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NUMERICAL SOLUTION TO OPTIMAL CONTROL

PROBLEMS WITH MULTIPOINT AND INTEGRAL

CONDITIONS

VAGIF M. ABDULLAYEV

Abstract. Optimal control problems involving non-separated multipoint
and integral conditions are investigated. For numerical solution to the
problem, we propose to use first order optimization methods with appli-
cation of the formulas for the gradient of the functional obtained in the
work. To solve the adjoint boundary problems, we propose an approach.
This approach makes it possible to reduce solving initial boundary prob-
lems to solving supplementary Cauchy problems and a linear algebraic
system of equations. Results of numerical experiments are given.

1. Introduction

Much research activity in the past years has been directed at solving boundary
problems involving non-local multipoint and integral conditions, and the corre-
sponding optimal control problems. This is connected with non-local character
of information provided by measurement equipment. Namely, the measurements
are not taken instantly, but during some time interval and the measurements at a
separate point actually characterize the state of the object in some domain which
contains the measurement point. Problems of this kind arise when controlling
an object if it is otherwise impossible to affect the object instantly at time and
locally at its separate points.

The investigations of boundary problems involving non-local conditions com-
menced at the beginning of the 20th century [21, 25, 26], and they became
more active by the efforts of many authors whose works were dedicated to both
ordinary and partial differential equations [8, 10, 11, 15, 18, 19, 22, 24]. In
[4, 1, 5, 13, 27, 28], optimal control problems for boundary problems involving
non-local multipoint and integral conditions are investigated and necessary opti-
mality conditions are obtained.

For linear boundary problems involving multipoint conditions, there exist ef-
ficient numerical methods of sweep and shift of conditions [3, 2, 6, 9, 20]. For
boundary problems involving integral conditions, the possibility of their reduction
to problems involving multipoint conditions at the expense of introducing new
variables and of increasing the number of differential equations has been implied.
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That is why any special numerical methods for problems of this kind have not
been practically developed.

In the present work for optimal control problems, we obtain formulas for the
gradient of the functional, as well as describe the numerical computation scheme
based on first order optimization methods. Also, we propose an approach for
numerical solution to the problem adjoint boundary problems.

2. Problem Statement

Consider the following optimal control problem for the process described by
an ordinary differential equations system, linear in the phase variable:

ẋ(t) = A(t)x(t) +B(t)u(t) + C(t), t ∈ [t0, T ], (2.1)

where x(t) ∈ En is the phase variable; u(t) ∈ U ⊂ Er is the control function from
the class of piecewise continuous functions, admissible values of u(t) belong to a
given compact set U ; A(t)–6=const is (n×n) matrix function, B(t) is (n×r) matrix
function, C(t) is n−dimensional vector function, A(t), B(t), C(t) are continuous
with respect to t.

Non-separated multipoint and integral conditions are given in the following
form:

l1∑
i=1

t̄2i∫
t̄2i−1

D̄i(τ)x(τ)dτ +

l2∑
j=1

D̃jx(t̃j) = C0, (2.2)

where D̄i (τ) is the continuously differentiable (n× n) matrix function; D̃j is the
(n × n) scalar matrix; C0 is the n-dimensional vector; t̄i,t̃j time instances from
[t0, T ]; t̄i+1 > t̄i, t̃j+1 > t̃j , i = 1, 2, ..., 2l1 − 1, j = 1, 2, ..., l2 − 1, l1, l2 are
given.

To be specific, without loss of generality, let us assume that

min
(
t̄1, t̃1

)
= t0, max

(
t̄2l1 , t̃l2

)
= T, (2.3)

and for all i = 1, 2, ..., 2l1, j = 1, 2, ..., l2 and that the following natural condition
holds

t̃j∈̄ [t̄2i−1, t̄2i] . (2.4)

The target functional is as follows:

J(u) = Φ(x̂(t̂)) +

T∫
t0

f0(x, u, t)dt→ min
u(t)∈U

, (2.5)

where the function Φ and its partial derivatives are continuous with respect to its
arguments, and f0(x, u, t) is continuously differentiable with respect to (x, u) and
continuous with respect to t; t̂ = (t̂1, t̂2, ..., t̂2l1+l2) is the ordered union of the sets
t̃ = (t̃1, t̃2, ..., t̃l2) and t̄ = (t̄1, t̄2, ..., t̄2l1), i.e. t̂j < t̂j+1, j = 1, 2, ..., 2l1 + l2 − 1,

x̂(t̂) = (x(t̂1), x(t̂2), ..., x(t̂2l1+l2)).
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x(t, u) is absolutely continuous and satisfies equation (2.1) almost everywhere
on [t0, T ], and its derivative ẋ(t, u) belongs to Ln2 [t0, T ]; equality (2.2) holds true,
as well. Thus, (2.5) is defined for all u = u(t) ∈ Lr2[t0, T ].

