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SPECTRAL PROPERTIES OF THE PROBLEM OF VIBRATION

OF A LOADED STRING IN MORREY TYPE SPACES

TELMAN B. GASYMOV, GULAR V. MAHARRAMOVA, AND AFET N. JABRAILOVA

Abstract. In this paper we study the spectral problem for a discon-
tinuous second order differential operator with a spectral parameter in
transmission conditions, that arises in solving the problem of vibration
of a loaded string with fixed ends. An abstract theorem on the stability
of basis properties of multiple systems in a Banach space with respect
to certain transformations is proved. This fact is used in the proofs of
theorems on the basicity of eigenfunctions of a discontinuous differential
operator in Morrey type spaces.

1. Introduction

We consider a model eigenvalue problem for the discontinuous second order
differential operator

−y′′(x) = λy(x) , x ∈ (0,
1

3
) ∪ (

1

3
, 1), (1.1)

with the boundary conditions

y (0) = y (1) = 0, (1.2)

and with the following discontinuity conditions

y(13 − 0) = y(13 + 0),
y′(13 − 0)− y′(13 + 0) = λmy(13),

}
(1.3)

where λ is a spectral parameter, m is a non-zero complex number. Such spectral
problems arise when the problem of vibrations of a loaded string with fixed ends
is solved by applying the Fourier method [16, 1]. The spectral problems with a
discontinuity conditions inside the interval play an important role in mathemat-
ics, mechanics, physics and other fields of science. The applications of boundary
value problems with discontinuity conditions inside the interval are connected
with discontinuous material properties. Nowadays there is a number of papers
dedicated to spectral problems for the ordinary differential operator with discon-
tinuity conditions. One can find the similar works in [13, 12, 14, 10, 15, 11].

One of the commonly used methods for solving partial differential equations
is the method of separation of variables. This method yields the appropriate
spectral problem and in order to justify the method, it is very important the
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question of the expansion of functions of certain class on eigen and association
functions of the discrete differential operators. The study of spectral properties
of some discrete differential operators motivates the development of new meth-
ods for constructing bases. In this context, much attention has been given to the
study of basis properties (completeness, minimality and basicity) of systems of
special functions, which are frequently eigen and associated functions of differ-
ential operators. In the case of discontinuous differential operators, there appear
systems of eigenfunctions whose basicity cannot be investigated by previously
known methods. In the works [4, 5], an abstract approach to the problem de-
scribed above is considered and a new method is proposed for constructing bases,
which has wide applications in the spectral theory of discontinuous differential
operators.

In the paper [8] the problem of oscillation of a loaded string is investigated
in the case when the load is placed in the middle of the string and it is shown
that an abstract method proposed in [4, 5] can be used in non-standard spaces
such as a Morrey type space. The concept of Morrey space was introduced by
C. Morrey in 1938. Since then, various problems related to this space have been
intensively studied. More details about Morrey spaces can be found in [17]. In
[6] the basicity of the exponential system, and in [7]-the perturbed exponential
system in Morrey type spaces are proved. The present paper is an extension of
the method of [4, 5, 8].

2. Necessary information

Let us give some results from [11], which we will need throughout the paper.

Lemma 2.1. [11] The spectral problem (1.1)-(1.3) has two series of eigenvalues:

λ1,n = (ρ1,n)2 , n = 1, 2, ..., λ2,n = (ρ2,n)2 n = 0, 1, 2, ..., where

ρ1,n = 3πn,

ρ2,n = 3πn
2 + 2+(−1)n

πmn +O
(

1
n2

)
.

}
(2.1)

The corresponding eigenfunctions are given by the following expressions

y1,n (x) = sin 3πnx, x ∈ [0, 1] , n = 1, 2, ..., (2.2)

y2,n (x) =

{
sin ρ2,n

(
x− 1

3

)
+ sin ρ2,n

(
x+ 1

3

)
, x ∈

[
0, 13
]
,

sin ρ2,n (1− x) , x ∈
[
1
3 , 1
]
, n = 0, 1, 2, ... .

