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OPTIMIZATION OF FOURTH-ORDER DIFFERENTIAL

INCLUSIONS

ELIMHAN N. MAHMUDOV

Abstract. The present paper studies the sufficient conditions of opti-
mality for Cauchy problem of fourth-order differential (PD) inclusions.
Mainly our purpose is to derive sufficient optimality conditions for men-
tioned problems with fourth-order differential inclusions (DFIs) and trans-
versality conditions. The basic idea of obtaining optimal conditions
is the use of locally adjoint mappings (LAM), defined by Hamiltonian
functions. Moreover, in the application of these results the fourth-order
linear optimal control problems with linear differential inclusions are
considered. We analyze the proposed method for a class of Lagrange
problem with integrand of quadratic form involving symmetric nonneg-
ative semidefinite matrix. An illustrative example is given. Theoreti-
cal analysis and practical results show that our method is simple and
easy to implement and is efficient for computing optimal solution of the
fourth order differential inclusions. The results reveal that the proposed
method is very accurate and efficient.

1. Introduction

The investigated optimization problem is the logical continuation of the work
done in previous paper of Mahmudov [19], where are mainly concerned with the
necessary and sufficient conditions of optimality for Bolza problem with fourth-
order discrete and discrete-approximate inclusions. In the last decade discrete and
continuous time processes with lumped and distributed parameters found wide
application in the field of mathematical economics and in problems of control
dynamic system optimization and differential games (see [6]-[10], [13, 14, 16, 17],
[20]-[22]); a great deal of studies on the optimal control problems with higher or-
der ordinary and partial differential inclusions have been made by many authors
[2]-[7], [11, 12, 15, 18, 19], [23]-[28]. As is pointed out in [26], boundary value
problems (BVPs) for second and fourth-order differential equations play a very
important role in both theory and applications. In recent years, BVPs for second
and higher order differential equations have been extensively studied. In partic-
ular, fourth-order linear differential equations [26], subjected to some boundary
conditions arise in the mathematical description of some physical systems (for
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example, the mathematical models of deflection of beams [25, 26]). These beams,
which appear in many structures, deflect under their own weight or under the
influence of some external forces. For example, if a load is applied to the beam
in a vertical plane containing the axis of symmetry, the beam undergoes a dis-
tortion, and the curve connecting the centroids of all cross sections is called the
deflection curve or elastic curve.

Along the way, the problems accompanied with the fourth-order discrete and
differential inclusions are more complicated due to the higher-order derivatives
and their discrete analogues. In fact, the difficulty is to construct adjoint the
inclusions and the transversality conditions. A convenient procedure for elimi-
nating this complication in optimal control theory involving higher order deriva-
tives is a formal transformation of these problems to the system of first order
differential inclusions or equations. It appears that in practice returning to the
original higher order problem and expressing the obtained optimality conditions
by original problem dataset, in general, is very difficult and sometimes impossible.
Consequently, a lot of investigations on the second-order differential inclusions
usually are devoted to existence and viability problems. The first viability result
for second-order differential inclusions were given by Cernea [5]. The paper [4]
gives necessary and sufficient conditions ensuring the existence of solutions to
the second-order differential inclusions with state constraints. In the paper [24],
a class of nonlinear BVPs for second-order differential inclusions with nonlinear
perturbations is studied.

In this paper, we deal with the problem for fourth-order differential inclusions

minimize J [x(·)] =

∫ 1

0
g
(
x(t), x′(t), x′′(t), x′′′(t), t

)
dt

+ ϕ
(
x(1), x′(1), x′′(1), x′′′(1)

)
(1.1)

(PFDI)
d4x(t)

dt4
∈ F

(
x(t), x′(t), x′′(t), x′′′(t), t

)
, a.e. t ∈ [0, 1], (1.2)

x(0) = α0, x
′(0) = α1, x

′′(0) = α2, x
′′′(0) = α3, (1.3)

Here F (·, t) : R4n ⇒ Rn is a set-valued mapping, g(·, t) : Rn → R1 is continuous
function with respect to x, ϕ : Rn → R1 -proper function and αk, k = 0, 1, 2, 3 are
fixed vectors. The problem is to find a trajectory x̃(t) of the Cauchy problem (1.1)
(1.3) for the fourth-order differential inclusions satisfying (1.2) almost everywhere
(a.e.) on [0, 1] and the initial conditions (1.3) that minimizes the Bolza functional
J [x(·)]. We label this problem as (PFDI). Here, a feasible trajectory x(·) is an
absolutely continuous function having absolutely continuous derivatives up to

order three on a time interval [0, 1] for which d4x(·)
dt4
∈ Ln1

(
[0, 1]

)
. We observe that

such class of functions Wn
1,4

(
[0, 1]

)
is a Banach space, endowed with the different

equivalent norms. For instance,

||x(·)|| =
3∑

k=0

|x(k)(0)| + ||xIV (·)||1 or ||x(·)|| =
4∑

k=0

||x(k)(·)||1, where ||x(k)(·)||1 =

1∫
0

|x(k)(t)|dt, and |x| is an Euclidean norm in Rn.
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In what follows we give an overview of mathematical optimization with higher
order differential inclusions, focusing on the special role of convex and nonconvex
optimization.

In the paper [23], the nonlinear fourth-order differential equation u(IV ) ±
F (u, x)u = 0 is considered, where F is a positive monotone function of u. In
the paper [7], the existence of solutions of a class of four-point boundary value
problems for a fourth-order ordinary differential equation is studied. In the pa-
per [25], a fourth-order differential equation with nonlinear boundary condition
is considered and the existence and uniqueness of a solution is proved. In [26],
some sufficient conditions for (2,2)-disconjugacy are established and the distri-
bution of zeros of nontrivial solutions of fourth-order differential equations are
studied. The results are extended to cover some boundary value problems in the
bending of beams. The main results are proved by making use of a generalization
of Hardy’s inequality and some Opial-type inequalities. In [2] an asymptotic the-
ory for a class of fourth-order differential equations is developed. Under general
conditions on the coefficients of the differential equation, the forms of the as-
ymptotic solutions such that the solutions have different orders of magnitude for
large x, are obtained. In paper [11] the existence of solutions of a class of four-
point boundary-value problems for fourth-order ordinary differential equations
are proved. This analysis relies on a fixed-point theorem due to Krasnoselskii
and Zabreiko. In [28], by the method of variation, the existence, nonexistence,
and multiplicity of solutions of an Ambrosetti-Prodi type problem for a system
of second and fourth-order ordinary differential equations are studied. In [27],
the sufficient conditions for the linear differential equations of fourth-order are
established and a suitable Green’s function and its estimates are used.