The fundamental difference of problem statement (2.1)-(2.5) from the op-
timal control problems considered, for example, in [1], lies in non-separated
non-local integral and multipoint conditions (2.2). By introducing some new
phase variables, problem (2.1)-(2.5) can be reduced to a problem involving mul-
tipoint conditions. To demonstrate this, introduce new phase vector X(t) =
(x1(t), ..., xl1+1(t)), x1(t) = x(t), which is the solution to the following differen-
tial equations system:

ẋ1(t) = A(t)x1(t) +B(t)u(t) + C(t),
ẋi+1(t) = D̄i(t)x

1(t), t ∈ (t̄2i−1, t̄2i] , i = 1, 2..., 2l1 ,
(2.6)

involving the following initial conditions:

xi+1(t̄2i−1) = 0, i = 1, 2, ..., 2l1. (2.7)

Then conditions (2.2) take the following form:

l1∑
i=1

xi+1 (t̄2i) +

l2∑
j=1

D̃jx
1(t̃j) = C0. (2.8)

System (2.6)-(2.8) is obviously equivalent to (2.1) and (2.2). In system (2.6)
and (2.7), there are (l1+1)n differential equations with respect to the phase vector
X(t) and there is the same number of conditions in (2.7) and (2.8). Obviously,
the drawback of boundary problem (2.6) and (2.7) is its high dimension. This is
an essential point for numerical methods of solution to boundary problems based,
as a rule, on the methods of sweep or shift of boundary conditions [3, 9]. Also,
the increase of the dimension of the phase variable complicates the solution to
the optimal control problem itself due to the increase of the dimension of the
adjoint problem.

Note that if we use the approach proposed in [20] then at the expense of the
additional increase of the dimension of the phase variables vector up to 2(l1 +
l2 + 1)(l1 + 1)n the problem (2.6)–(2.8) can be reduced to a two-point problem
involving non-separated boundary conditions.

Using the technique of the works [14, 16, 17, 23], we can obtain existence
and uniqueness conditions for the solution to problem (2.1), (2.2) under every
admissible control u ∈ U , without reducing it to a problem involving multipoint
conditions (2.8). But this kind of investigation is not the objective of the present
work.

Assume that under every admissible control u(t) ∈ U, there is a unique solution
to problem (2.1) and (2.2). For this purpose, we assume that the parameters of
problem (2.1) and (2.2), after reducing it to (2.6)-(2.8), satisfy the conditions pro-
posed in [14, 16, 17, 23, 25] dedicated to differential equations systems involving
multipoint and two-point conditions.
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3. Formula for the gradient of the functional of problem
(2.1)-(2.5)

To solve optimal control problem (2.1)-(2.5) numerically with the application
of first order optimization methods (see [29]), we obtain formulas for the gradient
of the functional.

With respect to an arbitrary admissible process (u(t), x(t;u)), we define prob-
lem (2.1), (2.2) in increments, corresponding to an admissible control ũ = u+∆u:

∆ẋ(t) = A(t)∆x(t) +B(t)∆u(t), t ∈ [t0, T ] , (3.1)

l1∑
i=1

t̄2i∫
t̄2i−1

D̄i(τ)∆x(τ)dτ +

l2∑
j=1

D̃j∆x(t̃j) = 0. (3.2)

Here the following notations are used:

∆x(t) = x(t, ũ)− x(t, u), ∆u(t) = ũ(t)− u(t).

Let ψ(t) be an almost everywhere continuously differentiable vector function
and let λ ∈ En be as yet arbitrary numerical vector. Taking into account that
x(t) and x(t)+∆x(t) are the solutions to problem (2.1)-(2.2) under corresponding
values of the controls, we can write:

J(u) = Φ(x̂(t̂))+

T∫
t0

f0(x, u, t)dt+

T∫
t0

ψ∗(t) [ẋ(t)−A(t)x(t)−B(t)u(t)− C(t)]dt+

+λ∗

 l1∑
i=1

t̄2i∫
t̄2i−1

D̄i(τ)x(τ)dτ +

l2∑
j=1

D̃jx(t̃j)− C0

 ,

J(u+ ∆u) = Φ(x̂(t̂) + ∆x̂(t̂)) +

T∫
t0

f0(x(t) + ∆x(t), u(t) + ∆u(t), t)dt+

+

T∫
t0

ψ∗(t) [(ẋ(t) + ∆ẋ(t))−A(t)(x(t) + ∆x(t))−B(t)(u(t) + ∆u(t))− C(t)]dt+

+λ∗

 l1∑
i=1

t̄2i∫
t̄2i−1

D̄i(τ)(x(τ) + ∆x(τ))dτ +

l2∑
j=1

D̃j(x(t̃j) + ∆x(t̃j))− C0

 ,
where “*” is the transposition sign. Then for the increment of the functional,
using the formula of partial integration, after grouping the corresponding terms,
accurate within the terms of the first infinitesimal order, we obtain:
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∆J(u) =