(2.3)

Let us construct an operator L, linearizing the problem (1.1) - (1.3) in the direct
sum Lp (0, 1)⊕C, where C is the complex plane. Denote by W 2

p

(
0, 13
)
⊕W 2

p

(
1
3 , 1
)

the space of functions whose restrictions to intervals
(
0, 1

3

)
and

(
1
3 , 1

)
belong

to Sobolev spaces W 2
p

(
0, 13
)

and W 2
p

(
1
3 , 1
)
, respectively, where 1 < p < ∞. Let

us define the operator L in the following way. As the domain D (L) we take the
manifold

D (L) =
{
ŷ =

(
y (x) ,my

(
1
3

))
: y (x) ∈W 2

p

(
0, 13
)
⊕W 2

p

(
1
3 , 1
)
,

y (0) = y (1) = 0, y
(
1
3 − 0

)
= y

(
1
3 + 0

)}
,

(2.4)

and for ŷ ∈ D(L) the operator L is defined by the relation

Lŷ =

(
−y′′; y′

(
1

3
− 0

)
− y′

(
1

3
+ 0

))
. (2.5)
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The following lemma is true.

Lemma 2.2. [11] The operator L defined by expressions (2.4), (2.5) is a densely
defined closed operator with completely continuous resolvent. The eigenvalues of
the operator L and the problem (1.1) - (1.3) coincide. If y (x) is the eigenfunction
(associated function) of problem (1.1) - (1.3), then ŷ =

(
y (x) ; my

(
1
3

))
is the

eigenvector (associated vector) of the operator L.

When obtaining the main results, we need some concepts and facts from the
theory of bases in a Banach space.

Definition 2.1. Let X be a Banach space. If there exists a sequence of positive
integers {nk}, such that nk < nk+1, n0 = 0 and any vector x ∈ X is uniquely
represented in the form

x =

∞∑
k=0

nk+1∑
i=nk+1

ciui

then the system {un}n∈N ∈ X is called a basis with parentheses in X.

For nk = k the system {un}n∈N forms a usual basis for X.
We need the following easily proved statement.
Statement 2.1. Let the system {un}n∈N form a basis with parentheses for a

Banach space X. If the sequence {nk+1 − nk}k∈N is bounded and the condition

sup
n
‖un‖ ‖ϑn‖ <∞,

holds, where {ϑn}n∈N is a biorthogonal system, then the system {un}n∈N forms
a usual basis for X.

Recall the following definition.

Definition 2.2. The bases {un}n∈N of Banach space X is called a p-basis, if for
any x ∈ X ( ∞∑

n=1

|〈x, ϑn〉|p
) 1

p

≤M ‖x‖ ,

where {ϑn}n∈N is a biorthogonal system to {un}n∈N .

Definition 2.3. The sequences {un}n∈N and {ϕn}n∈N of Banach space X is
called a p-close, if

∞∑
n=1

‖un − ϕn‖p <∞.

We will also use the following results from [3, 9].

Theorem 2.1. [3] Let {xn}n∈N form a q-basis for the space X, and the system

{yn}n∈N is p- close to {xn}n∈N , where 1
p + 1

q = 1. Then the following properties

are equivalent:
i) {yn}n∈N is complete in X;
ii) {yn}n∈N is minimal in X;
iii) {yn}n∈N forms an isomorphic to {xn}n∈N for X.



SPECTRAL PROPERTIES OF THE PROBLEM OF VIBRATION . . . 119

LetX1 = X⊕Cm and {ûn}n∈N ⊂ X1 be some minimal system, and
{
ϑ̂n

}
n∈N

⊂
X∗1 = X∗ ⊕ Cm be its biorthogonal system:

ûn = (un;αn1, ..., αnm) ; ϑ̂n = (ϑn;βn1, ..., βnm) .

Let J = {n1, ..., nm} be some set of m natural numbers. Suppose

δ = det ‖βnij‖i,j=1,m .

The following theorem is true.

