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ON A SPACE OF µ-STATISTICAL CONTINUOUS FUNCTIONS

SABINA R. SADIGOVA, RAZIYYA R. HASANLI, AND CEMIL KARACAM

Abstract. The concepts of µ-statistical discontinuities of the first and
second kinds for functions in some measurable space with the measure
µ are introduced in this work. The space of µ-statistical continuous
functions on some interval is considered, some properties of functions
in this space are studied. The relationship between this space and the
spaces of continuous and Lebesgue-summable functions in the case where
µ is a Lebesgue measure is also considered.

1. Introduction

Actually, the concept of statistical convergence of the sequences of complex
numbers has long been known as “almost convergence” (see, e.g., the monograph
of A.Zygmund [40]). It was introduced in the study of pointwise convergence of
the Fourier series of summable functions. Equivalent definition for this concept
was given by H. Fast in [11] (see also Steinhaus [37]), where it was (for the
first time) referred to as “statistical convergence”. In [33, 36, 12, 13], the basic
properties of statistically convergent sequences were mainly generalized in two
directions. The first direction included the generalizations of the concept of
statistical convergence itself, so there arose I-convergence (ideal convergence),
F -convergence (filter convergence), lacunar convergence, etc. (see, e.g., [7, 8,
15, 32, 25, 9, 14, 28, 35, 16, 17]). The second direction treated these kinds of
convergence in various mathematical structures (see [26, 1, 20, 19, 18, 3, 4, 5,
34, 38, 23, 2, 10, 24]). In [29, 31, 22], the statistical convergence was generalized
for double sequences, and the properties of this convergence were studied. The
number of all relevant works is too big, and it should be noted that it is impossible
to name all of them here.

Quite naturally, there arises the question about the existence of a continuous
analog of the concept of statistical convergence for number sequences (or for ele-
ments of other mathematical structure). The first step in this direction was made
by F.Moricz [27] who introduced the concepts of statistical limit and statistical
fundamentality for measurable functions at infinity and at a finite point gener-
ated by the Lebesgue measure. Moricz proved the equivalence of these concepts
and studied some of their properties. He also studied the relationship between
this kind of convergence and the one of Fourier series. But, this concept is not a
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generalization of the similar concept for sequences, because it does not imply, as
a special case, the concept of statistical convergence for sequences.

The direct generalization of the concept of statistical convergence in continuous
case was first carried out by B.T.Bilalov and S.R.Sadigova [6]. They introduced
the concepts of µ-statistical convergence and µ-statistical fundamentality, proved
their equivalence and studied some of their properties. They also introduced the
concept of µ-statistical continuity. µ-stat convergence is a direct generalization
of the statistical convergence in continuous case, as it turns out from this concept
as a special case.

In this work, we give definitions of µ-statistical one-sided limits at a point and
µ-statistical discontinuities of the first and second kind in some measurable space
with a measure. We consider the space Cst [a, b] of µ-statistical continuous func-
tions on some interval [a, b]. We prove that the space of continuous functions is
strictly embedded in Cst [a, b]. Moreover, we show that Cst [a, b] is not embedded
in the Lebesgue space Lp [a, b] for ∀p ∈ (0,+∞), i.e. Cst [a, b] \Lp (a, b) 6= ∅. We
also make comparison between the concept of µ-statistical continuity at a point
and the known concept of approximate continuity (see, e.g., [30]).

2. Needful Information

We will use the standard notation. N will be the set of all positive integers; R is
the set of all real numbers; ∃ will mean ”there exist(s)”; ∃! will mean ”there exists
a unique”; ⇒ will mean ”it follows”; ⇔ will mean equivalence. I+∞a ≡ [a ; +∞);
I−∞a ≡ (−∞; a].

Let (I∞a ; B;µ) be a measurable space with measure µ : B → I∞a , where B
σ-algebra of Borel subsets in Ia. We will assume that the measure µ σ- finite
measure and µ (I∞a ) = +∞. The measure of the set M ∈ B will be denoted by
|M |, i.e. |M | = µ (M).

We will need some concepts and facts from the work [6].

Definition 2.1. We say that the infinitely remote point (∞) is a point µ-stat
density for M ∈ B, if

lim
x→∞

|M ∩ Ixa |
|Ixa |

= 1,

where Ixa = [a, x] , ∀x ∈ I∞a .