T∫
t0

[
−ψ̇∗(t)− ψ∗(t)A(t) + λ∗

l1∑
i=1

[χ(t̄2i)− χ(t̄2i−1)] D̄i(t)+

+ f0
x(x, u, t)

]
∆x(t)dt+

T∫
t0

{
f0
u(x, u, t)− ψ∗(t)B(t)

}
∆u(t)dt+

+

2l1+l2−1∑
k=2

[
ψ∗−(t̂k)− ψ∗+(t̂k) +

∂Φ(x̂(t̂))

∂x(t̂k)

]
∆x(t̂k)+

+

l2∑
j=1

λ∗D̃j∆x(t̃j) + ψ∗(T )∆x(T )− ψ∗(t0)∆x(t0)+

+

T∫
t0

o1(‖∆x(t)‖Ln
2 [t0,T ])dt+

T∫
t0

o2(‖∆u(t)‖Lr
2[t0,T ])dt+o3(

∥∥∆x̂(t̂k)
∥∥
Ln
2 [t0,T ]

), (3.3)

where ψ+(t̂k) = ψ(t̂k + 0), ψ−(t̂k) = ψ(t̂k − 0) , k = 1, 2, ..., (2l1 + l2) , χ(t)− is
Heaviside function.

Let ψ(t) be the solution to the following system of equations

ψ̇(t) = −A∗(t)ψ(t) +

l1∑
i=1

[χ(t̄2i)− χ(t̄2i−1)] D̄∗(t)λ+ f0∗
x (x, u, t), (3.4)

involving the following boundary conditions

ψ(t0) =


(
∂Φ(x̂(t̂))

∂x(t̃1)

)∗
+ D̃∗1λ, if t0 = t̃1 ,(

∂Φ(x̂(t̂))
∂x(t̄1)

)∗
, if t0 = t̄1 ,

(3.5)

ψ(T ) =

 −
(
∂Φ(x̂(t̂))

∂x(t̃l2 )

)∗
− D̃∗l2λ, if t̃l2 = T ,

−
(
∂Φ(x̂(t̂))
∂x(t̄2l1 )

)∗
, if t̄2l1 = T,

(3.6)

as well as jump conditions at the intermediate t̃j such that t0 < t̃j < T ,

ψ+(t̃j)− ψ−(t̃j) =

(
∂Φ(x̂(t̂))

∂x(t̃j)

)∗
+ D̃∗jλ, j = 1, 2, ... l2, (3.7)

and at the points t̄i, i = 1, 2, ..., 2 l1 such that t0 < t̄i < T ,

ψ+(t̄i)− ψ−(t̄i) =

(
∂Φ(x̂(t̂))

∂x(t̄i)

)∗
, i = 1, 2, ... 2l1. (3.8)

The solutions to equation (3.4) are the functions that are absolutely continuous
for t < t̄i, t > t̄i , i = 1, 2, ..., 2l1, and t < t̃j , t > t̃j , j = 1, 2, ..., l2, and satisfy
equation (3.4) almost everywhere on [t0, T ]; moreover, they have a jump of the
form (3.7) and (3.8) at t = t̄i and t < t̃j .
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Instead of (3.4), (3.7)-(3.8), we can use a differential equations system involving
impulse actions:

ψ̇(t) = −A∗(t)ψ(t) +

l1∑
i=1

[χ(t̄2i)− χ(t̄2i−1)] D̄∗(t)λ+

+

l2∑
j=1

[(
∂Φ(x̂(t̂))

∂x(t̃j)

)∗
+ D̃∗jλ

]
δ(t− t̃j)+

+

l1∑
i=1

(
∂Φ(x̂(t̂))

∂x(t̄i)

)∗
δ(t− t̄i) + f0∗

x (x, u, t) . (3.9)

Here δ(·) is delta function. Problems (3.4)-(3.8) and (3.9), (3.5),(3.6) are equiv-
alent. Numerical schemes of their approximation and the solution algorithms used
are identical. Note the following about the estimate of the quantities o1(‖∆x(t)‖)
and o3(

∥∥∆x(t̂)
∥∥). As it was noted above in the first paragraph, considered bound-

ary problem (2.1)-(2.2) can be reduced to a non-local boundary problem involving
both multipoint and two-point conditions. Problems of this kind are sufficiently
well investigated in many works for the cases of different conditions imposed on
the functions, on the parameters taking part in the statement, and for nonlinear
problems as well. In these works, for different variants of the conditions, the
following estimate is obtained:

‖∆x(t)‖ ≤ c ‖∆u(t)‖ , (3.10)

where c = const > 0 does not depend on the choice of the admissible control
([13, 27, 28]).

It is clear that using the techniques of these works, we can obtain a similar
estimate for boundary problem (2.1) and (2.2).

Thus the gradient of the target functional under the admissible control u(t) in
problem (2.1)-(2.3) is determined as follows:

∇J(u) = f0∗
u (x, u, t)−B∗(t)ψ(t), (3.11)

where x(t) and ψ(t) are the solutions to direct system (2.1), (2.2) and to adjoint
system (3.4)-(3.8), respectively, corresponding to this control.

