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CONSTRUCTIVE METHOD FOR SOLVING THE EXTERNAL

NEUMANN BOUNDARY VALUE PROBLEM FOR THE

HELMHOLTZ EQUATION

FUAD A. ABDULLAYEV AND ELNUR H. KHALILOV

Abstract. This work presents the justification of collocation method
for the boundary integral equation of the external Neumann boundary
value problem for the Helmholtz equation. Besides, the sequence of
approximate solutions is built which converges to the exact solution of
the original problem and the estimate for the rate of convergence is
obtained.

1. Introduction and Problem Statement

It is known that one of the methods for solving the external Neumann bound-
ary value problem for the Helmholtz equation is its reduction to the boundary
integral equation (BIE). Integral equation methods play a central role in the
study of boundary value problems associated with the scattering of acoustic or
electromagnetic waves by bounded obstacles. This is primarily due to the fact
that the mathematical formulation of such problems leads to equations defined
over unbounded domains, and hence their reformulation in terms of boundary
integral equations not only reduces the dimensionality of the problem, but also
allows one to replace a problem over an unbounded domain by one over a bounded
domain. Since BIE is solved only in very rare cases, it is therefore of paramount
importance to develop approximate methods for solving BIE with an appropriate
theoretical justification.

Let D ⊂ R3 be a bounded domain with a twice continuously differentiable
boundary S. Consider the external Neumann boundary value problem for the
Helmholtz equation: us to find a function u which is twice continuously differen-
tiable in R3\D̄ and continuous on S, and possessing a normal derivative in the
sense of uniform convergence, satisfies the Helmholtz equation ∆u + k2u = 0 in
R3\D̄, the Sommerfeld radiation condition(

x

|x|
, gradu (x)

)
− i k u (x) = o

(
1

|x|

)
, |x| → ∞,

and the boundary condition
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∂u (x)

∂~n (x)
= g (x) on S,

where k is a wave number with Imk ≥ 0, ~n (x) is a unit external normal at the
point x ∈ S, and g is a given continuous function on S.

It is proved in [2] that the potential of simple layer

u (x) =

∫
S

Φk (x, y) ϕ (y) dSy, x ∈ R3\D̄,

is a solution of the external Neumann boundary value problem for the Helmholtz
equation if the density ϕ is a solution of BIE

ϕ− K̃ ϕ = −2g, (1.1)

where

(K̃ϕ) (x) = 2

∫
S

∂Φk (x, y)

∂~n (x)
ϕ (y) dSy, x ∈ S,

and Φk (x, y) is fundamental solution the Helmholtz equation, i.e.

Φk (x, y) = ei k |x−y|/ (4π |x− y|) , x, y ∈ R3, x 6= y.

Let us note that the integral equations of boundary value problems for the
Helmholtz equation in the two-dimensional case were first considered by Kuprad-
se [10,11].

Note that a series of works (see [1,3,5,6,7,8,9,13,14]) is dedicated to the in-
vestigation of approximate solution to various boundary value problems for the
Helmholtz equation by the integral equations method. The present work is ded-
icated to the study of approximate solution to the external Neumann boundary
value problem for the Helmholtz equation by the integral equations method (1.1).

2. Main Results

Divide S into elementary domains S =
⋃N
l=1 S

N
l in such a way that:

(1) for every l = 1 , N the domain SNl is closed and the set of its internal points
0

SNl with respect to S is nonempty, with mes
0

SNl = mesSNl and
0

SNl
⋂ 0

SNj = Ø

for j ∈ {1, 2, ...N} , j 6= l;
(2) for every l = 1 , N the domain SNl is a connected piece of the surface S

with a continuous boundary;
(3) for every l = 1 , N there exists a so-called control point xl ∈ SNl such that:
(3.1) rl(N) ∼ Rl(N) (rl(N) ∼ Rl(N) ⇔ C1 ≤ rl (N) /Rl (N) ≤ C2, C1 and