Let f : I∞a → R be some B-measurable function and A ∈ R be some number.
For a given ε > 0 assume

Aε (f) ≡ {x ∈ I∞a : |f (x)−A| ≥ ε} .
Definition 2.2. We say that f has a µ-stat limit A at infinity if and only if

lim
x→∞

|Aε (f) ∩ Ixa |
|Ixa |

= 0, ∀ε > 0,

and this limit will be denoted as µ-st lim
x→∞

f (x) = A.

It is easy to see that the infinitely remote point (∞) is a point µ-stat density
for M if and only if

lim
x→∞

|M c ∩ Ixa |
|Ixa |

= 0,
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where M c = I∞a \M . It directly follows from the relation Ixa = (M ∩ Ixa ) ∪
(M c ∩ Ixa ). Consequently

µ-st lim
x→∞

f (x) = A⇔ lim
x→∞

|Acε (f) ∩ Ixa |
|Ixa |

= 1, ∀ε > 0.

The set of all subsets of I∞a , or which the infinity (∞) is the point of µ-stat
density, will be denoted by I∞st .

Definition 2.3. The sequence {an}n∈N ⊂ I∞a is said to have a st-lim equal to
(∞), if

lim
n→∞

card (aε ∩ en)

n
= 0, ∀ε > 0,

where en = {1; ....;n} and aε ≡ {k ∈ N : |ak| < ε}, this limit will be denoted as

an
st→∞, n→∞, or st- lim

n→∞
an =∞.

Let acε = {k ∈ N : |ak| ≥ ε}. Then from the relation en = (aε ∩ en) ∪ (acε ∩ en)
it directly follows that

st- lim
n→∞

an =∞⇔ lim
n→∞

card (acε ∩ en)

n
= 1, ∀ε > 0.

Definition 2.4. We say that the function f : I∞a → R has a st-lim equal to
A ∈ R, if st- lim

n→∞
f (an) = A with ∀ {an}n∈N ⊂ I∞a : st- lim

n→∞
an = ∞, and it will

be denoted as st- lim
x→∞

f (x) = A.

We will need the concept of µ-stat-fundamentality which introduced in [6].

Definition 2.5. We say that the B-measurable function f : I∞a → R is µ-stat
fundamental at infinity, if ∀ε > 0, ∃xε ∈ I∞a

lim
x→∞

|Xf (ε) ∩ Ixa |
|Ixa |

= 0,

where Xf (ε) ≡ {x ∈ I∞a : |f (x)− f (xε)| ≥ ε}.

3. Main Results

Let B be a class of all Borel subsets of R and (R; B;µ) be a measurable space
with a σ-finite measure µ : B → I∞0 : µ ((−∞, a)) = µ ((a,+∞)) = +∞, ∀a ∈ R.
Let E ∈ B be some set and x0 be its limit point. Let

E (x0) ≡
{
x :

(
x0 +

1

x

)
∈ E

}
and

It (x0) ≡

{
I
(t−x0)−1

a , (t− x0)−1 ≥ a,
Ia
(t−x0)−1 , (t− x0)−1 < a.

Let f : E → R be some (R; B)−measurable function. We give the following

Definition 3.1. We say that the function f has a µ-stat left-hand limit A, at
the point x0 if

lim
t→x0−0

∣∣∣Aεf (x0) ∩ It (x0)
∣∣∣

|It (x0)|
= 0, ∀ε > 0,
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where

Aεf (x0) ≡
{
x ∈ E (x0) :

∣∣f (x0 + x−1
)
−A

∣∣ ≥ ε} .
This fact will be denoted by µ-st lim

x→x0−0
f (x) = µ-st f (x0 − 0) = A.

Similarly, we define the concept of µ-stat right-hand limit at the point x0 :
µ-st lim

x→x0+0
f (x) = A = µ-st f (x0 + 0).

Similar to the classical case, if

µ-st lim
x→x0−0

f (x) = µ-st lim
x→x0+0

f (x) 6= f (x0) ,

then x0 is called µ-stat removable discontinuity point, if ∃µ-st lim
x→x0±0

f (x) and

µ-st lim
x→x0−0

f (x) 6= µ-st lim
x→x0+0

f (x) ,

then x0 is called µ-stat discontinuity of the first kind and the quantity

∆st
f (x0) = µ-st lim

x→x0+0
f (x)− µ-st lim

x→x0−0
f (x) ,

is called a µ-stat jump of the function f at x0.
In other cases, x0 is called a µ-stat discontinuity point of the second kind.