On condition that there is a constructive algorithm for computing the value of
the gradient of functional (3.11), it is not difficult to implement iterative tech-
niques of first order minimization, particularly, of gradient projection method
(see [29]):

uk+1(t) = PU (uk(t)− αk ∇J(uk(t))), k = 0, 1, ..., (3.12)

αk = arg min
α≥0

J(PU (uk(t)− α ∇J(uk(t)))) ,

where PU (υ) is the projection operator of the element υ ∈ Er on the admissible
set U ; αk is the one-dimensional minimization step.

On every iteration (3.12), the calculation of the gradient of the functional
under given control confronts with two the most essential difficulties associated
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with the specific character of the problem, namely, with the problem of solution
to non-autonomous differential equations system involving non-separated multi-
point and integral conditions (2.1), (2.2), and with the problem of solution to
adjoint boundary problem (3.4)-(3.8), the non-local conditions of which contain
an unknown n-dimensional vector of parameters λ. As a whole, system of rela-
tions (2.1), (2.2), (3.4)–(3.8) for determining the gradient of the functional under
given control u(t) is closed: to determine unknown 2n functions x(t), ψ(t), their
2n initial conditions, and n-dimensional vector λ, we have 2n-dimensional differ-
ential equations system, n conditions in (2.2) and 2n conditions in (3.5), (3.6).

Below, we give an algorithm for overcoming these difficulties. It is based on
using the operation of shift of conditions developed in [3, 9] for solving systems of
equations involving non-separated intermediate conditions and boundary condi-
tions, including unknown parameters as well (see [3, 7, 12]). The concept of shift
of intermediate conditions generalizes the known operation of shift of boundary
conditions, and is based on developing the results of the [3, 9] applied to this
class of problems.

4. Numerical scheme of solution to the problem

We shall give below an algorithm of computing the gradient of the target
functional under given control. To solve the problem (2.1), (2.2) under given
admissible function u(t), we can make use of, for example, the numerical method
proposed in [3, 9].

Solve the adjoint boundary problem (3.4)–(3.7) on the condition that the phase
variable x(t), the solution to problem (2.1) and (2.2), is already determined for
given u(t) by application of the procedure described above. To avoid cumbersome
expressions in formulas and in description of numerical scheme of solution given
below, we assume that t̃1 = t0 and t̃l2 = T , and rewrite adjoint problem (3.4)–
(3.7) in the following form:

ψ̇(t) = A1(t)ψ(t) +

l1∑
i=1

[χ(t̄2i)− χ(t̄2i−1)] D̄i(t)λ+ C1(t), (4.1)

with the following boundary conditions:

G̃1ψ(t0) = K̃1 + D̃1λ, (4.2)

ψ(T ) = −K̃l2 − D̃l2λ, (4.3)

and jump conditions at the intermediate points t̃j , for which t0 < t̃j < T :

ψ+(t̃j)− ψ−(t̃j) = K̃j + D̃jλ, j = 2, 3, ..., l2 − 1, (4.4)

and at the points t̄i, for which t0 < t̄i < T , i = 1, 2, ... 2l1:

ψ+(t̄i)− ψ−(t̄i) = K̄i, i = 1, 2, ...2 l1. (4.5)

Here Ḡ1 = In is the n-dimensional identity matrix, and the following notations
are introduced for the matrices and vectors:
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A1(t) = −A∗(t), C1(t) = ∂f0(x, u, t)/∂x,

K̃j = ∂Φ(x(t̂))/∂x(t̃j), D̃
∗
j = D̃j , j = 1, 2, ..., l2,

D̄∗i (t) = D̄i(t), i = 1, 2, ...., l1, K̄i = ∂Φ(x(t̂))/∂x(t̄i), i = 1, 2..., 2 l1,

that were already calculated when solving the direct problem.
In problem (4.1)–(4.5), defined by system of n differential equations (4.1),

in general case, we have 2n boundary conditions that include the unknown n-
dimensional vector λ. Thus the conditions of problem (4.1)–(4.4) are closed, but
there is a specific character which lies in the presence of discontinuities of the
function ψ(t) defined by jumps (4.4).

Condition (4.2) is called a condition shifted to the right in the semi-interval
t ∈ [t̃1, t̃2) by the matrix and vector functions G1(t), D1(t) ∈ En×n, K1(t) ∈ En
such that

G1(t0) = G1(t̃1) = G̃1, K1(t0) = K1(t̃1) = K̃1, D̃1(t0) = D̃1(t̃1) = D̃1, (4.6)

if for the solution ψ(t) to (4.1), the following relation holds:

G1(t)ψ(t) = K1(t) +D1(t)λ , t ∈ [t̃1, t̃2). (4.7)

Next, using the results of [3, 7, 12], we give the techniques to find the shifting
functions G1(t), D1(t),K1(t). By using formula (4.7), we shift initial conditions
(4.5) to the point t = t̃2 − 0 and, taking shift condition (4.4) into account at the
point t = t̃2 + 0, we obtain

G1(t̃2)ψ(t̃2 + 0) =
[
K1(t̃2) +G(t̃2)K̃2

]
+
[
D1(t̃2) +G1(t̃2)D̃2

]
λ.