The present paper is devoted to one of the difficult and interesting field op-
timization of fourth-order ordinary discrete and differential inclusions. To the
authors knowledge, this is the first paper, where optimization of fourth-order
differential inclusions is discussed. The novelty of our approach is to use Euler-
Lagrange and Hamiltonian type of adjoint differential inclusions to establish suf-
ficient conditions of optimality for the fourth order differential inclusions. The
stated problems and the corresponding results are new.

The paper is organized as follows.
Section 2 provides the needed facts from the book of Mahmudov [14]; Hamilton-

ian function H and argmaximum sets of a set-valued mapping F , the LAM intro-
duced and the basic idea-discretization method to establish the Euler-Lagrange
inclusion for problem (PFDI) is described.

In Section 3 via Euler-Lagrange and Hamiltonian type of adjoint inclusions the
sufficient conditions of optimality for the problem (PFDI) are proved.

In Section 4, some interesting applications of Theorems 3.1 and 3.2 are given.
Namely, in the form of Weierstrass-Pontryagin maximum principle the sufficient
condition of optimality for fourth-order linear discrete inclusions with a qua-
dratic form involving symmetric nonnegative semidefinite matrix are derived. In
particular, it is shown that this method can also play an important role in com-
putational procedures for of the solution.

The conclusion is made in Section 5.
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2. Notations and preliminaries

Let 〈x, y〉 be an inner product of elements x, y ∈ Rn. Assume that F : R4n ⇒
Rn is a set-valued mapping from R4n = Rn×Rn×Rn×Rn into the set of subsets of
Rn. Then a set-valued mapping F : R4n ⇒ Rn is convex if its gphF = {(x, v, v4) :
v4 ∈ F (x, v)}, v = (v1, v2, v3), x, vi ∈ Rn, i = 1, 2, 3 is a convex subset of R5n.
It is convex-valued if F (x, v) is a convex set for each (x, v) ∈ domF = {(x, v) :
F (x, v) 6= ∅}. Hamiltonian function and argmaximum set for set-valued mapping
F is defined as follows

HF (x, v, v∗4) = sup
v4

{〈
v4, v

∗
4

〉
: v4 ∈ F (x, v)

}
, v∗4 ∈ Rn,

FArg(x, v; v∗4) ≡ FA(x, v; v∗4) =
{
v4 ∈ F (x, v) : 〈v4, v∗4〉 = HF (x, v, v∗4)

}
,

respectively. For convex F we set HF (x, v, v∗4) = −∞ if F (x, v) = ∅. For
the readers convenience let us mention the following definition from the book of
Mahmudov [14].

Definition 2.1. A convex cone KA(z0) is called the cone of tangent directions at
a point z0 = (x0, v0, v04) ∈ A(A ⊂ R5n) if from z̄ = (x̄, v̄, v̄4) ∈ KA(z0) it follows
that z̄ is a tangent vector to the set A, i.e., there exists a function µ(λ) ∈ R5n

satisfying z0 + λz̄+ µ(λ) ∈ A for sufficiently small λ > 0, where λ−1µ(λ)→ 0, as
λ ↓ 0.

Note that this cone may be regarded as a particular case of the corresponding
tangent cone described in [3].

Clearly, for a convex set A at a point (x0, v01, v
0
2) ∈ A we have µ(λ) ≡ 0.

In general, for a mapping F a set-valued mapping F ∗(·, z0) : Rn ⇒ R4n defined
by

F ∗
(
v∗4; (x0, v0, v04)

)
:=
{

(x∗, v∗) : (x∗, v∗,−v∗4) ∈ K∗gphF (x0, v0, v04)
}

is called a locally adjoint set-valued mapping (LAM) to F at a point (x0, v0, v04) ∈
gphF , whereK∗gphF (x0, v0, v04) is the dual to a cone of tangent vectorsKgphF (x0, v0,

v04). In what follows another way to define LAMs in the ”non-convex” case is the
next one

F ∗
(
v∗4; (x0, v0, v04)

)
:=
{

(x∗, v∗) : HF (x, v, v∗4)−HF (x0, v0, v∗4)

≤ 〈x∗, x− x0〉+ 〈v∗, v − v0〉,∀(x, v) ∈ R4n
}
, v4 ∈ FA(x, v; v∗4),

which is called the LAM to non-convex mapping F at a point (x0, v0, v04) ∈ gphF .
The main advantage of this definition is its simplicity. Clearly, for the convex
mapping F the Hamiltonian function HF (·, v∗4) is concave and the latter definition
of LAM coincide with the previous definition of LAM.
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We note that the method of discrete-approximation of (PFDI) with fourth
order differential inclusions has been very effective in the investigation of opti-
mality conditions [19], where the basic idea was to study the fourth-order discrete-
approximation problem:

minimize J [x(·)] =

1−4δ∑
t=4δ

δg
(
x(t),∆x(t),∆2x(t),∆3x(t), t

)
+ ϕ

(
x(1− 3δ),∆x(1− 3δ),∆2x(1− 3δ),∆3x(1− 3δ)

)
,

∆4x(t) ∈ F
(
x(t),∆x(t),∆2x(t),∆3x(t), t

)
, t = 0, δ, ..., 1− 4δ, (2.1)

x(0) = α0, ∆x(0) = α1, ∆2x(0) = α2, ∆3x(0) = α3.

Here sth-order (s = 1, 2, 3, 4) difference operator is defined as follows:

∆sx(t) =
1

δs

s∑
k=0

(−1)kCks x
(
t+(s−k)δ

)
, CKs =

s!

k!(s− k)!
, t = 0, δ, ..., 1−δ. (2.2)

In the paper [19] for the Cauchy problem (2.1) is applied a generalized discrete-
approximate Euler-Lagrange transformation formula. It appears that by passing
to the limit in necessary and sufficient conditions of optimality for problem (2.1),
(2.2) as δ → 0 (at least formally), we can establish the sufficient conditions
of optimality for continuous problem (PFDI). But in the presented paper to
avoid a long calculations connected with the discretization method, establishment
of optimality and endpoint conditions at the endpoint t = 1 for the discrete-
approximate problem (2.1), (2.2) are omitted. In the next section are studied
sufficient conditions of optimality for problem (PFDI).