C2 are positive constants independent of N), where rl(N) = min
x∈∂SNl

|x− xl| and

Rl(N) = max
x∈∂SNl

|x− xl|;

(3.2) Rl(N) ≤ d/2, where d is the radius of a standard sphere (see [16]);
(3.3) for every j = 1 , N , rj(N) ∼ rl(N).
It is clear that r(N) ∼ R(N) and lim

N→∞
r(N) = lim

N→∞
R(N) = 0, where

R(N) = max
l=1, N

Rl(N), r(N) = min
l=1, N

rl(N).
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Such a partition, as well as the partition of the unit sphere into elementary
parts, has been carried out earlier in [12].

Let Sd(x) and Γd(x) be the parts of the surface S and the tangential plane Γ(x),
respectively, at the point x ∈ S, contained inside the sphere Bd(x) of radius d
centered at the point x. Besides, let ỹ ∈ Γ(x) be the projection of the point
y ∈ S. Then

|x− ỹ| ≤ |x− y| ≤ C1(S) |x− ỹ| and mesSd(x) ≤ C2(S)mesΓd(x), (2.1)

where C1(S) and C2(S) are positive constants that depend only on S (if S is a
sphere, then C1(S) =

√
2 and C2(S) = 2).

Lemma 2.1. ([12]) There exist constants C ′0 > 0 and C ′1 > 0, independent of
N , such that for ∀ l, j ∈ {1, 2, ..., N} , j 6= l, and ∀ y ∈ SNj the inequality

C ′0 |y − xl| ≤ |xj − xl| ≤ C ′1 |y − xl| holds.

For a continuous function ϕ (x) on S, we introduce the modulus of continuity,
which has the following form:

ω(ϕ, δ) = max
|x−y|≤δ
x, y∈S

|ϕ (x)− ϕ (y)| , δ > 0.

Let

k̃l j = 2 |sgn (l − j) | ∂Φk (xl, xj)

∂~n (xl)
mesSNj for l , j = 1 , N.

It is proved in [4] that the expression(
K̃Nϕ

)
(xl) =

N∑
j=1

k̃l j ϕ (xj)

are cubature formula at the points xl, l = 1, N , for the integral
(
K̃ϕ
)

(x), with

max
l=1,N

∣∣∣(K̃ϕ) (xl)−
(
K̃Nϕ

)
(xl)

∣∣∣
≤ M1 (‖ϕ‖∞R(N) |lnR(N)|+ ω (ϕ,R(N))) . (2.1)

Let CN − be a space of vectors zN =
(
zN1 , z

N
2 , . . . , z

N
N

)T
, zNl ∈ C,

l = 1, N , equipped with the norm
∥∥zN∥∥ = max

l=1,N

∣∣zNl ∣∣, and

K̃N
l zN =

N∑
j=1

k̃l j z
N
j , l = 1, N , K̃N zN =

(
K̃N

1 zN , K̃N
2 zN , . . . , K̃N

N zN
)
.

Then the BIE (1.1) by the system of algebraic equations with respect to zNl ,

approximate values of ϕ (xl) , l = 1, N , stated as follows:

zN − K̃N zN = −2pNg, (2.2)

where pNg = (g (x1) , g (x2) , . . . , g (xN )).
To justify the collocation method, we will use Vainikko’s convergence theorem

for linear operator equations (see [15]). To formulate that theorem, we need some
definitions and a theorem from [15].

1Here and after, M denotes positive constants which can be different in different inequalities.
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Definition 2.1. ([15]) A system Q =
{
qN
}

of operators qN : C (S) → CN is

called a connecting system for C (S) and CN if∥∥qNϕ∥∥→ ‖ϕ ‖∞ as N →∞ , ∀ϕ ∈ C (S);∥∥qN (aϕ+ a′ϕ′)−
(
a qNϕ+ a′qNϕ′

)∥∥ → 0 as N → ∞, ∀ϕ,ϕ′ ∈ C(S),
a, a′ ∈ C.