Example 3.1. Let (R; B;µ) be a measurable space with a Lebesgue measure.
Consider the function

f (x) =

{
sin x, x ∈ Q,
sign x x ∈ R\Q,

where Q are rational numbers in R. The point x0 = 0 is a µ-statistical dis-
continuity of the first kind and ∆st

f (0) = 2. All other points are µ-statistical
continuity points.

If µ-st lim
x→x0−0

f (x) = µ-st lim
x→x0+0

f (x) = f (x0) holds, then f (·) is called a

µ-stat continuous at the point x0.
Let f : [a, b]→ R be some function. It is clear that if f ∈ C [a, b], then f (·) is

a µ-stat continuous on [a, b]. The following question arises naturally.

Question 3.1. Let f : [a, b]→ R be a µ-stat continuous on [a, b]. Is it continuous
on [a, b]?

It is obvious that if f (·) has a discontinuity of the first kind at the point
x0 ∈ (a, b), then x0 is also a µ-stat discontinuity point of the first kind and
moreover

µ-st f (x0 ± 0) = f (x0 ± 0) .

Therefore, if f (·) has a discontinuity of the first kind at the point x0, then it can
not be a µ-stat continuous at this point.

Denote the linear space of µ-statistical continuous functions on [a, b] over the
field K (K ≡ C or R) by Cst [a, b]. It is absolutely clear that the pointwise limit
of the sequence of µ-statistical continuous functions may not be µ-statistical
continuous on [a, b].

Let’s give an example of a function on the interval E = [−1, 1] which is not
continuous on E, but, at the same time, is µ-statistical continuous on E.

The following lemma is true.
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Lemma 3.1. The strict embedding C [a, b] ⊂ Cst [a, b] : Cst [a, b] \C [a, b] 6= ∅
holds true.

Proof. The embedding C [a, b] ⊂ Cst [a, b] is valid. We will prove the validity of
Cst [a, b] \C [a, b] 6= ∅.

Consider the following series
∞∑
k=1

αk, (3.1)

such that the remainder terms satisfy the conditions

σn ≤
1

(n+ 1)3
, (3.2)

where σn =
∑∞

k=n αk, αk > 0 , ∀k ∈ N .
Let a = −1, b = 1 and µ be a Lebesgue measure. Assume

Oδ (x) ≡ (x− δ, x+ δ) ∩ [−1, 1] .

Denote by in ⊂
(

1
n+1 ,

1
n

)
an arbitrary interval of length αn, i.e. |in| = µ (in) =

αn, n ∈ N .

Figure 1

Let xn ∈ in be the middle of the interval in = (an, bn). Consider the points
(1; 0), (b1; 0), (x1; 1), (a1; 0), (b2; 0),. . . , (see Fig. 1) and connect them with the
intervals. Denote the function generated by this graph and the interval [−1, 0]
by f (x). It is easy to see that this function is defined by the formula

f (x) =


x−bn
xn−bn , if x ∈ [xn, bn],
x−an
xn−an , if x ∈ [an, xn],

0 , otherwise.

It is clear that f /∈ C [−1, 1], because there exists no f (+0). Let’s show that
f ∈ Cst [−1, 1]. Obviously, f (·) is continuous at every point x0 6= 0, and therefore
it is µ-statistical continuous at these points. Let’s show that f (·) is µ-statistical
continuous at the point x = 0, too. To do so, it suffices to show that there exist
one-sided statistical limits at the point x = 0 and they are equal to each other.
Let t < 0. Take ∀ε > 0. It is clear that

∀x ∈ It (0)⇒ x < 0⇒ f
(
x−1

)
= 0⇒

∣∣f (x−1)− f (0)
∣∣ < ε⇒ Aεf (0) = ∅ ⇒

⇒ lim
t→−0

∣∣∣Aεf (0) ∩ It (0)
∣∣∣

|It (0)|
= 0⇒ µ-st f (−0) = 0.

Now, consider the case t > 0. We have

It (0) =
(
0, t−1

)
⇒ |It (0)| = t−1.
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Let ε > 0 be an arbitrary number. In this case E = [−1, 1] and consequently

E (0) =
{
x : x−1 ∈ E

}
= (−∞,−1) ∪ (1,+∞) .

