 3.2 we require one result, which was obtained jointly
by the author and E. V. Shchepin [6]. Here we need one more definition.

Given y ∈ S, we let Λy denote the set of limit points of the expression

(y − z)/‖y − z‖ as z → y, z ∈ S

(so, Λy is the set of semi-tangent directions to the sphere S at a point y). A di-
rection a is called (globally) tangent direction to the sphere S if, for any point
y ∈ S, the condition that a is a tangent direction at the point y implies that
a ∈ Λy; that is, a is a tangent direction at y. For example, in the space `∞n ,
n ≥ 2, only the directions parallel to edges of the unit ball (cube) are the tangent
directions to the sphere. In `1n, n ≥ 3, there are no tangent directions to the
sphere. A set M is convex in a direction a if the condition x, y ∈M , (y− x) ‖ a,
implies that [x, y] ⊂M .

Theorem A (see [6]). Let X be a two-dimensional Banach space, ∅ 6= M ⊂ X.
Then M is a sun if and only if M is closed, connected and convex with respect
to any tangent direction of the unit sphere S.

Proof of Theorem 3.2. On a plane any sun (and hence, a Chebyshev set) is mono-
tone path-connected [5]. By the hypotheses, M is a locally Chebyshev set, and
hence is path-connected, since it is well-known that a connected and locally path-
connected set is path-connected.

To prove the local monotone path-connectedness of M , we consider a suffi-
ciently large ball B(x, r) such that M ∩B(x, r) is connected (this is possible since
by the above M is path-connected). The intersection M ∩ B(x, r) is compact,
since M is closed. It now suffices to cover the set M ∩ B(x, r) by open neigh-
bourhoods O(y), y ∈ M ∩ B(x, r), such that M ∩ O(y) is a Chebyshev set, and
extract a finite subcover.

Assume on the contrary that M is not a Chebyshev set. Then M is not a sun.
By Theorem A there is a tangent direction a such that M is not convex in the
direction a. So, we can take

x, y ⊂M, (x− y) ‖ a, (x, y) ∩M = ∅.

Without loss of generality we may assume that (x+ y)/2 = 0, ‖x‖ = 1 = ‖y‖.
The open ball B̊(0, 1)) is contained in one connected component Ω of the

complement X \M . Since M is connected, the domain Ω is simply connected and
the closed interval [x, y] divides Ω into two nonintersecting domains Ω1 and Ω2

of which at least once is bounded. Assume that Ω1 is bounded.
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Let ω1 := ∂Ω1 \ (x, y), where ∂Ω1 is the boundary of Ω1. The above argument
shows that ω1 is locally monotone path-connected. Hence, ω1 can be looked upon
as a curve k(t), 0 ≤ t ≤ 1, which joins x and y.

Clearly, any semi-tangent direction to S is generated by an extreme functional
f ∈ extS∗ (and vice versa). Let f ∈ extS∗ be an extreme functional (one of
the two) corresponding to the tangent direction a. We assume without loss of
generality that f(k( · )) is nonnegative. Let T be the set of points t ∈ [0, 1] on
which f(k(t)) assumes its maximum value, T 6= ∅. Let t0 ∈ T . Let us examine
the behaviour of k(t) near t0.

It is easily checked that t0 cannot be a point of strict maximum. Indeed, if
this were so, then we would consider a closed neighbourhood O0 := O(k(t0))
such that O0 ∩M is a Chebyshev set. By Theorem A any Chebyshev set on
a plane is convex with respect to any tangent direction of the sphere. But since
the maximum is strict, the Chebyshev O0 ∩M cannot be convex with respect to
the direction a.

Assume now that t0 is a point of nonstrict maximum: f(k(t0) = f(k(t)) for
some t ∈ [t0, t1], where t1 := t0 + ε0 and ε0 > 0 is such that

f(k(τ)) < f(k(t0 + ε0)) = f(k(t0)) if τ > t0 + ε0 =: t1 or τ < t0. (3.1)

We shall identify the curve k( · ) and its trace.
Let κ be the portion of k( · ) for t ∈ [t0, t1]. Since f(k(t)) is constant on

[t0, t1], κ is is the closed interval between k(t0) and k(t1), which parallel to the
direction a, and hence to the interval [x, y].

Lemma 2.2 of [1] asserts that, for a sun N in a finite-dimensional space Y ,
N 6= Y , any point y from the boundary of N is a point of luminosity; that is,
there is a ray ` emanating from y and such that y ∈ PNx for all points x ∈ `.
Hence, for any v ∈ [k(t0), k(t1)] = κ, there is an w ∈ Ω (sufficiently close to v)
such that v ∈ PMw. Given L ⊂ X, L 6= ∅. Consider the mapping

τv(w) = τ(w) :=
v − w

ρ(w,PLw)
⊂ S,

where PLw =: {v}.
Since M is a locally Chebyshev set, for any v ∈

(
k(t0), k(t1)

)
the point τv(w)

is a smooth and exposed point of the unit sphere S.
Consider the Chebyshev set M1 := M ∩ O(k(t0)) (where O(k(t0)) is chosen

from the definition of a locally Chebyshev set). If ε > 0 is sufficiently small, then
k(t0 + ε) is the nearest point in M1 of for the corresponding point wε ∈ Ω. Since
τ(wε) is a smooth point of the unit sphere,

M1 ∩
{
u | f(u) < t(k(t0))

}
= ∅ (3.2)

by the well-known Kolmogorov criterion of best approximation (in the form for
suns) [3, § 3,2]. Hence, (3.2) is possible only if there is ε1 > 0 such that f(k(τ)) =
f(k(t0)) for all τ ∈ (t0 − ε1, t0). But this contradicts (3.1). �

The proof of Theorem 3.3 repeats that of Theorem 3.2 and hence omitted.

Remark 3.5. The machinery of monotone path-connectedness is potent to prove
that in the space `∞n any connected locally Chebyshev curve is a Chebyshev set.
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