Introducing the notations

t̃2 = t̃2 +0, G̃1
1 = G1(t̃2), K̃1

1 = K1(t̃2)+G(t̃2)K̃2, D̃1
1 = D1(t̃2)+G1(t̃2)D̃2,

we obtain the conditions similar to (3.27) and defined at the point t̃2:

G̃1
1ψ(t̃2) = K̃1

1 + D̃1
1λ.

By shifting condition (4.2) l2−1 times and taking (4.6) into account, we obtain
a linear system of 2n algebraic equations with respect to ψ(t̃l2) = ψ(T ) and λ.
After solving this system, we determine the vector function ψ(t) from right to
left from Cauchy problem with respect to (4.1).

Illustrate the stages of the shift process applied to condition (4.2). To be
specific we assume that [t̄1, t̄2] ⊂ [t̃1, t̃2) and t̃1 = t0. Shift of condition is carried
out successively in the intervals [t̃1, t̄1), [t̄1, t̄2), [t̄2, t̃2), by using formulas (4.7).

1) For t ∈ [t̃1, t̄1), we shift initial conditions (4.2) to the point t = t̄1 − 0 and,
taking shift condition (4.5) into account at the point t = t̄1, we obtain

G1(t̄1)ψ(t̄1 + 0) =
[
K1(t̄1) +G1(t̄1)K̄1

]
+D1(t̄1)λ.

Assuming t̄1 = t̄1 + 0, introduce the notations
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G̃1
1 = G1(t̄1), K̃1

1 = K1(t̄1) +G1(t̄1)K̄1, D̃1
1 = D1(t̄1),

following which, we obtain the initial conditions similar to (4.2) and defined at
the point t̄1,

G̃1
1ψ(t̄1) = K̃1

1 + D̃1
1λ. (4.8)

2) For t ∈ [t̄1, t̄2), we shift conditions (4.8) to the point t = t̄2 − 0 and, taking
shift condition (4.5) into account at the point t = t̄2, we obtain

G1(t̄2)ψ(t̄2 + 0) =
[
K1(t̄2) +G1(t̄2)K̄2

]
+D1(t̄2)λ.

Assuming t̄2 = t̄2 + 0, introduce the notations

G̃2
1 = G1(t̄2), K̃2

1 = K1(t̄2) +G1(t̄2)K̄2 , D̃2
1 = D1(t̄2) ,

and obtain initial conditions equivalent to (4.8) and defined at the point t̄2

G̃2
1ψ(t̄2) = K̃2

1 + D̃2
1λ . (4.9)

3) For t ∈ [t̄2, t̃2) we shift conditions (4.9) to the point t = t̃2 − 0 and, taking
shift condition (4.4) into account at the point t = t̃2, we obtain

G1(t̃2)ψ(t̃2 + 0) =
[
K1(t̃2) +G1(t̃2)K̄2

]
+
[
D1(t̃2) +G1(t̃2)D̃2

]
λ .

Assuming t̃2 = t̃2 + 0, introduce the notations

G̃3
1 = G1(t̃2) , K̃3

1 = K1(t̃2) +G1(t̃2)K̄2 , D̃3
1 = D1(t̃2) +G1(t̃2)D̃2 ,

and obtain the conditions equivalent to (3.34) and defined at the point t̃2

G̃3
1ψ(t̃2) = K̃3

1 + D̃3
1λ . (4.10)

The functions Gj(t), Kj(t), Dj(t), j = 1, 2, ..., l2 that shift conditions (4.2)
successively to the right (i.e. the functions Gj(t), Kj(t), Dj(t), j = 1, 2, ..., l2
must satisfy (4.6), (4.7)), are not determined uniquely. For example, it is possible
to use functions proposed in the following theorem.

Theorem 4.1. Let the functions G1(t), K1(t), D1(t) be the solution to the
following Cauchy problems for t ∈ (t̃1, t̃2]:

Ġ1(t) = Q0(t)G1(t)−G1(t)A1(t), G1(t̃1) = G̃1,

Ḋ1(t) = Q0(t)D1(t) +G1(t)

l1∑
i=1

[χ(t̄2i)− χ(t̄2i−1)] D̄i(t), D1(t̃1) = D̃1,

K̇1(t) = Q0(t)K1(t) +G1(t)C1(t), K1(t̃1) = K̃1,

Q̇(t) = Q0(t)Q(t), Q(t̃1) = In×n, (4.11)

Q0(t) =

[
G1(t)A1(t)G∗1(t)−G1(t)

l1∑
i=1

[χ(t̄2i)− χ(t̄2i−1)] D̄i(t)D
∗
1(t)−
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−G1(t)C1(t)K∗1 (t)]× [G1(t)G∗1(t) +D1(t)D∗1(t) +K1(t)K∗1 (t)] −1.