Theorem 2.2. [9] Let the system {ûn}n∈N form a basis for X1. In order for
the system {un}n∈NJ , where NJ = N\J , form a basis for X it is necessary and
sufficient that the condition δ 6= 0 be satisfied. In this case the biorthogonal
system to {un}n∈NJ is defined by

ϑ∗n =
1

δ

∣∣∣∣∣∣∣∣
ϑn ϑn1 . . . ϑnm
βn1 βn11 . . . βnm1

. . . . . . . . . . . .
βnm βn1m . . . βnmm

∣∣∣∣∣∣∣∣ .
For δ = 0 the system {un}n∈NJ is not complete and is not minimal in X.

We will also need some facts about the theory of Morrey-type spaces. Let
J = [a, b] be some finite segment of real axis. By |I| we denote the linear Lebesgue
measure of the set I ⊂ J . By the Morrey- Lebesgue space Lp,α (J) , 0 ≤ α ≤
1 , p ≥ 1 , we mean a normed space of all functions f (·) measurable on J equipped
with a finite norm ‖f‖Lp,α(J):

‖f‖Lp,α(J) = sup
I⊂J

(
|I|α−1

∫
I
|f (ξ)|p |dξ|

) 1
p

< +∞.

Lp,α (J) is a Banach space and Lp,1 (J) = Lp (J) , Lp,0 (J) = L∞ (J) . The
embedding Lp,α1 (J) ⊂ Lp,α2 (J) is valid for 0 ≤ α1 ≤ α2 ≤ 1 . Thus Lp,α (J) ⊂
Lp (J) , ∀α ∈ [0, 1] , ∀p ≥ 1.

Denote by L̃p,α (J) linear subspace of Lp,α (J) consisting of functions whose
shifts are continuous in Lp,α (J), i.e. ‖f (· + δ)− f ( · )‖Lp,α(J) → 0 as δ → 0.

The closure of L̃p,α (J) in Lp,α (J) will be denoted by Mp,α(J) In [6] the following
theorem is proved.

Theorem 2.3. The exponential system
{
ei nt

}
n∈Z is the bases in Mp,α (−π, π) , 1 <

p < +∞, 0 < α ≤ 1.

Using this theorem, it is easy to obtain the following
Statement 2.2. Each of the trigonometric systems {sinnx}∞n=1 and {cosnx}∞n=0

forms a bases for Mp,α (0, π) , 1 < p < +∞ , 0 < α ≤ 1.

3. Main results

In this section we consider the question of the basicity of the system of eigen-
vectors of the operatorL and eigenfunctions of the problem (1.1)-(1.3) in the
spaces Mp,α (0, 1) ⊕ C and Mp,α (0, 1). Before formulating the main result, we
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prove one abstract theorem, which is essentially used in the proof of the main
theorem.

Let X be a Banach space and {ukn}k=1,m;n∈N be some system in X. Let

a
(n)
ik , i, k = 1,m , n ∈ N, be some complex number. Let

An =
(
a
(n)
ik

)
i,k=1,m

and ∆n = detAn, n ∈ N.

Let us consider the following system in space X

ûkn =

m∑
i=1

a
(n)
ik uin, k = 1,m;n ∈ N. (3.1)

Theorem 3.1. If the system {ukn}k=1,m;n∈N forms a basis for X and

∆n 6= 0, ∀n ∈ N, (3.2)

then the system {ûkn}k=1,m;n∈N forms a basis with parentheses for X. If in
addition the conditions

sup {
n
‖An‖ ,

∥∥A−1n ∥∥ } <∞, sup
n
{‖ukn‖ , ‖ϑkn‖} <∞, (3.3)

holds, where {ϑkn}k=1,m;n∈N ⊂ X∗ is a biorthogonal system to {ukn}k=1,m;n∈N ,

then the system {ûkn}k=1,m;n∈N forms a usual basis for X.

