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THE INVERSE PROBLEM OF FINDING THE INITIAL

FUNCTION FOR THE STRING VIBRATION EQUATION

GUNAY ISMAYILOVA

Abstract. In this paper, we propose an approach to the solution of the
inverse problem for finding the initial function for the string vibration
equation. The search for unknown initial function is reduced to the
minimization problem of the functional, constructed with the help of
the additional information. A formula is obtained for the gradient of
the functional and a necessary and sufficient condition for optimality is
derived.

1. Introduction

Inverse problems for differential equations with partial derivatives are actual
problems of modern mathematics because of their importance for applications.
Such problems arise in the various fields of mathematics, shape optimization,
geophysics, seismology, astronomy, ecology, etc. [1-3, 7].

In this paper, we propose an approach to the solution of the inverse problem
for the string vibration equation. The search for the unknown initial function
is reduced to the problem of minimization of the functional, built with the help
of the additional information. A formula is obtained for the gradient of the
functional and a necessary and sufficient condition for optimality is derived using
the gradient of the functional.

2. Statement of the problem

We consider in the domain Q = { (x, t) : 0 < x < l, 0 < t < T} the following
boundary value problem

∂2u

∂t2
− ∂2u

∂x2
= f (x, t) , (x, t) ∈ Q, (2.1)

u(x, 0) = u0(x),
∂u(x, 0)

∂t
= v (x) , 0 ≤ x ≤ l, (2.2)

u(0, t) = 0, u(l, t) = 0, 0 ≤ t ≤ T. (2.3)
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Here l, T > 0 are given numbers, f ∈ L2 (Q) , u0 ∈
0

W 1
2 (0, l) are given functions,

v ∈ L2 (0, l) is an unknown function. In order to determine v (x) we use the
additional information

u(x, T ) = χ (x) , 0 ≤ x ≤ l, (2.4)

where χ ∈
{
υ(x) ∈W 1

2 (0, l) : υ(0) = υ(l) = 0
}

is a given function.
We reduce this problem to the following optimal control problem: to minimize

the functional

J0(v) =
1

2

∫ l

0
[u(x, T ; v)− χ(x)]2 dx (2.5)

subject to (2.1)-(2.3). Here u = u(x, t) = u(x, t; v) is a solution of problem (2.1)-
(2.3), corresponding to the function v = v(x). This problem we call problem
(2.1)-(2.3), (2.5). The function v(x) is called a control. If we find a control v(x)
that gives zero value to the functional (2.5) then the additional condition (2.4)
is satisfied.

Note that for each fixed control v = v(x) ∈ L2 (0, l), boundary problem (2.1)-
(2.3) has a unique generalized solution u = u(x, t; v) from W 1

2,0(Q) [5].

3. On solvability of problem (2.1)-(2.3), (2.5).

Consider the problem: under which conditions

inf
v∈L2(0,l)

J0(v) = 0? (3.1)

This question is equivalent to the problem of density in L2(0, l) of the image of
L2(0, l) under the mapping

v → u(x, T ; v). (3.2)

To solve this problem we use Hahn-Banach theorem [4].
Let ϕ(x) be a given function from L2(0, l), that is orthogonal to the image of

L2(0, l) under the mapping (3.2), i.e.∫ l

0
u(x, T ; v)ϕ(x)dx = 0,∀v ∈ L2(0, l). (3.3)

We want to find out whether it will follow from this that ϕ(x) = 0?
Let us introduce the function W (x, t) as a solution of the problem

∂2W

∂t2
− ∂2W

∂x2
= 0, (x, t) ∈ Q, (3.4)

W (x, T ) = 0,
∂W (x, T )

∂t
= ϕ (x) , 0 ≤ x ≤ l, (3.5)

W (0, t) = 0,W (l, t) = 0, 0 ≤ t ≤ T. (3.6)

Problem (3.4)-(3.6) has a unique generalized solution from W 1
2,0(Q) [2].

Due to definition of the generalized solution of the problem (2.1)-(2.3) we have:
at t = 0 the condition u(x, 0; v) = u0(x) is satisfied and the integral identity
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∫∫
Q

(
−∂u
∂t

∂η

∂t
+
∂u

∂x

∂η

∂x
− fη

)
dxdt+

∫ l

0

∂u (x, T ; v)

∂t
η (x, T ) dx−

−
∫ l

0
v (x) η (x, 0) dx = 0

(3.7)

is fulfilled for arbitrary function η = η (x, t) ∈W 1
2,0 (Q).