3. Sufficient conditions of optimality for (PFDI)

In this section we introduce the basic notions and notation to be used in
the rest of the paper. At first consider a convex optimization problem, where
F (·, t) : R4n ⇒ Rn is a convex set-valued mapping, g(·, t), ϕ : R4n → R1 is
continuous and convex with respect to the four components.

As a result of approximation method described at the end of Section 2 we
establish so-called the fourth-order Euler-Lagrange differential inclusion for the
convex optimization problem (PFDI):

(i)
(
d4x∗(t)
dt4

+
dη∗3(t)
dt , η∗3(t) +

dη∗2(t)
dt , η∗2(t) +

dη∗1(t)
dt , η∗1(t)

)
∈ F ∗

(
x∗(t); (x̃(t), x̃′(t), x̃′′(t), x̃′′′(t)), t

)
−∂(x,v)g

(
x̃(t), x̃′(t), x̃′′(t), x̃′′′(t), t

)
,

a.e. t ∈ [0, 1].

It is important to note a subtlety in our definition of endpoint conditions in the
convex optimization problem at the endpoint t = 1,

(ii)
(
d3x∗(1)
dt3

+ η∗3(1),−d2x∗(1)
dt2

+ η∗2(1),+dx∗(1)
dt + η∗1(1),−x∗(1)

)
∈ ∂ϕ

(
x̃(1), x̃′(1), x̃′′(1), x̃′′′(1)

)
.

We emphasize again that our notation and terminology are generally consistent
with those in Mordukhovich [22], Mahmudov [14] for first order ordinary differ-
ential inclusions.
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Later on we suppose that x∗(t), t ∈ [0, 1], is absolutely continuous function

with the higher order derivatives until three and d4x∗(·)
dt4

∈ Ln1
(
[0, 1]

)
. In addition

let η∗k(t), k = 1, 2, 3, t ∈ [0, 1] be absolutely continuous and
dη∗k(·)
dt ∈ L

n
1

(
[0, 1]

)
, k =

1, 2, 3.
Besides, in terms of argmaximum set we shall offer a condition providing that

the LAM F ∗ is nonempty at a given point:

(iii) d4x̃(t)
dt4
∈ FA

(
x̃(t), x̃′(t), x̃′′(t), x̃′′′(t);x∗(t), t

)
, a.e. t ∈ [0, 1].

It turns out that the following theorem is true.

Theorem 3.1. Let g(·, t), ϕ : R4n→ R1 be continuous convex functions, F be a
convex set-valued mapping. Then for the optimality of the trajectory x̃(t) in the
convex optimization problem (PFDI) it is sufficient that there exists a collection
of absolutely continuous functions {x∗(t), η∗k(t), k = 1, 2, 3}, t ∈ [0, 1] satisfying
a.e. the fourt-order Euler-Lagrange differential inclusion (i), (iii) and endpoint
condition (ii) at the endpoint t = 1.

Proof. We remind that by Theorem 2.1 [16] the LAM F ∗
(
v∗4; (x, v), t

)
=

∂(x,v)HF (x, v, v∗4, t), v4 ∈ FA(x, v; v∗4, t), v = (v1, v2, v3). On the other hand by
convention −∂(x,v)g(·, t) = ∂(x,v)(−g(·, t)). Then taking into account the Moreau-
Rockafellar theorem [14, 22] from the condition (i) in term of Hamiltonian func-
tion we obtain the fourth-order adjoint differential inclusion

(d4x∗(t)
dt4

+
dη∗3(t)

dt
, η∗3(t) +

dη∗2(t)

dt
, η∗2(t) +

dη∗1(t)

dt
, η∗1(t)

)
∈ ∂(x,v)

[
HF

(
x̃(t), x̃′(t), x̃′′(t), x̃′′′(t), x∗(t), t

)
− g
(
x̃(t), x̃′(t), x̃′′(t), x̃′′′(t), t

)]
.

By using of the classical subdifferential definition, we rewrite the last relation in
the form:

HF

(
x(t), x′(t), x′′(t), x′′′(t), x∗(t), t

)
−HF

(
x̃(t), x̃′(t), x̃′′(t), x̃′′′(t), x∗(t), t

)
−g
(
x(t), x′(t), x′′(t), x′′′(t), t

)
+ g
(
x̃(t), x̃′(t), x̃′′(t), x̃′′′(t), t

)
≤
〈d4x∗(t)

dt4
+
dη∗3(t)

dt
, x(t)− x̃(t)

〉
+
〈
η∗3(t) +

dη∗2(t)

dt
, x′(t)− x̃′(t)

〉
(3.1)

+
〈
η∗2(t) +

dη∗1(t)

dt
, x′′(t)− x̃′′(t)

〉
+ 〈η∗1(t), x′′′(t)− x̃′′′(t)〉.

It follows from the definition of Hamiltonian function and from (3.1) that

〈d4x(t)

dt4
, x∗(t)

〉
−
〈d4x̃(t)

dt4
, x∗(t)

〉
− g
(
x(t), x′(t), x′′(t), x′′′(t), t

)
g
(
x̃(t), x̃′(t), x̃′′(t), x̃′′′(t), t

)
≤
〈d4x∗(t)

dt4
, x(t)− x̃(t)

〉
+
d

dt

〈
η∗3(t), x(t)− x̃(t)

〉
+
d

dt

〈
η∗2(t), x′(t)− x̃′(t)

〉
+
d

dt

〈
η∗1(t), x′′(t)− x̃′′(t)

〉
.
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Now let us rewrite this inequality as follows

g
(
x(t), x′(t), x′′(t), x′′′(t), t

)
− g
(
x̃(t), x̃′(t), x̃′′(t), x̃′′′(t), t

)
≥
〈d4(x(t)− x̃(t))

dt4
, x∗(t)

〉
−
〈d4x∗(t)

dt4
, x(t)− x̃(t)

〉
(3.2)

− d

dt

〈
η∗1(t),

d2(x(t)− x̃(t))

dt2

〉
− d

dt

〈
η∗2(t),

d(x(t)− x̃(t))

dt

〉
− d

dt

〈
η∗3(t), x(t)− x̃(t)

〉
.