Proof. From the representation (3.1) and from the minimality of the system
{ukn}k=1,m;n∈N , it follows the minimality of the system {ûkn}k=1,m;n∈N and the
biorthogonal system has the form

ϑ̂in =
m∑
l=1

b
(n)
li ϑln , i = 1,m : n ∈ N, (3.4)

where the numbers b
(n)
li are elements of the inverse matrix

(
A−1n

)∗
. Taking these

expressions into account, for x ∈ X we have∑m
i=1

〈
x, ϑ̂in

〉
ûin =

∑m
i=1

∑m
j=1

∑m
l=1 a

(n)
ij b

(n)
li 〈x, ϑln〉ujn =

=
∑m

j=1

∑m
l=1

(∑m
i=1 b

(n)
li a

(n)
ij

)
〈x, ϑln〉ujn =

=
∑m

j=1

∑m
l=1 δlj 〈x, ϑln〉ujn =

∑m
j=1 〈x, ϑjn〉ujn.

Consequently

SN (x) =

N∑
n=1

m∑
i=1

〈
x, ϑ̂in

〉
ûin =

N∑
n=1

m∑
j=1

〈x, ϑjn〉ujn =

=
m∑
j=1

N∑
n=1

〈x, ϑjn〉ujn → x, as N →∞.

Thus, the system {ûin}i=1,m;n∈N forms a basis with parentheses for X.

Now let the conditions (3.3) be satisfied. Then from the representations (3.1)
and (3.4) we obtain

sup
i,n

{
‖ûin‖ ;

∥∥∥ϑ̂in∥∥∥} < +∞.
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Consequently, the system {ûin}i=1,m;n∈N is uniformly minimal, and by Statement
2.1 it forms the usual basis for X. The theorem is proved. �

The main result of the paper is the following

Theorem 3.2. The system of eigen and associated vectors of the operator L
forms a bases for space Mp,α (0, 1)⊕ C, 1 < p <∞ , 0 < α ≤ 1.

Now, let us consider the basicity of the system {y0} ∪ {yi,n}∞i=1,2; n∈N with a

remote function in space Mp,α (0, 1) . Using the Theorem 2.2 following theorem
can be proved.

Theorem 3.3. If from the system of eigen and associated functions of problem
(1.1) - (1.3) {y0} ∪ {yi,n}∞i=1,2; n∈N we eliminate any function y2,n0 (x), corre-

sponding to a simple eigenvalue, then the obtaining system forms a basis for
Mp,α (0, 1) , 1 < p < ∞, 0 < α ≤ 1. And if we eliminate any function y1,n0 (x)
from this system, then the obtaining system does not form a basis in Mp,α (0, 1);
moreover, in this case the obtained system is not complete and is not minimal in
this space.

Remark 3.1. For m > 0, the linearizing operator L of the problem (1.1) - (1.3) is a
self-adjoint operator in L2⊕C, and in this case all eigenvalues are real and simple,
and to each eigenvalue there corresponds only one eigenvector. If m < 0, then
the operator L is a J-self-adjoint operator in L2 ⊕ C and in this case, applying
the results of [2], we obtain that all eigenvalues are real and simple, with the
exception of, may be either one pair of complex conjugate simple eigenvalues or
one non-simple real value. In the case of a complex value m the operator L has
an infinite number of complex eigenvalues that are asymptotically simple and,
consequently, the operator L can have a finite number of associated vectors. If
there are associated vectors, they are determined up to a linear combination with
the corresponding eigenvector, and in this case there always exists an associated
vector for which z2,n

(
1
3

)
= 0, as well as an associated vector for which z2,n

(
1
3

)
6=

0.

Acknowledgements

This work was supported by the Science Development Foundation under the
President of the Republic of Azerbaijan.

References

[1] F.V. Atkinson, Discrete and Continuous Boundary Problems. Moscow, Mir, 1968.
[2] T.Ya. Azizov and I.S. Iokhvidov, A criterion for the completeness and basicity of

root vectors of a completely continuous J−selfadjoint operator in the Pontryagin
space Πæ, Math. issl., 6(1), (1971), 158–161. (in Russian)

[3] B.T. Bilalov, Bases of Exponentials, Sines, and Cosines, Differ. Uravn., 39(5)
(2003), 619–623.