Then these functions shift condition (4.2) to the right on the semi-interval
t ∈ [t̃1, t̃2), and relation (4.7) holds true for them. The following condition

‖G1(t)‖2Rn×n + ‖D1(t)‖2Rn×n + ‖K1(t)‖2Rn =

=
∥∥∥G̃1

∥∥∥2

Rn×n
+
∥∥∥D̃1

∥∥∥2

Rn×n
+
∥∥∥K̃1

∥∥∥2

Rn
= const, t ∈

(
t̃1, t̃2

)
, (4.12)

also holds. Condition (4.12) provides stability for the solution to Cauchy problem
(4.11).

Proof. Differentiating expression (4.7)

Ġ1(t)ψ(t) +G1(t) ψ̇(t) = K̇1(t) + Ḋ1(t)λ,

and taking (4.1) into account, we come to the equality

Ġ1(t)ψ(t) +G1(t)

[
A1(t)ψ(t) +

l1∑
i=1

[χ(t̄2i)− χ(t̄2i−1)] D̄i(t)λ+ C1(t)

]
=

= K̇1(t) + Ḋ1(t)λ

After grouping, we obtain the following equation:

[
Ġ1(t) +G1(t)A1(t)

]
ψ(t) +

[
−Ḋ1(t) +G1(t)

l1∑
i=1

[χ(t̄2i)− χ(t̄2i−1)] D̄i(t)

]
λ+

+
[
−K̇1(t) +G1(t)C1(t)

]
= 0.

Setting the expressions in brackets equal to 0, we obtain

Ġ1(t) = −G1(t)A1(t), K̇1(t) = G1(t)C1(t) ,

Ḋ1(t) = G1(t)

l1∑
i=1

[χ(t̄2i)− χ(t̄2i−1)] D̄i(t), (4.13)

The functions G1(t), K1(t), D1(t), which are the solution to Cauchy problems
(4.13), (4.6), satisfy condition (4.7), i.e. they shift conditions (4.2) from the point
t̃1 = t0 to the point t̃2. But numerical solution to Cauchy problems (4.13), (4.6),
as is known, confronts with instability due to the presence of fast increasing com-
ponents. This is because the matrix A1(t) often has both positive and negative
eigenvalues. That is why we try to find shifting functions that satisfy condition
(4.12).

Multiply both parts of (4.7) by an arbitrary matrix function Q(t) such that

Q(t0) = In×n, rang Q(t) = n, t ∈ [t̃1, t̃2),

and introduce the notations

g(t) = Q(t)G1(t), q(t) = Q(t)D1(t), r(t) = Q(t)K1(t). (4.14)
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From (4.7), it follows that:

g(t)ψ(t) = r(t) + q(t)λ. (4.15)

Differentiating (4.14) and taking (4.13) into account, we obtain:

ġ(t) = Q̇(t)G1(t) +Q(t)Ġ1(t) = Q̇(t)Q−1(t)g(t)− g(t)A1(t), (4.16)

q̇(t) = Q̇(t)D1(t) +Q(t)Ḋ1(t) = Q̇(t)Q−1(t)q(t)+

+g(t)

l1∑
i=1

[χ(t̄2i)− χ(t̄2i−1)] D̄i(t), (4.17)

ṙ(t) = Q̇(t)K1(t) +Q(t)K̇1(t) = Q̇(t)Q−1(t)r(t) + g(t)C1(t). (4.18)

Transposing relations (4.16)-(4.18), we obtain

ġ∗(t) = g∗(t)(Q̇(t)Q−1(t))∗ −A∗1(t)g∗(t), (4.19)

q̇∗(t) = q∗(t)(Q̇(t)Q−1(t))∗ +

l1∑
i=1

[χ(t̄2i)− χ(t̄2i−1)] D̄∗i (t) g
∗(t), (4.20)

ṙ∗(t) = r∗(t)(Q̇(t)Q−1(t))∗ + C∗1 (t)g∗(t). (4.21)

Choose the matrix functions Q(t) such that the following relation holds

g(t)g∗(t) + q(t)q∗(t) + r(t)r∗(t) = const.

Differentiating it, we obtain

ġ(t)g∗(t) + g(t)ġ∗(t) + q̇(t)q∗(t) + q(t)q̇∗(t) + ṙ(t)r∗(t) + r(t)ṙ∗(t) = 0. (4.22)

Substituting (4.16)-(4.19) into (4.22), after grouping, we obtain:[
Q(t)Q−1(t) (g(t)g∗(t) + q(t)q∗(t) + r(t)r∗(t)) +

+

(
−g(t)A1(t)g∗(t) + g(t)

l1∑
i=1

[χ(t̄2i)− χ(t̄2i−1)] D̄i(t)q
∗(t) + g(t)C1(t)r∗(t)

)]
+

+
[
Q(t)Q−1(t) (g(t)g∗(t) + q(t)q∗(t) + r(t)r∗(t)) +

+

(
−g(t)A1(t)g∗(t) + g(t)

l1∑
i=1

[χ(t̄2i)− χ(t̄2i−1)] D̄i(t)q
∗(t) + g(t)C1(t)r∗(t)

)]∗
= 0.