Integrating both sides of relation (3.2) we obtain∫ 1

0

[
g
(
x(t), x′(t), x′′(t), x′′′(t), t

)
− g
(
x̃(t), x̃′(t), x̃′′(t), x̃′′′(t), t

)]
dt

≥
∫ 1

0

[〈d4(x(t)− x̃(t))

dt4
, x∗(t)

〉
−
〈d4x∗(t)

dt4
, x(t)− x̃(t)

〉]
+
〈
η∗1(0),

d2(x(0)− x̃(0)

dt2

〉
+
〈
η∗2(0),

d(x(0)− x̃(0)

dt

〉
+
〈
η∗3(0), x(0)− x̃(0)

〉
.

−
〈
η∗1(1),

d2(x(1)− x̃(1)

dt2

〉
−
〈
η∗2(1),

d(x(1)− x̃(1)

dt

〉
−
〈
η∗3(1), x(1)− x̃(1)

〉
.

(3.3)

Let us denote

A =
〈d4(x(t)− x̃(t))

dt4
, x∗(t)

〉
−
〈d4x∗(t)

dt4
, x(t)− x̃(t)

〉
.

Then this relation can be transformed to an equivalent form

A =
d

dt

〈d3(x(t)− x̃(t))

dt3
, x∗(t)

〉
− d

dt

〈d3x∗(t)
dt3

, x(t)− x̃(t)
〉

(3.4)

− d

dt

〈d2(x(t)− x̃(t)

dt2
,
dx∗(t)

dt

〉
+
d

dt

〈d(x(t)− x̃(t)

dt
,
d2x∗(t)

dt2

〉
.

Consequently, in this way, repeating the techniques from [17] it can be shown the
following remarkable integral representation of A (see(3.4)):∫ 1

0
Adt =

〈d3(x(1)− x̃(1))

dt3
, x∗(1)

〉
−
〈d3(x(0)− x̃(0))

dt3
, x∗(0)

〉
−
〈d3x∗(1)

dt3
, x(1)− x̃(1)

〉
+
〈d3x∗(0)

dt3
, x(0)− x̃(0)

〉
−
〈d2(x(1)− x̃(1))

dt2
,
dx∗(1)

dt

〉
+
〈d2(x(0)− x̃(0))

dt2
,
dx∗(0)

dt

〉
+
〈d2x∗(1)

dt2
,
d(x(1)− x̃(1))

dt

〉
−
〈d2x∗(0)

dt2
,
d(x(0)− x̃(0))

dt

〉
. (3.5)

Therefore, substitution (3.5) into (3.3) and taking into account that x(t), x̃(t)
are feasible trajectories (x(0) = x̃(0) = α0, x

′(0) = x̃′(0) = α1, x
′′(0) = x̃′′(0) =
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α2, x
′′′(0) = x̃′′′(0) = α3) we have∫ 1

0

[
g
(
x(t), x′(t), x′′(t), x′′′(t), t

)
− g
(
x̃(t), x̃′(t), x̃′′(t), x̃′′′(t), t

)]
dt

≥
〈d3(x(1)− x̃(1))

dt3
, x∗(1)

〉
−
〈d3x∗(1)

dt3
, x(1)− x̃(1)

〉
+
〈d2x∗(1)

dt2
,
d(x(1)− x̃(1))

dt

〉
−
〈d2(x(1)− x̃(1))

dt2
,
dx∗(1)

dt

〉
−
〈
η∗1(1),

d2(x(1)− x̃(1))

dt2

〉
−
〈
η∗2(1),

d(x(1)− x̃(1))

dt

〉
−
〈
η∗3(1), x(1)− x̃(1)

〉
.

Consequently, we have∫ 1

0

[
g
(
x(t), x′(t), x′′(t), x′′′(t), t

)
− g
(
x̃(t), x̃′(t), x̃′′(t), x̃′′′(t), t

)]
dt

≥
〈
x∗(1),

d3(x(1)− x̃(1))

dt3

〉
−
〈
η∗1(1) +

dx∗(1)

dt
,
d2(x(1)− x̃(1))

dt2

〉
−
〈
η∗2(1)− d2x∗(1)

dt2
,
d(x(1)− x̃(1))

dt

〉
−
〈
η∗3(1) +

d3x∗(1)

dt3
, x(1)− x̃(1)

〉
. (3.6)

But by the endpoint conditions (ii), at the endpoint t = 1

ϕ
(
x(1), x′(1), x′′(1), x′′′(1)

)
− ϕ

(
x̃(1), x̃′(1), x̃′′(1), x̃′′′(1)

)
≥
〈d3x∗(1)

dt3
+ η∗3(1), x(1)− x̃(1)

〉
+
〈
η∗2(1)− d2x∗(1)

dt2
, x′(1)− x̃′(1)

〉
+
〈dx∗(1)

dt
+ η∗1(1), x′′(1)− x̃′′(1)

〉
+
〈
− x∗(1), x′′′(1)− x̃′′′(1)

〉
. (3.7)

Now summing (3.6) and (3.7) we have∫ 1

0

[
g
(
x(t), x′(t), x′′(t), x′′′(t), t

)
− g
(
x̃(t), x̃′(t), x̃′′(t), x̃′′′(t), t

)]
dt

+ϕ
(
x(1), x′(1), x′′(1), x′′′(1)

)
− ϕ

(
x̃(1), x̃′(1), x̃′′(1), x̃′′′(1)

)
≥ 0

that is, J [x(t)] ≥ J [x̃(t)], ∀x(t), t ∈ [0, 1] and x̃(t), t ∈ [0, 1] is optimal. �

Corollary 3.1. For a closed set-valued mapping F the conditions (i), (iii) of
Theorem 3.1 can be rewritten in term of Hamiltonian function in much more
convenient form: (d4x∗(t)

dt4
+
dη∗3(t)

dt
, η∗3(t) +

dη∗2(t)

dt
, η∗2(t) +

dη∗1(t)

dt
, η∗1(t)

)
∈ ∂(x,v)HF

(
x̃(t), x̃′(t), x̃′′(t), x̃′′′(t), x∗(t), t

)
− ∂(x,v)g

(
x̃(t), x̃′(t), x̃′′(t), x̃′′′(t), t

)
,

d4x̃(t)

dt4
∈ ∂v∗4HF

(
x̃(t), x̃′(t), x̃′′(t), x̃′′′(t), x∗(t), t

)
, a.e. t ∈ [0, 1].

