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QUASI-KÄHLERIAN STRUCTURES CARRIED ON CODAZZI

CONNECTIONS

ESMAEIL PEYGHAN, ESA SHARAHI, AND AMIR BAGHBAN

Abstract. Our aim is to introduce quasi-Kählerian Codazzi manifolds
as some natural structures. Supposing a Kählerian structure on a mani-
fold, we investigate its relation with quasi-Kählerian Codazzi manifolds.
Furthermore, it will be proved that under some conditions, the Codazzi
and Levi-Civita connections are adapted. Also, quasi-Kählerian Codazzi
manifolds have non-trivial examples shown in this paper.

1. Introduction

For an open subset Θ ⊆ Rn, S is an statistical model, when S is a set of
probability density functions on a sample space Ω with data behavior represented
as the parameter θ = (θ1, · · · , θn) such that

S = {p(x; θ) :

∫
Ω
p(x; θ) = 1, p(x; θ) > 0, θ ∈ Θ ⊆ Rn}.

Probability distributions are playing important roles in science encountering with
presented data sets. People employ them to study the prediction and evaluation
of different models of actions in any network of nodes. When Fisher exhibited a
formula as a mathematical translation of information (see [7]), differential geome-
try joined to this contribution. Indeed, for a statistical model S, the semi-definite
Fisher information matrix g(θ) = [gij(θ)] is defined as

gij(θ) :=

∫
Ω
∂i`θ∂j`θp(x; θ)dx

= Ep[∂i`θ∂j`θ],

where `θ = `(x; θ) := logp(x; θ), ∂i := ∂
∂θi

and Ep[f ] is the expectation of f(x)
with respect to p(x; θ). S is called an information manifold, when it equipped
by such matrix. If g is positive-definite and all of its components are finite, then
(S, g) will be a Riemannian manifold and g will be called a Fisher metric on S.
In this situation, g reads

gij(θ) =

∫
Ω
∂ip(x; θ)∂j`θdx =

∫
Ω

1

p(x; θ)
∂ip(x; θ)∂jp(x; θ)dx.
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These kinds of metrics were first studied by Rao (see [14]). For any α ∈ R,
Amari’s α-connection ∇α with respect to p(x; θ) is defined by the Christoffel
symbols

Γ(α)
ij,k = g(∇α∂i∂j , ∂k) := Ep[(∂i∂j`θ +

1− α
2

∂i`θ∂j`θ)(∂k`θ)]. (1.1)

Chentsov began to study α-connections in the case of finite and discrete sample
spaces (see [6] and [5]). After that, Amari studied them in an independent manner
and general case by formula (1.1). One can see e.g. [2] as a first collection
of results in this framework. Moreover, there are detailed monographs about
applications of information geometry such some chapters of [12].

Lauritzen was the first who composed a parallel framework called statistical
manifolds. The difference between two α and β-connections ∇α and ∇β is as
follow

Γ(α)
ij,k − Γ(β)

ij,k =
β − α

2
Tijk, (1.2)

where T is a covariant symmetric tensor of degree 3 defined by
Tijk := Eθ[∂i`θ∂j`θ∂k`θ]. For the case that β = 0, (1.2) reduces to

Γ(α)
ij,k−

g

Γij,k= −
α

2
Tijk,

where
g

Γij,k’s are the Christoffel symbols of the Levi-Civita connection induced
by a Riemannian metric g on M . A statistical manifold is a triple (M, g,∇)
where the manifold M is equipped with a statistical structure (g,∇) containing
a Riemannian metric g and an affine symmetric connection ∇ on M such that
the covariant derivative ∇g is symmetric. There is a one to one correspondence
between tensors Tijk and statistical connections (for a detailed discussion, see
[10]). Writing the symmetric property off from ∇, generalize the above definition
to the Codazzi manifold.

The statistical (or more generally, Codazzi) affine connection can be studied
with other existent structures and so we can generalize some aspects from Rie-
mannian manifolds to the statistical (Codazzi) manifolds. Some of the important
subject matters are Kählerian structures. These structures have important situ-
ation in other aspects of science. A series of applications of these structures in
the other fields and in math can be found in the collection [12], [4] and [13].