By the definition of the generalized solution of problem (3.4)-(3.6) we have: at
t = T the condition W (x, T ) = 0 is satisfied and the integral identity

∫∫
Q

(
−∂W
∂t
· ∂g
∂t

+
∂W

∂x

∂g

∂x

)
dxdt+

∫ l

0

∂W (x, T )

∂t
g(x, T )dx−

−
∫ l

0

∂W (x, 0)

∂t
g(x, 0)dx = 0

(3.8)

is fulfilled for arbitrary function g ∈W 1
2,0 (Q).

Taking W as a function η in the equality (3.7), and u as a function g in (3.8),
then subtracting (3.8) from (3.7) we get

−
∫∫

Q
fWdxdt−

∫ l

0
v (x)W (x, 0)dx−

∫ l

0

∂W (x, T )

∂t
u (x, T ; v) dx+

+

∫ l

0

∂W (x, 0)

∂t
u0 (x) dx = 0,∀v ∈ L2 (0, l) .

Considering here the second condition of (3.5) we obtain∫∫
Q
fWdxdt+

∫ l

0
v (x)W (x, 0)dx+

∫ l

0
u (x, T ; v)ϕ (x) dx−

−
∫ l

0

∂W (x, 0)

∂t
u0 (x) dx = 0,∀v ∈ L2 (0, l) .

Due to (3.3) from the last is follows that

∫∫
Q
fWdxdt+

∫ l

0
W (x, 0)v (x) dx−

∫ l

0

∂W (x, 0)

∂t
u0 (x) dx = 0, ∀v ∈ L2 (0, l) .

If we write this relation for two arbitrary controls v1 (x) ∈ L2 (0, l) and v2 (x) ∈
L2 (0, l) and subtract the obtained equalities, we get∫ l

0
W (x, 0) (v1 (x)− v2 (x)) dx = 0, ∀v1, v2 ∈ L2 (0, l) .

Hence by Lagrange lemma it follows that

W (x, 0) = 0, 0 ≤ x ≤ l.
Now let’s consider the boundary problem
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∂2W

∂t2
− ∂2W

∂x2
= 0, (x, t) ∈ Q, (3.9)

W (0, t) = 0, W (l, t) = 0, 0 ≤ t ≤ T, (3.10)

W (x, 0) = 0, W (x, T ) = 0, 0 ≤ x ≤ l. (3.11)

By the Fourier method the solution of the equation (3.9) with conditions (3.10)
is obtained in the form

W (x, t) =
∞∑
k=1

(
ak cos

πk

l
t+ bk sin

πk

l
t

)
sin

πk

l
x.

Since the system of the functions
{

sin πk
l x
}∞
k=1

forms a complete system in
L2 (0, l), from the first condition of (3.11) it follows that ak = 0, k = 1, 2, ... .
Similarly from the second condition of (3.11) it follows that bk sin πk

l T = 0, k =
1, 2, ... .
If sin πk

l T 6= 0, i.e. T
l 6=

n
k , n ∈ Z, k ∈ N, then bk = 0, k = 1, 2, ... .

From this we obtain that if the numbers T and l are incommensurable, then
bk = 0, k = 1, 2, ... .
Therefore

W (x, t) ≡ 0, (x, t) ∈ Q.
Then as follows from the condition (3.5), ϕ (x) = 0. Thus we prove the following
theorem.

Theorem 3.1. Let f ∈ L2(Q), u0 ∈ W 1
2 (0, l), χ ∈ L2(0, l) and the numbers T

and l are incommensurable. Then

inf
v∈L2(0,l)

J0(v) = 0.

If the image of L2 (0, l) by the mapping (3.2) is closed in L2 (0, l), then there
exists the element v∗ (x) ∈ L2 (0, l) such that

min
v∈L2(0,l)

J0 (v) = J0 (v∗) = 0.