Proof. By Lemmas 2.1 and 2.2 [14, 16] we can write F ∗
(
v∗4; (x, v1, v2, v3, v4), t

)
=

∂(x,v)HF

(
x, v1, v2, v3, v

∗
4), t

)
, FA

(
x, v1, v2, v3, v

∗
4), t

)
= ∂v∗4HF

(
x, v1, v2, v3, v

∗
4), t

)
.

Then the assertions of corollary are equivalent with the conditions (i), (iii) of
Theorem 3.1. �
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Corollary 3.2. Suppose that in the problem (PFDI) the conditions F
(
x(t), x′(t),

x′′(t), x′′′(t), t
)
≡ F

(
x(t), t

)
, g
(
x(t), x′(t), x′′(t), x′′′(t), t

)
≡ g
(
x(t), t

)
, ϕ
(
x(1), x′(1),

x′′(1), x′′′(1)
)
≡ ϕ

(
x(1)

)
, t ∈ [0, 1] are satisfied, that is dependent variables x′, x′′, x′′′

are missing. Then the conditions (i)-(ii) of Theorem 3.1 can be simplified as fol-
lows

d4x∗(t)

dt4
∈ F ∗(x∗(t); (x̃(t), x̃IV (t)), t)−∂xg(x̃(t), t), t ∈ [0, 1],

d3x∗(1)

dt3
∈ ∂ϕ(x̃(1)).

Proof. Indeed, since in the presented case F (x, v1, v2, v3, t) ≡ F (x, t) we have
v∗ = (v∗1, v

∗
2, v
∗
3) = 0, which implies that in the left hand side of the Euler-

Lagrange inclusion (i) the last three components identically are equal to zero:

η∗3(t) +
dη∗2(t)

dt
≡ 0, η∗2(t) +

dη∗1(t)

dt
≡ 0, η∗1(t) ≡ 0.

Consequently, by sequentially substitution, it follows that η∗3(t) ≡ 0 and so the

second term in the first component in (i) is equal to zero, that is
dη∗3(t)
dt ≡ 0

identically. Now taking into account that in the endpoint conditions (ii), (iii)
η∗k(1) = 0(k = 1, 2, 3), we have the desired result. The proof of corollary is
completed. �

We can state the following theorem concerning optimization of (PFDI) in the
”non-convex” case.

Theorem 3.2. Let (1.1)-(1.3) be nonconvex problem, that is g(·, t), ϕ : R4n → R1

be a non-convex function, F be a non-convex set-valued mapping . Then for the
optimality of the trajectory x̃(t), t ∈ [0, 1] in the problem (2.1)-(3.1) it is sufficient
that there exists a collection of absolutely continuous functions {x∗(t), η∗k(t), k =
1, 2, 3}, t ∈ [0, 1] satisfying the conditions:

(a)
(
d4x∗(t)
dt4

+
dη∗3(t)
dt + x∗(t), η∗3(t) +

dη∗2(t)
dt + x∗

′
(t), η∗2(t) +

dη∗1(t)
dt + x∗

′′
(t),

η∗1(t) + x∗
′′′

(t)
)
∈ F ∗

(
x∗(t); (x̃(t), x̃′(t), x̃′′(t), x̃′′′(t)), t

)
a.e. t ∈ [0, 1],

(b) ϕ
(
x, v1, v2, v3

)
− ϕ

(
x̃(t), x̃′(t), x̃′′(t), x̃′′′(t)

)
≥
〈
d3x∗(1)
dt3

+ η∗3(1), x− x̃(1)
〉

+
〈
− d2x∗(1)

dt2
+ η∗2(1), v1 − x̃′(1)

〉
+
〈
− dx∗(1)

dt + η∗1(1), v2 − x̃′′(1)
〉

+
〈
− x∗(1), v3 − x̃′′′(1)

〉
,

(c) g
(
x, v1, v2, v3, t

)
− g
(
x̃1, x̃

′(1), x̃′′(1), x̃′′′(1), t
)
≥
〈
x∗(t), x− x̃(t)

〉
+
∑3

k=1

〈
dkx∗(t)
dtk

, vk − x̃(k)(t)
〉
, ∀(x, v) ∈ R4n, v = (v1, v2, v3),

(d)
〈
d4x̃(t)
dt4

, x∗(t)
〉

= HF

(
x̃(t), x̃′(t), x̃′′(t), x̃′′′(t), x∗(t), t

)
, a.e. t ∈ [0, 1].

Proof. We proceed by analogy with the preceding derivation in the proof of The-
orem 3.1:

HF

(
x(t), x′(t), x′′(t), x′′′(t), x∗(t), t

)
−HF

(
x̃(t), x̃′(t), x̃′′(t), x̃′′′(t), x∗(t), t

)
≤
〈d4x∗(t)

dt4
+
dη∗3(t)

dt
+ x∗(t), x(t)− x̃(t)

〉
+
〈
η∗3(t) +

η∗2(t)

dt
+ x∗

′
(t), x′(t)− x̃′(t)

〉
〈
η∗2(t) +

η∗1(t)

dt
+ x∗

′′
(t), x′′(t)− x̃′′(t)

〉
+
〈
η∗1(t) + x∗

′′′
(t), x′′′(t)− x̃′′′(t)

〉
,
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whereas〈d4x(t)

dt4
, x∗(t)

〉
−
〈d4x̃(t)

dt4
, x∗(t)

〉
≤
〈d4x∗(t)

dt4
+
dη∗3(t)

dt
+ x∗(t), x(t)− x̃(t)

〉
〈
η∗3(t) +

dη∗2(t)

dt
+ x∗

′
(t), x′(t)− x̃′(t)

〉
+
〈
η∗2(t) +

dη∗1(t)

dt
+ x∗

′′
(t), x′′(t)− x̃′′(t)

〉
+
〈
η∗1(t) + x∗

′′′
(t), x′′′(t)− x̃′′′(t)

〉
.