In this paper, we define Kählerian Codazzi manifolds containing three struc-
tures (g,∇, J) on M such that (M, g,∇) makes a Codazzi manifold and J is a
parallel almost complex structure with respect to ∇. This definition is natural
and compatible with the definition of classical Kählerian manifolds. Since, when
∇ is the Levi-Civita connection of g we have a Kählerian manifold which carries a
trivial Codazzi structure. Moreover, starting from a Kählerian Codazzi manifold

(M, g,
g

∇, J) we can get a Kählerian Codazzi manifold (M, g, ∇̃, J) naturally by
putting the metric

G(X,Y ) = g(X,Y ) + g(JX, JY ),

on M where ∇̃ is the Levi-Civita connection of G. Take to the account that in
our case there is no Hermitian relation between g, J , essentially.

There are other similar studies also. In [17], the Codazzi condition is con-
sidered for a pair of affine connection and a Kählerian structure. In [1], they
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considered a structure similar to ours whereas the involved space is very similar
to a statistical manifold. In [15], the authors investigate the integrable almost
anti-Hermitian manifolds with the Codazzi condition on its twin anti-Hermitian
metric and achieved some results on the curvature tensor. Moreover, in [16], they
could get a coincidence between the Ricci curvature tensor of the anti-Kähler-
Codazzi manifold and the Ricci curvature tensor of the manifold. Though, we
set the Kählerian isomorphism with the Codazzi connection instead.

We will give some examples on Kählerian statistical and Codazzi manifolds
when M is the 2-dimensional sphere without north pole . In the case of perforated
2-sphere, we classify all of statistical connections where they are appointed by
the standard complex structure.

It is notable that researches on the vector (and specially tangent) bundles
of statistical manifolds are scant until now ([3, 8, 9, 11] are examples of such
researches). In this paper we lift the complex structure to the tangent bundle
equipped with the Sasaki metric and characterize a class of Kählerian statistical
manifolds on tangent bundles.

We prove that for the Kählerian statistical manifold (R2, g, J,∇) where g is an
arbitrary Riemannian metric and J is the matrix

J =

(
0 h
−1
h 0

)
,

with the additional condition ∇ =
g

∇ +
g

∇J, the equation
g

∇ = ∇ hold. So, it
is natural to ask ”is the latter statement true generally?” The following can be
stated as an open problem in Riemannian geometry and statistical manifolds
area.

Open problem. Let (M, g,∇, J) be an arbitrary Kählerian statistical mani-

fold such that ∇,
g

∇ satisfy ∇ =
g

∇+
g

∇J . Is it true to say that ∇ =
g

∇?

2. Preliminaries

First, we give some preliminaries on Kählerian and Codazzi manifolds.
A tangent bundle isomorphism J : TM → TM is known as an almost para-

complex structure if J2 = −I. Moreover, if (M, g) is a Riemannian manifold, we
say that g is compatible with J if J is orthogonal, i.e.,

g(JX, JY ) = g(X,Y ),

for vector fields X,Y on M . In this case (M, g, J) is called an almost Hermitian
manifold, and Hermitian manifold if J is integrable. In the almost Hermitian
realm, one can define a 2-form Ω(X,Y ) = g(JX, Y ) called fundamental 2-form
where

dΩ(JX, Y, JZ)− dΩ(JY,X, JZ) = g(NJ(X,Y ), Z) + 2g(J(
g

∇JZJ)Y,X), (2.1)

and

dΩ(X,Y, Z) = g((
g

∇XJ)Y, Z)− g((
g

∇Y J)X,Z) + g((
g

∇ZJ)X,Y ), (2.2)
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where
g

∇ is the Levi-Civita connection of g and NJ is the Nijenhuis tensor of J
given by

NJ(X,Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ], ∀X,Y ∈ χ(M).

An (almost) Hermitian manifold (M, g, J) is called an (almost) Kählerian mani-
fold if Ω is closed, i.e., d2Ω = 0. From (2.1) and (2.2) one deduce that (M, g, J)
is a Kählerian manifold if and only if the structure J is parallel with respect to

the Levi-Civita connection of g, i.e.,
g

∇J = 0.
A Codazzi manifold is a triplet (M, g,∇) where g is a Riemannian metric on

M and ∇ is a (not necessarily torsion-free) affine connection that the cubic tensor
field C = ∇g is totally symmetric, namely the Codazzi equations hold:

(∇Xg)(Y,Z) = (∇Y g)(Z,X) (= (∇Zg)(X,Y )), ∀X,Y, Z ∈ X(M).