Now instead of the problem (2.1)-(2.3), (2.5) consider the problem: minimize the

functional

Jα (v) = J0 (v) +
α

2
‖v‖2L2(0,l)

(3.12)

on the convex closed set Vd ⊂ L2 (0, l) subject to (2.1)-(2.3), where α > 0 is a
given number. This problem we call problem (2.1)-(2.3), (3.12), and Vd - a class
of admissible controls. Due to the known theorem from [6, p.13] for the new
problem (2.1)-(2.3), (3.12) there exists the only element fromVd that minimizes
the functional (3.12).
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4. Calculation of the differential of the functional (3.12) and
optimality condition

Let’s show that the functional (3.12) is differentiable in L2(0, l).
For this purpose we take two admissible controls v, v + δv. Corresponding solu-
tions of the problem (2.1)-(2.3) denote by u(x, t; v) and u(x, t; v + δv).

Let δu(x, t) = u(x, t; v+ δv)−u(x, t; v). It is clear that δu(x, t) is a generalized
solution from W 1

2,0(Q) of the following boundary problem

∂2δu

∂t2
− ∂2δu

∂x2
= 0, (x, t) ∈ Q, (4.1)

δu(x, 0) = 0 ,
∂δu(x, 0)

∂t
= δv(x), 0 ≤ x ≤ l, (4.2)

δu(0, t) = δu(l, t) = 0, 0 ≤ t ≤ T, (4.3)

i.e. at t = 0 it fulfills the condition δu(x, 0) = 0 and the integral identity

∫∫
Q

(
−∂δu
∂t

∂η

∂t
+
∂δu

∂x

∂η

∂x

)
dxdt+

∫ l

0

∂δu (x, T )

∂t
η (x, T ) dx−

−
∫ l

0
δv (x) η (x, 0) dx = 0.

(4.4)

fulfils for any function η ∈W 1
2,0(Q) .

Let ψ = ψ (x, t) = ψ (x, t; v) be a generalized solution from W 1
2,0(Q) of the

adjoint problem

∂2ψ

∂t2
− ∂2ψ

∂x2
= 0, (x, t) ∈ Q, (4.5)

ψ(x, T ; v) = 0,
∂ψ(x, T ; v)

∂t
= − [u(x, T ; v)− χ (x)] , 0 ≤ x ≤ l, (4.6)

ψ(0, t; v) = 0, ψ(l, t; v) = 0, 0 ≤ t ≤ T. (4.7)

It is clear that boundary problem (4.5)-(4.7) for each v ∈ Vd has a unique
generalized solution from W 1

2,0(Q) [5]. Then at t = T the first condition of (4.6)
and the integral identity

∫∫
Q

(
−∂ψ
∂t

∂g

∂t
+
∂ψ

∂x

∂g

∂x

)
dxdt−

∫ l

0
[u(x, T ; v)− χ (x)] g (x, T ) dx−

−
∫ l

0

∂ψ (x, 0)

∂t
g (x, 0) dx = 0

(4.8)

is satisfied for any function g ∈W 1
2,0(Q).

If we put η = ψ (x, t; v) , in (4.4) and g = δu (x, t) in (4.8) and subtract the
obtained relations we get
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∫ l

0
[u(x, T ; v)− χ (x)] δu (x, T ) dx−

∫ l

0
δv (x)ψ (x, 0; v) dx = 0 . (4.9)

Now we calculate the increment of the functional (3.12):

∆Jα(v) = Jα(v + δv)− Jα(v) =

∫ l

0
[u (x, T ; v)− χ (x)] δu (x, T ) dx+

+α

∫ l

0
v (x) δv (x) dx+R,

(4.10)

where R is a remainder term and has a form

R =
1

2

∫ l

0
|δu(x, T )|2 dx+

α

2

∫ l

0
|δv (x)|2 dx. (4.11)

Considering (4.9) in (4.10) one can get

∆Jα(v) =

∫ l

0
[ψ (x, 0; v) + αv (x)] δv (x) dx+R . (4.12)

From the boundary problem (4.1)-(4.3) as in [5, pp.213− 215] it is not difficult to
obtain the estimate∫ l

0

[
|δu (x, t)|2 +

∣∣∣∣∂δu (x, t)

∂x

∣∣∣∣2 +

∣∣∣∣∂δu (x, t)

∂t

∣∣∣∣2
]
dx ≤ c ‖δv‖2L2(0,l)

∀t ∈ [0, T ] .