As a result (x > 0):

Aεf (0) =
{
x ∈ E (0) :

∣∣f (x−1)− f (0)
∣∣ ≥ ε} =

=
{
x ∈ E (0) :

∣∣f (x−1)∣∣ ≥ ε} ⊂ ∪k {x : x−1 ∈ ik
}
.

It suffices to consider the case t = n−1 → 0. We have(
Aεf (0) ∩ In−1 (0)

)
⊂ ∪nk=1

{
x : x−1 ∈ ik

}
⇒
∣∣Aεf (0) ∩ In (0)

∣∣ ≤
≤

n∑
k=1

∣∣∣∣( 1

bk
,

1

ak

)∣∣∣∣ =
n∑
k=1

(
1

ak
− 1

bk

)
=

n∑
k=1

bk − ak
akbk

=
n∑
k=1

αk
akbk

.

From (ak, bk) ⊂
(

1
k+1 ,

1
k

)
, it follows

akbk ∼
1

k2
.

Consequently ∣∣Aεf (0) ∩ In−1 (0)
∣∣ ≤ c n∑

k=1

k2αk.

Let αk = 1
k4

. Then it is clear that

lim
n→∞

∣∣∣Aεf (0) ∩ In−1 (0)
∣∣∣

|In−1 (0)|
≤ lim

n→∞

c
∑n

k=1
1
k2

n
= 0.

Thus, it is proved that µ-st f (+0) = 0, and, as a result f (·) is a µ-stat continuous
at x = 0, and, hence, f ∈ Cst [−1, 1]. J

Similarly, we can give an example of non-bounded function on the interval[−1, 1]
which is a µ-statistical continuous on [−1, 1].

The following lemma is also true.

Lemma 3.2. The relations Cst [a, b] \Lp (a, b) 6= ∅∧ Lp (a, b) \Cst [a, b] 6= ∅, ∀p ∈
[1,+∞) hold true.

Proof. The relation Lp (a, b) \Cst [a, b] 6= ∅ is obvious, since the function having
a removable discontinuity point does not belong to Cst [a, b]. Let us prove the
relation Cst [a, b] \Lp (a, b) 6= ∅ .

Consider the series (3.1), satisfying the condition (3.2). Similarly to the pre-
vious case, we consider the intervals

in = (an, bn) ⊂
(

1

n+ 1
,

1

n

)
: |in| = αn,

and let xn = an+bn
2 . Consider the points (1; 0), (b1; 0),

(
x1;α

−1
1

)
, (a1; 0), (b2; 0),(

x2;α
−1
2

)
,. . . .



76 SABINA R. SADIGOVA, RAZIYYA R. HASANLI, AND CEMIL KARACAM

Let us connect these points by segments. Denote by f (x) the function obtained
by these segments and the segment [−1, 0]. From previous arguments it follows
that f ∈ Cst [−1, 1]. We have∫ 1

−1
|f (x)| dx =

∞∑
k=1

∫
ik

|f (x)| dx =

∞∑
k=1

1

2
αkf (xk) =

1

2

∞∑
k=1

1 = +∞.

Thus, f /∈ Lp (0, 1) , ∀p ∈ [1,+∞). It is clear that

C [a, b] ⊂ (Cst [a, b] ∩ Lp (a, b)) ,∀p ∈ [1,+∞) ,

is valid. J
The previous example shows that C [a, b] is not dense in Cst [a, b] with respect

to the norm ‖ · ‖p . The following question arises naturally.

Question 3.2. Is there such a metric or such convergence, with respect to which
the space Cst [a, b] is complete?

Assume
CJst [a, b] ≡ {f ∈ Cst [a, b] : ‖f‖∞ < +∞} ,

where
‖f‖∞ = sup

[a,b]
|f (·)| .

It is clear that the following strict embedding holds true

C [a, b] ⊂ CJst [a, b] ⊂ Lp (a, b) , ∀p ∈ (0,+∞) .

Under Lp (a, b) we understand the complete metric space of measurable (with
respect to the Lebesgue measure) functions on (a, b), for p ∈ (0, 1), with finite
integral ∫ b

a
|f (t)|p dt < +∞,

with an ordinary metric. Thus, the following theorem is true.