In a local coordinate (U , x1, · · · , xn) on M , C has the following form

C(∂i, ∂j , ∂k) = ∂ig(∂j , ∂k)− g(∇∂i∂j , ∂k)− g(∂j ,∇∂i∂k),

and so

Cijk = ∂k(gij)− Γhikgjh − Γhjkgih, Cijk = Cjki = Ckij ,

where ∂i := ∂
∂xi

, gij := g(∂i, ∂j) and Γijk’s be the Christoffel symbols of ∇.
Moreover, the contraction

Ckij = grkCijr,
can be applying.

3. Quasi-Kählerian statistical manifolds

We begin this section by fixing the definition of a quasi-Kählerian Codazzi
manifold as follow.

Definition 3.1. A quadruplet (M, g,∇, J) is called a quasi-Kählerian Codazzi
manifold if (M, g,∇) is a Codazzi structure and J is integrable such that ∇J = 0.

We have the attention that when ∇ is arising from the Riemannian metric g,
then definition 3.1 is as the same as the usual definition of a Kählerian structure,
whenever J preserves the length. Indeed, for X,Y ∈ TM we have

g(X,X) + 2g(X,Y ) + g(Y, Y ) = g(JX, JX) + 2g(JX, JY ) + g(JY, JY ),

giving the compatibility condition g(X,Y ) = g(JX, JY ). It is remarkable that
the length-preserving property of J is independent and completely essential. For
instance, let’s make an example that shows this necessity.

Example 3.1. Let (E2, g) be the standard Euclidean space and∇ be its covariant
derivative. Define the complex structure J by

J(∂1) = 2∂2, J(∂2) =
−1

2
∂1.

As dxi, ∂i are parallel and the multiplications of dxi ⊗ ∂j are constants, then J
is parallel. But it is not length preserver.
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It is worth paying attention to the case that ∇ =
g

∇. Since, if we have a quasi-

Kählerian Codazzi manifold (M, g,∇, J) such that ∇ =
g

∇, then we can define
a Kählerian structure on M (we establish Proposition 3.1 on this fact). Indeed,
we know that if J is an almost complex structure on M and g is a Riemannian
metric, then the metric

G(X,Y ) = g(X,Y ) + g(JX, JY ), (3.1)

with J define an almost Hermitian structure on M . We devote ∇̃ for the Levi-
Civita connection of G. Now, we can make the following lemma.

Lemma 3.1. Let (M, g) be a Riemannian manifold and J be an almost complex

structure on M such that
g

∇J = 0. Then we have

G(∇̃XY,Z) = g(
g

∇XY , Z) + g(
g

∇XJY , JZ). (3.2)

Proof. Using the Koszul equation we have

2G(∇̃XY, Z) = XG(Y,Z) + Y G(X,Z)− ZG(X,Y )

+G([X,Y ], Z)−G([X,Z], Y )−G([Y, Z], X),

and by equation (3.1), we get

2G(∇̃XY,Z) = Xg(Y,Z) + Y g(X,Z)− Zg(X,Y )

+ g([X,Y ], Z)− g([X,Z], Y )− g([Y,Z], X)

+Xg(JY, JZ) + Y g(JX, JZ)− Zg(JX, JY )

+ g(J [X,Y ], JZ)− g(J [X,Z], JY )− g(J [Y,Z], JX).

The first two lines are the 2g(∇̃XY, Z) and if we use the equations

Ag(B,C) = g(
g

∇AB,C) + g(
g

∇AC,B),

and

J [A,B] = J
g

∇AB − J
g

∇BA =
g

∇AJB −
g

∇BJA,

we get the following (take note to the attention that
g

∇AJB = J
g

∇AB)

2G(∇̃XY,Z) = 2g(
g

∇XY , Z) + 2g(
g

∇XJY , JZ),

which gives us the result. �

Using Lemma 3.1, we can make a proposition to give a sufficient condition for
which (M,G, J) be a Kählerian structure on M .