Here and later on c is a constant not depending on estimated quantity and con-
trols.
From this in particular follows∫ l

0
|δu (x, T )|2 dx ≤ c ‖δv‖2L2(0,l)

. (4.13)

Then from (4.11) and (4.13) we get

|R| ≤ c ‖δv‖2L2(0,l)
. (4.14)

Thus from (4.12) and estimate (4.14) it follows that the functional Jα(v) is differ-
entiable in L2(0, l) and its differential and gradient are defined by the expressions

< J ′α(v), δv >L2(0,l)=

∫ l

0
[ψ (x, 0; v) + αv (x)] δv (x) dx (4.15)

and

J ′α(v) = ψ(x, 0; v) + αv (x) . (4.16)

Let’s show that the mapping υ → J ′α(υ), defined by the relation (4.15) acts
continuously from Vd to L2(0, l). Let δψ(x, t) = ψ(x, t; υ + δυ) − ψ(x, t; υ). As
follows from (4.5)-(4.7) δψ(x, t) is a generalized solution from W 1

2 (Q) for the
boundary problem
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∂2δψ
∂t2
− ∂2δψ

∂x2
= 0, (x, t) ∈ Q

δψ(x, T ) = 0, ∂δψ
∂t

∣∣∣
t=T

= −δu(x, T ), 0 ≤ x ≤ l,
δψ(0, t; υ) = 0, δψ(l, t; υ) = 0, 0 ≤ t ≤ T.

From this boundary problem similarly to [5, p. 213-215] one may obtain the
estimate

∫ l

0

[
|δψ(x, t)|2 +

∣∣∣∣∂δψ(x, t)

∂x

∣∣∣∣2 +

∣∣∣∣∂δψ(x, t)

∂t

∣∣∣∣2
]
dx ≤ C ‖δu(x, T )‖2L2(0,l)

, ∀t ∈ [0, T ].

(4.17)
Then from (4.13) and(4.17) it follows that

∫ l

0

[
|δψ(x, t)|2 +

∣∣∣∣∂δψ(x, t)

∂x

∣∣∣∣2 +

∣∣∣∣∂δψ(x, t)

∂t

∣∣∣∣2
]
dx ≤ C ‖δυ‖2L2(0,l)

, ∀t ∈ [0, T ].

From this last in particular we get that∫ l

0
|δψ(x, 0)|2 dx ≤ C ‖δυ‖2L2(0,l)

. (4.18)

Now using the formula (4.16) it is not difficult to obtain the inequality

∥∥J ′α(υ + δυ − J ′α(υ)
∥∥
L2(0,l)

≤ C
[
‖δψ(x, 0)‖L2(0,l)

+ ‖δυ‖L2(0,l)

]
.

Due to (4.18) the right hand side of this inequality tends to zero when ‖δv‖L2(0,l)
→

0. It gives that υ → J ′α(υ) is a continuous mapping from Vd to L2(0, l).
We prove the following theorem.
Theorem 4.1. Let the condition set on the data of the problem (2.1)-(2.3),
(3.12) be fulfilled. Then the functional (3.12) is continuous Frechet differentiable
in L2(0, l) and its differential and gradient in the point v (x) ∈ Vd at the increment
δv (x) ∈ L2(0, l) are defined by the expressions (4.15) and (4.16), correspondingly.
Theorem 4.2. Let the condition set on the data of the problem (2.1)-(2.3), (3.12)
be fulfilled. Then for the optimality of the control v∗ = v∗(x) ∈ Vd in the problem
(2.1)-(2.3), (3.12), the fulfillment of the inequality∫ l

0
[ψ (x, 0; v∗) + αv∗ (x)] [v (x)− v∗ (x)] dx ≥ 0, ∀v ∈ Vd , (4.19)

where ψ(x, t; v∗) is a solution of the adjoint problem (4.5)-(4.7) at v = v∗(x) , is
necessary and sufficient.
Proof. The set Vd is convex in L2(0, l), the functional Jα (v) is continuously
Frechet differentiable on L2(0, l) and its differential and gradient in the point
v (x) are defined by the formulas (4.15), (4.16). Then due to known theorem
[8, p. 28] on the element v∗ ∈ Vd it is necessary and sufficient the fulfillment of
the inequality < J ′α(v∗), v− v∗ >L2(0,l)≥ 0 or following to (4.15) fulfillment of the
inequality (4.19). Thus theorem 4.2 is proved.
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