Definition 2.2. ([15]) A sequence {ϕN} of elements ϕN ∈ CN is called Q-
convergent to ϕ ∈ C (S) if

∥∥ϕN − qNϕ∥∥→ 0 as N →∞. We denote this fact by

ϕN
Q→ϕ.

Definition 2.3. ([15]) A sequence{ϕN} of elements ϕN ∈ CN is called
Q−compact if every subsequence of it {ϕNm} contains a Q−convergent subse-

quence
{
ϕNmk

}
.

Proposition 2.1. ([15]) Let qN : C (S)→ CN be linear and bounded. Then the
following conditions are equivalent:

(1) the sequence {ϕN} is Q−compact and the set of its Q−limit points is
compact in C (S);

(2) there exists a relatively compact sequence
{
ϕ(N)

}
⊂ C (S) such that∥∥∥ϕN − qNϕ(N)

∥∥∥→ 0 as N →∞.

Definition 2.4. ([15]) A sequence of operators BN : CN → CN is called
QQ−convergent to the operator B : C (S) → C (S) if for every Q−convergent

sequence {ϕN} the relation ϕN
Q→ϕ⇒ BNϕN

Q→Bϕ holds. We denote this fact

by BN QQ→ B .

Definition 2.5. ([15]) We say that a sequence of linear bounded operators
BN : CN → CN converges compactly to the linear bounded operator

B : C (S)→ C (S) if BN QQ→ B and the following compactness condition holds:
ϕN ∈ CN , ‖ϕN‖ ≤M ⇒

{
BNϕN

}
is Q−compact.

Theorem 2.1. ([15])Let the following conditions hold:

(1) Ker (I +B) = { 0 };
(2) IN +BN (N ≥ N0) are Fredholm operators of index zero;

(3) ψN
Q→ψ, ψN ∈ CN , ψ ∈ C (S);

(4) BN → B compactly.

Then the equation (I +B) ϕ = ψ has a unique solution ϕ̃ ∈ C (S), the equation(
IN +BN

)
ϕN = ψN (N ≥ N0) has a unique solution ϕ̃N ∈ CN , and ϕ̃N

Q→ ϕ̃
with

c1
∥∥ (IN +BN

)
qN ϕ̃− ψN

∥∥ ≤ ∥∥ϕ̃N − qN ϕ̃ ∥∥ ≤ c2 ∥∥ (IN +BN
)
qN ϕ̃− ψN

∥∥ ,
where

c1 = 1/ sup
N≥N0

∥∥ IN +BN
∥∥ > 0 , c2 = sup

N≥N0

∥∥∥ (IN +BN
)−1∥∥∥ < +∞.
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Theorem 2.2. Let Imk > 0, then the equations (1.1) and (2.2) have unique so-
lutions ϕ∗ ∈ C (S) and zN∗ ∈ CN (N ≥ N0), respectively, and∥∥ zN∗ − pNϕ∗∥∥→ 0 as N →∞ with the following estimate for the rate of conver-
gence: ∥∥ zN∗ − pNϕ∗∥∥ ≤M [ ‖g‖∞ R (N) | lnR (N) |+ ω (g,R (N)) ] .

Proof. Let’s verify that the conditions of Theorem 2.1 are satisfied. It is proved

in [2] that if Imk > 0, then Ker
(
I − K̃

)
= { 0 }. Obviously, the opera-

tors IN − K̃N are Fredholm operators of index zero and the system operators
P =

{
pN
}

is a connecting system for the spaces C (S) and CN . Then

IN − K̃N PP→ I − K̃. By Definition 2.5, it remains only to verify the com-
pactness condition, which in view of Proposition 2.1 is equivalent to the fol-
lowing one: ∀

{
zN
}

, zN ∈ CN ,
∥∥zN∥∥ ≤ M , there exists a relatively compact

sequence
{
K̃N z

N
}
⊂ C (S) such that∥∥∥ K̃N zN − pN

(
K̃N z

N
) ∥∥∥→ 0 as N →∞.