Proposition 3.1. If (M, g,
g

∇, J) is a quasi-Kählerian Codazzi manifold, then
the triple (M,G, J) is a Kählerian structure on M .

Proof. Let X,Y, Z be three arbitrary vector fields then we will conclude that

G((∇̃XJ)Y, Z) = 0. Using the equation

G(∇̃AB,C) = g(
g

∇AB,C) + g(
g

∇AJB, JC),
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and the fact that G(JA,B) = −G(A, JB) we get the following

G((∇̃XJ)Y,Z) = G(∇̃XJY, Z) +G(∇̃XY, JZ)

= g(
g

∇XJY , Z) + g(
g

∇XJ2Y , JZ)

+ g(
g

∇XY , JZ) + g(
g

∇XJY , J2Z) = 0.

So, G((∇̃XJ)Y, Z) = 0 and this yields ∇̃J = 0. On the other hand, J is inte-
grable. Then, (M,G, J) is a Kählerian structure on M . �

Now, we will use Proposition 3.1 to give a natural quasi-Kählerian Codazzi
statistical manifold as follow.

Theorem 3.1. Let (M, g,
g

∇, J) be a quasi-Kählerian Codazzi manifold. Then

(M, g, ∇̃, J) is a quasi-Kählerian Codazzi manifold.

Proof. First, using Proposition 3.1, we know that ∇̃J = 0. So, it is remained
to prove the Codazzi equation for (∇̃, g). Suppose (x1, · · · , xn) is the normal
coordinate system with respect to g around p ∈ M . We know that in this
coordinate system we have

g

Γkij(p) = 0, gij(p) = δij .

Using equation (3.2), one can show that Γ̃kij(p) = 0 where Γ̃kij are the Christoffel

symbols of ∇̃. Indeed, translating (3.2) to the local form, read

Γ̃lijGlk =
g

Γlijglk +
g

ΓlijJ
t
l J

s
kgts. (3.3)

Looking at (3.3) when is evaluated at p, easily yields the vanishing of Γ̃kij at p.

Now, one can check that the couple (∇̃, g) satisfies the Codazzi equation at p.
But p was an arbitrary point and so the proof is completed. �

In the following theorem, we want to specify statistical manifolds (M,G,∇)

such that (M, g,∇, J) be a quasi-Kählerian statistical manifold and ∇ =
g

∇+
g

∇J .

Indeed, the latter condition is a canonical criterion to see how many ∇ and
g

∇
are far from together in the sense of J .

Theorem 3.2. Let (M, g,∇, J) be a quasi-Kählerian statistical manifold such

that ∇ =
g

∇ +
g

∇J . Then (M,G,∇) is a statistical manifold if and only if the
tensor field

Ω(X,Y ) = g((
g

∇XJ)Z − J(
g

∇XJ)Z, JY ),

is symmetric for all Z ∈ TM .

Proof. If (M,G,∇) is a statistical manifold then

(∇XG)(Y, Z) = (∇YG)(X,Z),
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that is equivalent to

Xg(Y, Z) +Xg(JY, JZ)− g(∇XY,Z)− g(J∇XY, JZ)− g(Y,∇XZ)

− g(JY, J∇XZ) = Y g(X,Z) + Y g(JX, JZ)− g(∇YX,Z)

− g(J∇YX,JZ)− g(X,∇Y Z)− g(JX, J∇Y Z).

Since (M, g,∇) is statistical and ∇ =
g

∇ +
g

∇J then using the compatibility of

(g,
g

∇) the above equality holds if and only if

g((
g

∇XJ)Y − J(
g

∇XJ)Y, JZ) + g((
g

∇XJ)Z − J(
g

∇XJ)Z, JY )

= g((
g

∇Y J)X − J(
g

∇Y J)X,JZ) + g((
g

∇Y J)Z − J(
g

∇Y J)Z, JX).

But ∇,
g

∇ are torsion free and the equation ∇ =
g

∇+
g

∇J gives that

g((
g

∇XJ)Y − J(
g

∇XJ)Y, JZ) = g((
g

∇Y J)X − J(
g

∇Y J)X,JZ),

proving the theorem. �

3.1. A natural lift to the tangent bundle. The following conversation is on
a class of quasi-Kählerian statistical manifolds on tangent bundles.