Moreover, observe that for non-convex g(·, t) by the condition (c) for all feasible
trajectories x(·) the following inequality is satisfied

g
(
x(t), x′(t), x′′(t), x′′′(t), t

)
− g
(
x̃(t), x̃′(t), x̃′′(t), x̃′′′(t), t

)
≥
〈
x∗(t), x(t)− x̃(t)

〉
+

3∑
k=1

〈dkx∗(t)
dtk

, x(k)(t)− x̃(k)(t)
〉
.

Therefore, the relation (3.2) is justified. In what follows the proof of the second
part runs similarly. �

Let us denote ∂g
∂x(k)

=
∂g
(
x̃(t),x̃′(t),x̃′′(t),x̃′′′(t),t

)
∂x(k)

, k = 0, 1, 2, 3 and require that

g
(
x, v1, v2, v3, t

)
− g
(
x̃(t), x̃′(t), x̃′′(t), x̃′′′(t), t

)
≥
〈∂g
∂x
, x− x̃(t)

〉
+

3∑
k=1

〈 ∂g

∂x(k)
, vk − x̃(k)(t)

〉
, ∀(x, v) ∈ R4n, v = (v1, v2, v3). (3.8)

On the other hand, suppose that the following Euler-Lagrange inclusion is satis-
fied:(d4x∗(t)

dt4
+
dη∗3(t)

dt
+
∂g

∂x
, η∗3(t) +

dη∗2(t)

dt
+
∂g

∂x′
, η∗2(t) +

dη∗1(t)

dt
+

∂g

∂x′′
,

η∗1(t) +
∂g

∂x′′′

)
∈ F ∗

(
x∗(t); (x̃(t), x̃′(t), x̃′′(t), x̃′′′(t)), t

)
. (3.9)

Corollary 3.3. Under the conditions (3.8), (3.9) and conditions (b), (d) of The-
orem 3.2 the result of Theorem 3.2 remains true.

Proof. The formulated corollary can be proved similarly to previous theorems,
and so its proof is omitted. �

4. Some applications of optimization for fourth order differential
inclusions (PFDI)

Now, let us consider optimization of the following higher order ”linear” differ-
ential inclusion with initial value problem, labelled by (PLCP ):

minimize J0[x(·)] =
∫ 1
0 g0

(
x(t), t

)
dt

(PLCP ) d4x(t)
dt4
∈ F

(
x(t), x′(t), x′′(t), x′′′(t)

)
, a.e. t ∈ [0, 1],

x(0) = x00, x
′(0) = x10, x

0
2 = x20, x

0
2 = x30,

F
(
x, v1, v2, v3

)
≡ A0x+A1v1 +A2v2 +A3v3 +BU.



100 ELIMHAN N. MAHMUDOV

Here the integrand g0(·, t) is equal to the quadratic form g0(x, t) = 1
2〈x,Λx〉 +

〈c, x〉, where Λ is a symmetric nonnegative semidefinite n× n matrix and c and
xk0 are fixed points; xk0 ∈ Rn, k = 0, 1, 2, 3. Obviously, this function is con-
vex and by Theorem 3.1 ∂(x,v)g

(
x, v,v2, v3, t

)
≡ {∂xg0(x, t) × (0, 0, 0)}, where

∂xg0(x, t) = {Λx + c}. Moreover, Ai, i = 0, 1, 2, 3, and B are n × n and n × r
matrices, respectively, U is a convex closed subset of Rr. In fact, the problem is
to find a controlling parameter ũ(t) ∈ U (say ũ(·) from the class of bounded mea-
surable functions) for initial value problem with fourth-order ”linear” differential
inclusions and free endpoint constraints such that the arc x̃(t) corresponding to
it minimizes J0[x(·)].

We will apply the Theorem 3.1. Since ϕ(x, v1, v2, v3) ≡ 0 it follows that
∂ϕ
(
x̃(1), x̃′(1), x̃′′(1), x̃′′′(1)

)
≡ {0} × {0} × {0} × {0}. Consequently, the end-

point condition (ii) of Theorem 3.1 at the point t = 1 is transformed into relation(d3x∗(1)

dt3
+η∗3(1),−d

2x∗(1)

dt2
+η∗2(1),

dx∗(1)

dt
+η∗1(1),−x∗(1)

)
≡ {0}×{0}×{0}×{0}

or in more detail into equations

(
− 1
)k+1dkx∗(1)

dtk
+ η∗k(1) = 0

(
x∗(1) = 0

)
, k = 1, 2, 3. (4.1)

To formulate of fourth-order adjoint Euler-Lagrange differential inclusion for the
convex optimization problem (PLCP ) we should compute F ∗

(
v∗4; (x, v1, v2, v3, v4)

)
.

Taking into account that F
(
x, v1, v2, v3,

)
≡ A0x +

∑3
k=1Akvk + BU it can be

easily computed that

HF (x, v, v∗4) = sup
v4

{〈
v4, v

∗
4

〉
: v4 ∈ F (x, v)

}
= sup

v4

{〈
A0x+

3∑
k=1

Akvk +Bu, v∗4

〉
:

v4 ∈ F (x, v
}

=
〈
x,A∗0v

∗
4

〉 3∑
k=1

〈
vk, A

∗
kv
∗
4

〉
+ sup

u

{〈
Bu, v∗4

〉
: u ∈ U

}
,

where A∗ is adjoint (transposed) matrix of A. Then if ṽ4 = A0x̃+
∑3

k=1Akṽk +
Bũ, ũ ∈ U as is shown in [19] one has

F ∗
(
v∗4; (x̃, ṽ, ṽ4)

)
=

{(
A∗0v

∗
4, A

∗
1v
∗
4, A

∗
2v
∗
4, A

∗
3v
∗
4

)
, −B∗v∗4 ∈ K∗U (ũ),

∅ , −B∗v∗4 /∈ K∗U (ũ).
(4.2)

Thus, using (4.2) and the relation ∂xg0(x, t) = {Λx + c} by the condition (i) of
Theorem 3.1 we have the following system of Euler-Lagranges type linear adjoint
equations:

d4x∗(t)

dt4
+
dη∗3(t)

dt
= A∗0x

∗(t)− Λx̃(t)− c, η∗3(t) +
dη∗2(t)

dt
= A∗1x

∗(t),

η∗2(t) +
dη∗1(t)

dt
= A∗2x

∗(t), η∗1(t) = A∗3x
∗(t). (4.3)
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By sequentially substitution, we find that

η∗1(t) = A∗3x
∗(t), η∗2(t) = A∗2x

∗(t)−A∗3
dx∗(t)

dt
,

η∗3(t) = A∗1x
∗(t)−A∗2

dx∗(t)

dt
+A∗3

d2x∗(t)

dt2
. (4.4)

Then taking into account the relations (4.4) in (4.1) we can easily see that

−x∗(1) = 0,
dx∗(1)

dt
+A∗3x

∗(1) = 0, −d
2x∗(1)

dt2
+A∗2x

∗(1)−A∗3
dx∗(1)

dt
= 0,

d3x∗(1)

dt3
+A∗1x

∗(1)−A∗2
dx∗(1)

dt
+A∗3

d2x∗(1)

dt2
= 0.