Theorem 3.1. Let (R; B;µ) be a measurable space with a σ-finite measure µ on
the σ-algebra of Borel sets B and µ ((−∞, x0)) = µ ((x0,+∞)) = +∞ for some
x0 ∈ R. Then the embeddings

i) C [a, b] ⊂ (Cst [a, b] ∩ Lp (a, b)) , ∀p ∈ (0,+∞)
and

ii) C [a, b] ⊂
(
CJst [a, b] ⊂ Lp (a, b)

)
, ∀p ∈ (0,+∞)

hold true, and they are strict.

Let us show that the space CJst [a, b] is complete with respect to the norm
C [a, b] ⊂ (Cst [a, b] ∩ Lp (a, b)) , ∀p ∈ (0,+∞). Let {fn}n∈N ⊂ CJst [a, b] be some
fundamental sequence, i.e.

‖fn − fm‖∞ → 0 , n,m→∞.
Fixing ∀x ∈ [a, b], hence we obtain that {fn (x)}n∈N is a fundamental sequence
and, as a result, it converges to a certain value f (x). Let us show that f ∈
CJst [a, b]. Let ε > 0 be an arbitrary number and x0 ∈ [a, b] be an arbitrary point.
For any arbitrary n ∈ N , we assume

En (ε) ≡
{
x : |fn (x)− fn (x0)| ≥

ε

3

}
,
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En (f ; ε) ≡
{
x : |f (x)− fn (x)| ≥ ε

3

}
.

We have

|f (x)− f (x0)| ≤ |f (x)− fn (x)|+ |fn (x)− fn (x0)|+ |fn (x0)− f (x0)| . (3.3)

It is clear that ‖fn − f‖∞ → 0 , n→∞. Therefore, it is clear that

|fn (x)− f (x)| < ε

3
, ∀x ∈ [a, b] ,

holds. Then from (3.3) it follows

{x : |f (x)− f (x0)| ≥ ε} ⊂ En (ε) , ∀n ≥ nε.

Since, otherwise

|f (x)− f (x0)| ≤
2

3
ε+ |fn (x)− fn (x0)| <

2

3
ε+

1

3
ε = ε.

Consequently

({x : |f (x)− f (x0)| ≥ ε} ∩Oδ (x0)) ⊂ (En (ε) ∩Oδ (x0)) ,

and, as a result

|{x : |f (x)− f (x0)| ≥ ε} ∩Oδ (x0)| ≤ |En (ε) ∩Oδ (x0)| , ∀n ≥ nε. (3.4)

Take ∀n ≥ nε and fix. So, fn0 ∈ CJst [a, b], then from (3.4) we obtain

lim
δ→0

|{x : |f (x)− f (x0)| ≥ ε} ∩Oδ (x0)|
|Oδ (x0)|

≤ lim
δ→0

|En0 (ε) ∩Oδ (x0)|
Oδ (x0)

= 0.

Since x0 is arbitrary, we obtain f ∈ CJst [a, b]. So, the following theorem is true.

Theorem 3.2. The space CJst [a, b] is a Banach space with respect to the norm
‖ · ‖∞.

Compare the concept µ-stat continuity with the concept of approximate con-
tinuity. Let us recall the definition of approximate continuity.

Let E ⊂ R be some measurable (with respect to the Lebesgue measure) set
and assume

E (x0;h) = E ∩ [x0 − h, x0 + h] .

Definition 3.2. The limit

Dx0E = lim
h→0

mE (x0;h)

2h

(in case it exists) is called a density of the set E at the point x0.

If Dx0E = 1, then x0 is a point of density for the set E, and if Dx0E = 0, then
x0− is a rarefaction point E.

In our case, x0 is a point of m-stat density for the set E, where m is a Lebesgue
measure.

The following theorem is known.

Theorem 3.3. Almost all points of measurable set E are its density point.

More details about the following concept can be found in [30].
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Definition 3.3. Let the function f (x) be given on the segment [a, b] and x0 ∈
[a, b]. If there exists a measurable set E ⊂ [a, b] with a density point x0 such that
f (x) is continuous along E at the point x0, then f (x) is said to be approximate
continuous at the point x0.

In our case, the concept of approximate continuity coincides with the one of m-
statistical continuity at the point x0. Let’s recall the following Denjoy theorem.

Theorem 3.4. (Denjoy) If f (x) is a measurable and almost everywhere finite
function in [a, b], then it is approximate continuous at almost every point in [a, b].

Consequently, if f (·) is measurable and almost everywhere finite in [a, b], then
it is m-statistical continuous almost everywhere in [a, b].
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