Let (M, g) be a Riemannian manifold with the unique Levi-Civita connection
g

∇. Considering the splitting

T(x,y)TM = H(x,y) ⊕ V(x,y),

it can be verified that if X = Xi ∂
∂xi

, then

Xv = Xi ∂

∂yi
, Xh = Xi ∂

∂xi
−Xjyk

g

Γijk
∂

∂yi
,

where
g

Γijk’s are Christoffel symbols of the Levi-Civita connection
g

∇. If
g

R denotes

the Riemann curvature tensor of
g

∇, then
[Xv, Y v] = 0,

[Xh, Y v] = (
g

∇X Y )v,

[Xh, Y h] = [X,Y ]h − (
g

R (X,Y )y)v,

for any X,Y, Z ∈ X(M) and any point (x, y) ∈ TM . The Sasaki metric gs on the
tangent bundle TM is a natural lift of the metric g given by

gs(X
h, Y h)(x,y) = gx(X,Y ),

gs(X
v, Y h)(x,y) = 0,

gs(X
v, Y v)(x,y) = gx(X,Y ).

Now, suppose that (M, g, J) is a Kählerian manifold, then lift J to an almost
complex structure on TM and equip it with the Sasaki metric. The following
proposition classifies quasi-Kählerian statistical manifolds (TM, gs, ∇̄, J̄) where
gs is the Sasaki metric of g and J̄ is the lift of J defined in the following and ∇̄ is
a connection such that (gs, ∇̄) provide a statistical manifold where J̄ is parallel

with respect to the ∇̄. Note that we use the notation AīBi :=
∑n

i=1A
n+iBi
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where n is the dimension of M . Moreover, when we say Γ̄i
k̄j̄

, it is the coefficient

of δi of ∇̄∂k̄∂j̄ and the other Christoffel symbols can be defined similarly.

Proposition 3.2. Let J̄ be the natural lift of J defined by

J̄Xh = (JX)h, J̄Xv = (JX)v.

Then (TM, gs, ∇̄, J̄) is a quasi-Kählerian statistical manifold if and only if the
equations 

(Γ̄rik − Γrik)grj = (Γ̄rjk − Γrjk)gri, (3.4)

Γ̄r̄ ijgrk = Γ̄rk̄jgri,

Γ̄rik̄gjr − ym
g

Rijmk= Γ̄rjk̄gri,

(Γ̄r̄ ik̄−
g

Γrik)gjr = Γ̄rj̄k̄gri,

Γ̄r̄ j̄igrk = Γ̄r̄ k̄igrj ,

Γ̄r̄ īk̄grj = Γ̄r̄ j̄k̄gri,

and 

δi(J
k
j ) + J ljΓ̄

k
il − Γ̄lijJ

k
l = 0,

δi(J
b
a) + JcaΓ̄b̄ic̄ − Γ̄c̄iāJ

b
c = 0,

JbaΓ̄
j

ib̄
− Γ̄kiāJ

j
k = 0,

Jkj Γ̄āik − Γ̄b̄ijJ
a
b = 0,

J ji Γ̄kāj − Γ̄jāiJ
k
j = 0,

J ji Γ̄b̄āj − Γ̄c̄āiJ
b
c = 0,

Jcb Γ̄iāc̄ − Γ̄j
āb̄
J ij = 0, (3.5)

Jcb Γ̄d̄āc̄ − Γ̄c̄āb̄J
d
c = 0, (3.6)

hold.

Proof. Let (M, g,∇) be a statistical manifold. Then, ∇̄ is a statistical connection
on (TM,G) if and only if the first set of equations hold. We just prove (3.4) where
the others are similar (for a detailed proof, see [3]). Using

(∇̄δiG)(δj , δk) = ∂igjk − Γ̄rijgrk − Γ̄rikgrj ,

and Codazzi equation

(∇̄δiG)(δj , δk) = (∇̄δjG)(δk, δi) = (∇̄δkG)(δi, δj),

we get
∂igjk − Γ̄rijgrk − Γ̄rikgrj = ∂jgki − Γ̄rjkgri − Γ̄rjigrk.