[4] B.T. Bilalov and T.B. Gasymov, On bases for direct decomposition, Doklady Math-
ematics, 93(2) (2016), 183–185.



122 TELMAN B. GASYMOV, GULAR V. MAHARRAMOVA, AND AFET N. JABRAILOVA

[5] B.T. Bilalov and T.B. Gasymov, On basicity a system of eigenfunctions of second
order discontinuous differential operator, Ufa Mathematical Journal, 9(1) ( 2017),
109–122.

[6] B.T. Bilalov and A.A. Guliyeva, On basicity of exponential systems in Morrey type
spaces, International Journal of Mathematics, 25(6) (2014), 1–10.

[7] B.T. Bilalov, T.B. Gasymov and A.A. Guliyeva, On solvability of Riemann boundary
value problem in Morrey-Hardy classes, Turk. J. of Math., 40(5) (2016), 1085–1101.

[8] B.T. Bilalov, T.B. Gasymov and G.V. Maharramova, On basicity of eigenfunctions
of one discontinuous spectral problem in Morrey type spaces, The Aligarh Bulletin
of Mathematics, 35(1-2) (2016), 119–129.

[9] T.B. Gasymov, On necessary and sufficient conditions of basicity of some defective
systems in Banach spaces, Trans. NAS Azerb., ser. phys.-tech. math. sci., math.
mech., 26(1) ( 2006), 65–70.

[10] T.B. Gasymov and A.A. Huseynli, The basis properties of eigenfunctions of a dis-
continuous differential operator with a spectral parameter in boundary condition,
Proceed. of IMM of NAS of Azerb., XXXV(XLIII) (2011), 21–32.

[11] T.B. Gasymov and G.V. Maharramova, On completeness of eigenfunctions of the
spectral problem, Caspian Journal of Applied Mathematics, Ecology and Econom-
ics, 3(2) (2015), 66–76.

[12] T.B. Gasymov and Sh.J. Mammadova, On convergence of spectral expansions for one
discontinuous problem with spectral parameter in the boundary condition, Trans.
of NAS of Azerb., XXVI(4) ( 2006), 103–116.

[13] A.M. Gomilko and V.N. Pivovarchik, On bases of eigenfunctions of boundary prob-
lem associated with small vibrations of damped nonsmooth inhomogeneous stirng,
Asymt. Anal., 20(3-4) ( 1999), 301–315.

[14] V.M. Kurbanov, and E.I. Ibadov, On the properties of systems of root functions of
a second-order discontinuous operator, Dokl. RAN, 427(3) (2009), 308–312.

[15] M. Shahriari, Inverse Sturm-Liouville Problem with Eigenparameter Dependent
Boundary and Transmission Conditions, Azerb. J. Math., 4(2) (2014), 16–30.

[16] A.N. Tikhonov and A.A. Samarskii, Equations of Mathematical Physics, Mosk. Gos.
Univ., Moscow, 1999; Dover, New York, 2011).

[17] C.T. Zorko, Morrey space, Proc. Of the Amer. Math. Society, 98(4) (1986), 586–592.

Telman B. Gasymov
Institute of Mathematics and Mechanics of NAS of Azerbaijan, B.Vahabzadeh

9, AZ1141, Baku, Azerbaijan.
E-mail address: telmankasumov@rambler.ru

Gular V. Maharramova
Institute of Mathematics and Mechanics of NAS of Azerbaijan, B.Vahabzadeh

9, AZ1141, Baku, Azerbaijan.
E-mail address: g.meherremova.89@mail.ru

Afet N. Jabrailova
Institute of Mathematics and Mechanics of NAS of Azerbaijan, B.Vahabzadeh

9, AZ1141, Baku, Azerbaijan.
E-mail address: afet.cebrayilova@mail.ru

Received: December 23, 2017; Accepted: April 18, 2018