Assume that the expression in both square brackets equals 0:[
Q(t)Q−1(t) (g(t)g∗(t) + q(t)q∗(t) + r(t)r∗(t)) +
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+

(
−g(t)A1(t)g∗(t) + g(t)

l1∑
i=1

[χ(t̄2i)− χ(t̄2i−1)] D̄i(t)q
∗(t) + g(t)C1(t)r∗(t)

)]
= 0.

From this, it follows that

Q(t)Q−1(t) = Q0(t), (4.23)

where

Q0(t) =

[
g(t)A1(t)g∗(t)− g(t)

l1∑
i=1

[χ(t̄2i)− χ(t̄2i−1)] D̄i(t)q
∗(t)− g(t)C1(t)r∗(t)

]
×

× [g(t)g∗(t) + q(t)q∗(t) + r(t)r∗(t)] −1.

Substituting (4.23) into (4.16)-(4.18) and renaming the functions g(t) in G1(t),
q(t) and D1(t), r(t) in K1(t), we obtain the statement of the theorem. �

It is not difficult to carry on similar considerations and to obtain formulas for
shifting condition (4.3) successively to the left.

Thus to implement iterative procedure (3.12), it is necessary to go through the
following steps on every iteration for given u(t) = uk(t), t ∈ [t0, T ], k = 0, 1, ...:

1) to solve the problem (2.1), (2.2) by using the numerical scheme proposed in
[9], and to determine the phase trajectory x(t), t ∈ [t0, T ] ;

2) to solve problem (4.1)–(4.5) with the use of shift procedure (4.7) applied to
the boundary conditions, and to determine the adjoint vector-function ψ(t), t ∈
[t0, T ] and the vector of dual variables λ;

3) to substitute the obtained values of x(t), ψ(t), t ∈ [t0, T ] into formula (3.11)
and to determine the value of the gradient of the functional.

Instead of gradient projection method (3.12), other efficient first order numer-
ical optimization methods can be used (see [29]).

5. Numerical experiments

Problem. Consider the following optimal control problem
for t ∈ [0; 1], n = 2, r = 1 , U ≡ E1:{

ẋ1(t) = 4tx1(t)− x2(t) + tu− 5t2 + 5t+ 3 ,
ẋ2(t) = 3x1(t) + 2tx2(t)− 2t3 − 6t+ 3.

(5.1)

0.25∫
0

(
τ
0

−2
3

)
x(τ)dτ +

(
5
2

1
3

)
x(0.5)+

+

1∫
0.8

(
τ − 1
1

2
0

)
x(τ)dτ =

(
−0.3025
4.6756

)
. (5.2)

D̄1(t) =

(
t
0

−2
3

)
, D̄2(t) =

(
t− 1
1

2
0

)
, D̃1 =

(
5
2

1
3

)
.



NUMERICAL SOLUTION TO OPTIMAL CONTROL PROBLEMS . . . 183

J(u) =

1∫
0

[x1(t)− u(t) + 2]2 dt+ x2
1(0, 5)+

+ [x2(0, 5)− 1.25]2 + [x1(1)− 1]2 + [x2(1)− 2]2 . (5.3)

The exact solution to the problem are the following functions: u∗(t) = 2t +
1, x∗1(t) = 2t − 1, x∗2(t) = t2 + 1; the minimal value of the functional is
J(u∗) = 0.

According to formulas (3.4)-(3.8), the adjoint problem is as follows:

ψ̇1(t) = −4tψ1(t)− 3ψ2(t) + (χ(0.25)− χ(0)) (tλ1)+

+ (χ(1)− χ(0.8))((t− 1)λ1 + λ2) + 2(x1(t)− u(t) + 2),

ψ̇2(t) = ψ1(t)− 2tψ2(t) + (χ(0.25)− χ(0)) (−2λ1 + 3λ2)+

+(χ(1)− χ(0.8))(2λ1),

ψ1(0) = 0 , ψ2(0) = 0 ,

ψ1(1) = −2 [x1(1)− 1], ψ2(1) = −2 [x2(1)− 2] ,

ψ+
1 (0.5)− ψ−1 (0.5) = 2x1(0.5) + 5λ1 + 2λ2 ,

ψ+
2 (0.5)− ψ−2 (0.5) = 2 [x2(0.5)− 1.25] + λ1 + 3λ2 .

The gradient of the functional is determined as follows:

∇J(u) = − [x1(t)− u(t) + 2 ]− tψ1(t).