So, thanks to torsion-freeness of ∇̄ we have

∂igjk − ∂jgki = Γ̄rikgrj − Γ̄rjkgri. (3.7)

Moreover, applying the Codazzi equations for (g,∇), yields

∂igjk − ∂jgki = Γrikgrj − Γrjkgri. (3.8)
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From (3.7) and (3.8), we have (3.4).
The second set of equations are coming from ∇̄J̄ = 0 and we only prove the

last two equations. From 0 = ∇̄∂ī J̄∂j̄ − J̄∇̄∂ī∂j̄ we have

J lj(Γ̄
a
īl̄δa + Γ̄āīl̄∂ā)− Γ̄kīj̄J

a
k δa − Γ̄k̄īj̄J

b
k∂b̄ = 0,

giving (3.5) and (3.6). �

4. Some two dimensional statistical Kählerian manifolds

We denote S2 without its north pole by S2
O. The following is the classification

of quasi-Kählerian statistical manifolds on S2
O by the standard complex structure.

Computations are straightforward and we omit them for a clear look at the result.

Example 4.1. Equip S2
O by the Riemannian metric

g =
4

(x1
2 + x2

2 + 1)2 (dx2
1 ⊗ dx2

1 + dx2
2 ⊗ dx2

2),

where (x1, x2) is the stereographic coordinate system on S2
O and suppose the

complex structure

J =

(
0 1
−1 0

)
,

on that. Then (S2
O, g,∇, J) is a quasi-Kählerian Codazzi structure if and only if

the Christoffel symbols of ∇ are given by

 Γ1
21 = −Γ2

11, Γ2
22 = −Γ2

11, Γ1
22 = −Γ2

12, Γ1
22 = −Γ2

12, Γ1
11 = Γ2

12,

Γ2
11 =

2x2

x1
2 + x2

2 + 1
, Γ2

12 =
−2x1

x1
2 + x2

2 + 1
.

Next, we want to use an additional condition on a class of quasi-Kählerian
statistical manifolds to adapt the Levi-Civita and statistical connections. Note
to the fact that there exists a coordinate system on R2 such that any Riemannian
metric g = [gij ] has the expression g = fI2 and f ∈ C∞(M).

Theorem 4.1. Let g =

(
f 0
0 f

)
and J =

(
0 h
−1
h 0

)
be Riemannian metric

and almost complex structure on M = R2 with respect to the standard coordinate
system (x1, x2) and its associated vector fields ∂1, ∂2. If (M,∇, g, J) be a quasi-

Kählerian statistical manifold with condition ∇ =
g

∇+
g

∇J then ∇ =
g

∇.



60 ESMAEIL PEYGHAN, ESA SHARAHI, AND AMIR BAGHBAN

Proof. First, using the equation ∇ =
g

∇+
g

∇J we will give the Christoffel symbols
of ∇ as follows. 

Γ1
12 =

∂1J12

(J12)2
+

1

2

∂2f

f
,

Γ2
12 =

1

2fJ12
(J12∂1f + (1− (J12)2)∂2f),

Γ1
11 =

1

2fJ12
(J12∂1f − (1− (J12)2)∂2f),

Γ2
12 = ∂1J12 −

∂2f

2f
,

Γ1
22 =

∂2J12

(J12)2
+

1

2

∂1f

f
,

Γ2
22 =

1

2fJ12
(J12∂2f − (1− (J12)2)∂1f),

Γ1
21 =

1

2fJ12
(J12∂2f + (1− (J12)2)∂1f),

Γ1
21 = ∂2J12 −

∂1f

2f
.

Now ∇J = 0 and the statistical conditions give us the following equations.



(h2 − 1)∂2f + 4f∂1h = 0, (4.1)

(1− h2)∂2f + f∂1h = 0, (4.2)

(1− h2)∂1f + 4f∂2h = 0, (4.3)

(h2 − 1)∂1f + f∂2h = 0, (4.4)

(1− h2)∂1f − 2fh∂1h = 0,

(h3 − h)∂2f + 2f∂2h = 0.

If we sum the equations (4.1) and (4.2) we get ∂1h = 0. Adding the equations
(4.3) and (4.4) gives us ∂2h = 0. So, h is a constant that proves the theorem. �
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