As
{
K̃N z

N
}

, we choose the sequence

(
K̃N z

N
)

(x) = 2

N∑
j=1

zNj

∫
SNj

∂Φk (x, y)

∂~n (x)
dSy.

Take arbitrary points x′ , x′′ ∈ S such that |x′ − x′′ | = δ < d/2. Then∣∣∣ (K̃N z
N
) (

x′
)
−
(
K̃N z

N
) (

x′′
) ∣∣∣

≤ M
∥∥zN∥∥ ∫

S

∣∣∣∣ ∂Φk (x′, y)

∂~n (x′)
− ∂Φk (x′′, y)

∂~n (x′′)

∣∣∣∣ dSy ≤
M
∥∥zN∥∥ ∫

Sδ/2(x
′)

∣∣∣∣ ∂Φk (x′, y)

∂~n (x′)

∣∣∣∣ dSy +M
∥∥zN∥∥ ∫

Sδ/2(x
′′)

∣∣∣∣ ∂Φk (x′′, y)

∂~n (x′′)

∣∣∣∣ dSy+
M
∥∥zN∥∥ ∫

Sδ/2(x
′)

∣∣∣∣ ∂Φk (x′′, y)

∂~n (x′′)

∣∣∣∣ dSy +M
∥∥zN∥∥ ∫

Sδ/2(x
′′)

∣∣∣∣ ∂Φk (x′, y)

∂~n (x′)

∣∣∣∣ dSy+
M
∥∥zN∥∥ ∫

S\(Sδ/2(x′)
⋃
Sδ/2(x

′′))

∣∣∣∣ ∂Φk (x′, y)

∂~n (x′)
− ∂Φk (x′′, y)

∂~n (x′′)

∣∣∣∣ dSy.
Using the inequality∣∣∣∣ ∂Φk (x, y)

∂~n (x)

∣∣∣∣ ≤ M

|x− y|
,∀x , y ∈ S, x 6= y,

and the formula for reducing surface integral to a double integral, we obtain:∫
Sδ/2(x

′)

∣∣∣∣ ∂Φk (x′, y)

∂~n (x′)

∣∣∣∣ dSy ≤M ∫
Sδ/2(x

′)

1

|x′ − y |
dSy ≤ Mδ,

∫
Sδ/2(x

′′)

∣∣∣∣ ∂Φk (x′′, y)

∂~n (x′′)

∣∣∣∣ dSy ≤ Mδ.
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Besides, taking into account the inequalities |x′′ − y | ≥ δ/2 , ∀y ∈ Sδ/2 (x′)
and |x′ − y | ≥ δ/2 , ∀y ∈ Sδ/2 (x′′), we have:∫

Sδ/2(x
′)

∣∣∣∣ ∂Φk (x′′, y)

∂~n (x′′)

∣∣∣∣ dSy ≤M ∫
Sδ/2(x

′)

1

|x′′ − y |
dSy ≤

2M

δ
mes

(
Sδ/2

(
x′
))
≤Mδ,∫

Sδ/2(x
′′)

∣∣∣∣ ∂Φk (x′, y)

∂~n (x′)

∣∣∣∣ dSy ≤Mδ.

It is easy to show that∣∣∣∣ ∂Φk (x′, y)

∂~n (x′)
− ∂Φk (x′′, y)

∂~n (x′′)

∣∣∣∣ ≤ Mδ

|x′ − y|2
, ∀y ∈ S\

(
Sδ/2

(
x′
)⋃

Sδ/2
(
x′′
))
.

Hence we find∫
S\(Sδ/2(x′)

⋃
Sδ/2(x

′′))

∣∣∣∣ ∂Φk (x′, y)

∂~n (x′)
− ∂Φk (x′′, y)

∂~n (x′′)

∣∣∣∣ dSy ≤M δ | ln δ | .

Then ∣∣∣ (K̃N z
N
) (

x′
)
−
(
K̃N z

N
) (

x′′
) ∣∣∣ ≤M ∥∥zN∥∥ δ | ln δ | , (2.3)

and, consequently,
{
K̃N z

N
}
⊂ C (S).