Numerical experiments were carried out for different initial controls u0(t) and
for different numbers N of partition of time interval. Fourth order Runge-Kutta
method and conjugate gradient method were used. In figure 1, we give the results
of solution to system (5.1), (5.2) and to the corresponding adjoint system. We
also show the values of the components of the normalized gradients (∇norm.analyt.J )

calculated by the proposed formulas (3.11) and the values of the components of
the normalized gradients (∇norm.approx.J ) obtained by finite difference approximation:

∂J(u)/∂uj ≈ (J(u+ δej)− J(u))/δ, (5.4)

where uj is the value of the control u = (u1, u2, ..., uN ) at thejth discretization

point; ej is the N - dimensional unit vector consisting of zeros except for the jth

component. The value of δ equals 0.01 and 0.001.
The initial value of the functional is J(u0) = 56.28717, λ1 = 0.2387, λ2 =

0.1781. The values of the functional obtained in the course of the iterations are
as follows:

J(u1) = 1.93187, J(u2) = 0.10445, J(u3) = 0.00868,

J(u4) = 0.00023, J(u5) = 0.00004.
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Figure 1. Initial values of the controls, of the phase variables, and of
the normalized gradients calculated using both the proposed formulas

and (5.4)

t u(0)(t) x
(0)
1 (t) x

(0)
2 (t) ψ

(0)
1 (t) ψ

(0)
2 (t) ∇norm.analyt.J

∇norm.approx.J
δ =
10−2

δ =
10−3

0
20
40
60
80
100
120
140
160
180
200

1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000
9.000
10.000
11.000

1.5886
1.5641
1.2382
0.6657
-0.0781
-0.8973
-1.6767
-2.2835
-2.5710
-2.3853
-1.5759

1.2034
2.4702
3.5937
4.4538
4.9528
5.0218
4.6295
3.7919
2.5845
1.1544
-0.2660

-9.2836
-0.5626
2.9294
-4.5081
-10.9008
-15.1806
-21.2792
-22.7128
-14.7216
-6.8798
0.0000

-6.3653
3.2122
14.8639
14.2492
11.4433
7.0519
9.1844
2.1275
-0.0383
-0.6530
-0.0000

-0.0161
-0.0106
-0.0053
0.0147
0.0411
0.0668
0.0996
0.1169
0.1039
0.0827
0.0800

-0.0156
-0.0102
-0.0049
0.0147
0.0413
0.0688
0.0990
0.1164
0.1034
0.0823
0.0795

-0.0161
-0.0107
-0.0052
0.0145
0.0410
0.0667
0.0994
0.1168
0.1038
0.0826
0.0800

On the sixth iteration of conjugate gradient method, we obtain the results given
in figure 2 with the minimal value of the functional J(u6) equal to 10−6.

Figure 2. The exact solution to the problem and the solution obtained
after the sixth iteration

t
Solution obtained Exact solution

u(6)(t) x
(6)
1 (t) x

(6)
2 (t) ψ

(6)
1 (t) ψ

(6)
2 (t) u∗(t) x∗1(t) x∗2(t)

0
20
40
60
80
100
120
140
160
180
200

0.9999
1.2000
1.4001
1.6001
1.7999
1.9999
2.1999
2.3998
2.6001
2.8001
3.0001

-1.0000
-0.8001
-0.6001
-0.4001
-0.2001
-0.0001
0.1999
0.4000
0.6001
0.8001
1.0001

1.0001
1.0101
1.0401
1.0902
1.1602
1.2500
1.3599
1.4899
1.6399
1.8101
2.0001

0.0059
0.0095
0.0089
0.0038
-0.0012
-0.0049
-0.0055
-0.0053
-0.0026
-0.0008
0.0000

-0.0040
0.0027
0.0098
0.0114
0.0114
0.0099
0.0044
0.0025
0.0014
0.0006
-0.0000

1.0000
1.2000
1.4000
1.6000
1.8000
2.0000
2.2000
2.4000
2.6000
2.8000
3.0000

-1.0000
-0.8000
-0.6000
-0.4000
-0.2000
0.0000
0.2000
0.4000
0.6000
0.8000
1.0000

1.0000
1.0100
1.0400
1.0900
1.1600
1.2500
1.3600
1.4900
1.6400
1.8100
2.0000

6. Conclusion

In the work, we propose the technique for numerical solution to optimal con-
trol problems for ordinary differential equations systems involving non-separated
multipoint and integral conditions. Note that a mere numerical solution to the
differential systems presents certain difficulties. The adjoint problem also has a
specific character which lies both in the equation itself and in the presence of an
unknown vector of Lagrange coefficients in the conditions.

The formulas proposed in the work, as well as the computational schemes
make it possible to take into account all the specific characters which occur when
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calculating the gradient of the functional. Overall, the proposed approach allows
us to use a rich arsenal of first order optimization methods and the corresponding
standard software to solve the considered optimal control problems.
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