Obviously, by sequentially substitution here we have

x∗(1) = 0,
dx∗(1)

dt
= 0,

d2x∗(1)

dt2
= 0,

d3x∗(1)

dt3
= 0. (4.5)

In turn by substituting the expression for η∗k(t), k = 1, 2, 3 into the first equation in
(4.3) we can define the following Euler-Lagrange type adjoint differential inclusion
(equation);

d4x∗(t)

dt4
= A∗0x

∗(t)−A∗1
dx∗(t)

dt
+A∗2

d2x∗(t)

dt2
−A∗3

d3x∗(t)

dt3
− Λx̃(t)− c. (4.6)

On the other hand, the Weierstrass-Pontryagin maximum principle [14, 22] of
theorem is an immediate consequence of the conditions (iii) of Theorem 3.1 and
formula (4.2): 〈

Bũ(t), x∗(t)
〉

= sup
u∈U

〈
Bu, x∗(t)

〉
. (4.7)

Finally, we can formulate the obtained result as follows.

Theorem 4.1. The arc x̃(t) corresponding to the controlling parameter ũ(t) mini-
mizes the quadratic cost functional in the fourth-order linear optimal control prob-
lem (PLCP ) with initial value problem and free endpoint constraints, if there exists
an absolutely continuous function x∗(t) satisfying the fourth-order adjoint differ-
ential equation (4.6), the endpoint condition (4.5) and Weierstrass-Pontryagin
maximum principle (4.7).

It should be noted that in concrete problems, according to Theorem 4.1 and
Weierstrass-Pontryagin maximum principle, an optimal solution of fourth-order
linear differential optimal control problem can be successfully computed. Let us
consider the following example.

Example 4.1. Suppose we have the following problem:

minimize

∫ 1

0
g0
(
x(t), t

)
dt, subject to

d4x(t)

dt4
= −2x(t) + 3x′′(t) + u, t ∈ [0, 1],

x(0) = 0, x′(0) = 1, x′′(0) = 2, x′′′(0) = 1, u ∈ U = [−1,+1], (4.8)

where g0(x, t) = x. It is required to find a control function ũ(t) ∈ U such that
the corresponding trajectory x̃(t) minimizes the indicated functional in problem
(4.8). Obviously, in this case F (x, v1, v2, v3) = −2x+ 3v2 + U .
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By Theorem 4.1 (see (4.6)) the Euler-Lagrange adjoint DFIs and transversality
condition for this problem consist of the following

d4x∗(t)

dt4
= −2x∗(t) + 3x∗

′′
(t)− 1, t ∈ [0, 1], x∗(1) = x∗

′
(1) = x∗

′′
(1) = x∗

′′′
(1) = 0.

(4.9)

Besides, Weierstrass-Pontryagin maximum condition (4.7) in our example has the
form ũ(t) · x∗(t) = max−1≤u≤1 u · x∗(t), t ∈ [0, 1] whence ũ(t) = sgnx∗(t) that is
ũ(t) = 1 if x∗(t) > 0 and ũ(t) = −1 if x∗(t) < 0. We show that the values
of adjoint variables x∗(t), optimal control ũ(t) can be easily computed. Let us
solve the equation (4.9); using the classical theory of linear non-homogeneous
differential equations we can find the corresponding characteristic equation r4 −
3r2 + 2 = 0 of homogeneous fourth-order differential equation. The four roots
of this equation are real numbers ±1 and ±

√
2 . According to these roots the

general solution of corresponding fourth-order homogeneous differential equation

is C1e
t+C2e

−t+C3e
√
2t+C4e

−
√
2t On the other it can be easily verified that the

particular solution of non-homogeneous fourth-order differential equation is−1/2.
As a result, the general solution of the adjoint Euler-Lagrange type equation (4.9)
has the form

x∗(t) = C1e
t + C2e

−t + C3e
√
2t + C4e

−
√
2t − 1

2
, (4.10)

where Ci, i = 1, 2, 3, 4 are arbitrary constants to be determined.
For this purpose, from (4.10) we can derive that

dx∗(t)

dt
= C1e

t − C2e
−t +

√
2C3e

√
2t −
√

2C4e
−
√
2t,

d2x∗(t)

dt2
= C1e

t + C2e
−t + 2C3e

√
2t + 2C4e

−
√
2t, (4.11)

d3x∗(t)

dt3
= C1e

t − C2e
−t + 2

√
2C3e

√
2t − 2

√
2C4e

−
√
2t.

Now taking into account in (4.9) the condition at the point t = 1 we deduce from
(4.10) and (4.11) the following equations

C1e+ C2e
−1 + C3e

√
2 + C4e

−
√
2 =

1

2
,

C1e− C2e
−1 +

√
2C3e

√
2 −
√

2C4e
−
√
2 = 0,

C1e+ C2e
−1 + 2C3e

√
2 + 2C4e

−
√
2 = 0, (4.12)

C1e− C2e
−1 + 2

√
2C3e

√
2 − 2

√
2C4e

−
√
2 = 0.