The relative compactness of the sequence
{
K̃N z

N
}

follows from the Arzela

theorem. In fact, the uniform boundedness follows directly from the condition∥∥zN∥∥ ≤ M , and the equicontinuity follows from the estimate (2.3). Then, ap-
plying Theorem 2.1 we obtain that the equations (1.1) and (2.2) have unique
solutions ϕ∗ ∈ C (S) and zN∗ ∈ CN (N ≥ N0), respectively, with

c1 δN ≤
∥∥ zN∗ − pNϕ∗∥∥ ≤ c2 δN ,

where

c1 = 1/ sup
N≥N0

∥∥∥ IN − K̃N
∥∥∥ > 0 , c2 = sup

N≥N0

∥∥∥∥(IN − K̃N
)−1∥∥∥∥ < +∞,

δN = max
l=1,N

∣∣∣(K̃ϕ∗) (xl)−
(
K̃Nϕ∗

)
(xl)

∣∣∣ .
Using the inequality (2.1), we obtain:

δN ≤M [ ‖ϕ∗‖∞ R (N) | ln R (N) |+ ω (ϕ∗, R (N))] .

As ϕ∗ = −2
(
I − K̃

)−1
g, we have

‖ϕ∗‖∞ ≤ 2
∥∥∥ (I −K)−1

∥∥∥ ‖g‖∞ .
Besides, taking into account the estimate

ω
(
K̃ϕ∗, R (N)

)
≤M ‖ϕ∗‖∞ R (N) | ln R (N) | ,

we obtain:

ω (ϕ∗ , R (N)) = ω
(
−2g + K̃ϕ∗, R (N)

)
≤
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2ω (g,R (N)) + ω
(
K̃ϕ∗, R (N)

)
≤M ‖g‖∞ R (N) | ln R (N) | ,

consequently

δN ≤M [ ‖g‖∞ R (N) | ln R (N) |+ ω (g,R (N)) ] .

Theorem is proved. �

Let’s state the main result of this work.

Theorem 2.3. Let Imk > 0, x0 ∈ R3\D̄ and zN∗ = (z∗1 , z
∗
2 , . . . , z

∗
N )T be a

solution of the system of algebraic equations (2.2). Then the sequence

uN (x0) =
N∑
j=1

Φk (x0, xj) z∗j mesS
N
j

converges to the value of the solution u (x) of the external Neumann boundary
value problem for the Helmholtz equation at the point x0, with

|uN (x0)− u (x0)| ≤M [ ‖g‖∞ R (N) | ln R (N) |+ ω (g,R (N)) ] .

Proof. Let the function ϕ∗ ∈ C (S) be a solution of the equation (1.1). Then, as
is known, the function

u (x) =

∫
S

Φk (x, y)ϕ∗ (y) dSy , x ∈ R3\D̄,

is a solution of the external Neumann boundary value problem for the Helmholtz
equation. Evidently,

u (x0)− uN (x0) =

N∑
j=1

∫
SNj

Φk (x0, y)
(
ϕ∗ (xj)− z∗j

)
dSy+

N∑
j=1

∫
SNj

(Φk (x0, y) − Φk (x0, xj)) ϕ∗ (y) dSy+

N∑
j=1

∫
SNj

Φk (x0, y) (ϕ∗ (y)− ϕ∗ (xj)) dSy+

N∑
j=1

∫
SNj

(Φk (x0, xj)− Φk (x0, y))
(
ϕ∗ (xj)− z∗j

)
dSy+

N∑
j=1

∫
SNj

( Φk (x0, xj)− Φk (x0, y)) (ϕ∗ (y)− ϕ∗ (xj)) dSy.

As x0 /∈ S, then

|Φk (x0, xj)− Φk (x0, y)| ≤M R (N) ,∀ y ∈ SNj .
As a result, taking into account Theorem 2.2, we obtain the proof of Theorem
2.3. �
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