By elementary way it can be checked that the solution to the system of algebraic
equations (4.12) consist of the following

C1 =
1

2e
, C2 =

e

2
, C3 = −e

−
√
2

4
, C4 = −e

√
2

4
. (4.13)

Then by substituting (4.13) into (4.10) we have the unique solution to the problem
(4.9)

x∗(t) =
1

2

(
et−1 + e1−t

)
− 1

4

(
e
√
2(t−1) + e

√
2(1−t)

)
− 1

2
.
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We recall that, ũ(t) = −1 if x∗(t) > 0 and ũ(t) = 1 if x∗(t) > 0. Thus, in the case,

where
(
et−1 + e1−t

)
− 1

2

(
e
√
2(t−1) + e

√
2(1−t)

)
< 1, we should solve the problem

d4x(t)

dt4
= −2x(t) + 3x′′(t)− 1, t ∈ [0, 1],

x(0) = 0, x′(0) = 1, x′′(0) = 2, x′′′(0) = 1. (4.14)

By analogy with the adjoint system (4.9) the general solution to the differential
equation (4.14) has the form

x(t) = K1e
t +K2e

−t +K3e
√
2t +K4e

−
√
2t − 1

2
, (4.15)

where Ki, i = 1, 2, 3, 4 are arbitrary constants to be defined. By using the initial
condition in (4.14) we have the following system of linear algebraic equations

K1 +K2 +K3 +K4 =
1

2
, K1 +K2 + 2K3 + 2K4 = 2,

K1 −K2 +
√

2K3 −
√

2K4 = 1, K1 −K2 +
√

2K3 − 2
√

2K4 = 1.

The solution to this system with respect to Ki, i = 1, 2, 3, 4 is given below:

K1 = 0, K2 = −1, K3 =
3

4
, K4 =

3

4
.

Substituting this solution in (4.15) we have an optimal solution to the problem
(4.14) corresponding to optimal control ũ(t) = −1:

x̃(t) = −e−t +
3

4

(
e
√
2t + e−

√
2t
)
− 1

2
.

By similar way it can be shown that if
(
et−1 + e1−t

)
− 1

2

(
e
√
2(t−1) + e

√
2(1−t)

)
> 1

that is, if ũ(t) = 1 instead of (4.14) we have

d4x(t)

dt4
= −2x(t) + 3x′′(t) + 1, t ∈ [0, 1],

x(0) = 0, x′(0) = 1, x′′(0) = 2, x′′′(0) = 1. (4.16)

Since the homogeneous equations corresponding to the adjoint equation (4.9) and
controlling fourth-order equation (4.16) coincides, its general solution is

K̄1e
t + K̄2e

−t + K̄3e
√
2t + K̄4e

−
√
2t,

where K̄i, i = 1, 2, 3, 4 are arbitrary constants. It is easy to see that in this case
the particular solution of (4.16) is 1/2. Consequently, the solution to (4.16) has
the form

x(t) = K̄1e
t + K̄2e

−t + K̄3e
√
2t + K̄4e

−
√
2t +

1

2
.

To find K̄i, i = 1, 2, 3, 4 by using initial condition in (4.16), we have the following
system

K̄1 + K̄2 + K̄3 + K̄4 = −1

2
; K̄1 − K̄2 +

√
2K̄3 −

√
2K̄4 = 1,

K̄1 + K̄2 + 2K̄3 + 2K̄4 = 2; K̄1 − K̄2 + 2
√

2K̄3 − 2
√

2K̄4 = 1.
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The solution of this system consist of K̄1 = −1, K̄2 = −2, K̄3 = K̄4 = 5/4. Thus,
the solution to initial-value problem (4.16) is

x̃(t) = −et − 2e−t +
5

4

(
e
√
2t + e−

√
2t
)

+
1

2
.

Remark 4.1. We remind [19] that according to problem (PLCP ) we have the
following discrete-approximate equation

∆4x(t) = A0x(t) +A1∆x(t) +A2∆
2x(t) +A3∆

3x(t) +Bu(t), u(t) ∈ U,
t = 0, δ, ..., 1 − 4δ, where ∆k, k = 1, 2, 3, 4 are k-th order difference operators as
is shown in (2.2):

∆x(t) =
1

δ

[
x(t+ δ)− x(t)

]
, ∆2x(t) =

1

δ2
[
x(t+ 2δ)− 2x(t+ δ) + x(t)

]
,

∆3x(t) =
1

δ3

[
x(t+ 3δ)− 3x(t+ 2δ) + 3x(t+ δ)− x(t)

]
,

∆4x(t) =
1

δ4

[
x(t+ 4δ)− 4x(t+ 3δ) + 6x(t+ 2δ)− 4x(t+ δ) + x(t)

]
.

By Theorem 4.2 [19] for optimality of the trajectory x̃(t) in the ”linear” discrete-
approximate problem, it is necessary and sufficient that there exists x∗(t) satis-
fying the adjoint Euler-Lagrange DFIs (equations)

∆4x∗(t) = A∗0x
∗(t+ 4δ)−A∗1∆x∗(t+ 3δ) +A∗2∆

2x∗(t+ 2δ)

−A∗3∆3x∗(t+ δ)− λg′0(x̃(t), t), t = 0, ..., 1− 4δ, λ ∈ {0, 1}
with ”nitial” (final) conditions x∗(1) = 0,∆x∗(1) = 0,∆2x∗(1) = 0,∆3x∗(1) = 0.
Using this equation, we can formulate the discrete-approximate problem for above
considered problem:

Minimize
∑1−4δ

t=4δ δx(t), subject to ∆4x(t) = −2x(t) + 3∆2x(t) + u(t), u(t) ∈
U, t = 0, ..., 1 − 4δ, x(0) = 0,∆x(0) = 1,∆2x(0) = 2,∆3x(0) = 1. Obviously,
x(0) = 0, x(δ) = δ, x(2δ) = 2δ+ 2δ2, x(3δ) = 3δ+ 6δ2 + δ3. Then for our problem
we have the adjoint equation and transversality condition of the form

∆4x∗(t) = −2x∗(t+ 4δ) + 3∆2x∗(t+ 2δ)− 1, t = 0, ..., 1− 4δ,

x∗(1) = 0,∆x∗(1) = 0,∆2x∗(1) = 0,∆3x∗(1) = 0.

5. Conclusion

In this paper a new method for solving a Bolza problem with fourth-order
differential inclusions which are often used to describe various processes in science
and engineering is presented. This approach plays a much more important role in
derivation of fourth-order adjoint DFIs. Thus, a sufficient conditions of optimality
for such problems are deduced. There has been a significant development in the
study of optimization for differential and difference equations and inclusions in
recent years [9, 14, 22]. Finally, it is concluded that the proposed method is
reliable for solving the various optimization problems with fourth-order discrete
and differential inclusions. Theoretical analysis and practical results show that
our method is simple and easy to implement and is efficient for computing optimal
solution of the fourth order differential inclusions. At last, an example is given
for illustrating our results.
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