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THE INVERSE SPECTRAL PROBLEM FOR THE PERTURBED

HARMONIC OSCILLATOR ON THE ENTIRE AXIS

SEVINJ M. BAGIROVA AND AGIL KH. KHANMAMEDOV

Abstract. Transformation operators with a condition at infinity for
the perturbed harmonic oscillator are constructed. The inverse spec-
tral problem for perturbed harmonic oscillators on the whole axis with
the same spectrum is investigated. The main equations of the inverse
problem are obtained. The unique solvability of the main equations is
proved.

1. Introduction

The problem of a quantum oscillator was an essential problem solved by Heisen-
berg in the framework of matrix mechanics and by Schrodinger in the language
of wave mechanics. The problem of describing the oscillatory motions of atoms
in molecules and crystals reduces to solving precisely this problem (see [2]). A
“quantized” electromagnetic field is equivalent to a system of oscillators. McK-
ean and Trubowitz [14] considered the problem of reconstruction for perturbed
oscillator on the real line

T = T̂ + q (x) ,
_
T= − d2

dx2
+ x2.

They gave an algorithm for the reconstruction of q (x) from norming constants
for the class of real infinitely differentiable potentials, vanishing rapidly at ±∞,
for fixed eigenvalues λn (q) = λn (0) for all n and “norming constants” → 0
rapidly as n → ∞. Later on, Levitan [12] reproved some results of [14] without
an exact definition of the class of potentials. It was also noted there that the
perturbation potentials may be constructed by the standard procedure of the
method of transformation operator. However, the rationale for some heuristic
considerations of [14] will require the construction of a transformation operator
with a condition at infinity.

We consider the perturbed oscillator T , generated on L2 (−∞,∞) by the an-
harmonic equation

−y′′ + x2y + q (x) y = λy, −∞ < x <∞, λ ∈ C, (1.1)
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where the real potential q (x) satisfies the conditions

q (x) ∈ C(1) (−∞,∞) ,

∫ ∞
−∞

∣∣xjq (x)
∣∣ dx <∞, j = 0, 1, 2. (1.2)

In present paper we construct transformation operators with a condition at
infinity for the perturbed oscillator T . Furthermore, the method transformation
operators used to solve the inverse spectral problem for the perturbed harmonic
oscillator T having the same spectrum as the harmonic oscillator T̂ .

We note that the method transformation operators were used in [9,11,18] to
solve the inverse spectral problem for the Schrodinger operators.

There are only few papers about the inverse problem for the perturbed har-
monic oscillator. Some uniqueness theorems were proved in paper [3]. In the work
[4] obtained the characterization and described the isospectral set for the case on
the real line for q ∈ H = {q ∈ L2 (−∞,∞) : q′, xq ∈ L2 (−∞,∞)}. A similar
problem for the perturbed harmonic oscillator on the half-line with a Dirichlet
boundary condition was investigated in [5]. In the work [10] considered a special
kind of perturbations with exact asymptotics at ±∞.

Many papers have appeared devoted to various problems of spectral analysis
of a perturbed harmonic oscillator (see [15-17], and references quoted therein).

2. The transformation operator

We consider the unperturbed equation

−y′′ + x2y = λy, 0 < x <∞, λ ∈ C. (2.1)

It has [1] two solutions f±0 (x, λ) = Dλ
2
− 1

2

(
±
√

2x
)
, where we use a standard

notation for the Weber function Dν (x) (or the parabolic cylinder function). It is
well known (see [1,3]) that for each x the functions f±0 (x, λ) are entire and the
following asymptotics are fulfilled:

f±0 (x, λ) =
(√

2x
)λ−1

2
e−

x2

2
(
1 +O

(
x−2

))
, x→ ±∞,

uniformly with respect to λ on bounded domains.
We now consider the perturbed equation (1.1). As is shown in [3,16], the

equation (1.1) under condition (1.2) has two solutions f± (x, λ) with asymptotics
f± (x, λ) = f±0 (x, λ) (1 + o (1)) , x→ ±∞. We set

σ± (x) = ±
∫ ±∞
x

|q (t)| dt, σ±1 (x) = ±
∫ ±∞
x

σ± (t) dt .

In the next theorem, by means of the transformation operator, representations
of the solutions f± (x, λ) are obtained.

Theorem 2.1. If q (x)satisfies condition (1.2) for j = 1, then for all λ equation
(1.1) has two solution f± (x, λ), representable in the form

f± (x, λ) = f±0 (x, λ)±
∫ ±∞
x

K± (x, t) f±0 (t, λ) dt, (2.2)

where the kernels K± (x, t) are a continuous function and satisfy the relations
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∣∣K± (x, t)
∣∣ ≤ 1

2
σ±
(
x+ t

2

)
eσ
±
1 (x), (2.3)

K± (x, x) = ±1

2

∫ ±∞
x

q (t) dt. (2.4)

Proof. Without loss of generality, consider the case of ”+” and assume that x ≥
0.Substituting the representation (2.2) into equation (1.1), we find that function
(2.2) satisfies equation (1.1), if only the kernel K±(x, t) satisfies a hyperbolic
equation of the second order

∂K+ (x, t)

∂x2
− ∂K+ (x, t)

∂t2
−
(
x2 − t2 + q (x)

)
K+ (x, t) = 0, 0 < x < t, (2.5)

and the conditions

K+ (x, x) =
1

2

∫ ∞
x

q (t) dt, lim
x+t→∞

K+ (x, t) = 0. (2.6)

Reduce problem (2.5)-(2.6) to the integral equation. To this end we reduce
equation (2.5) to the canonical form. Assuming U (ξ, η) = U

(
t+x
2 , t−x2

)
=

K+ (x, t) = K+ (ξ − η, ξ + η), for this function we find following

L [U ] ≡ ∂2U (ξ, η)

∂ξ∂η
− 4ξηU (ξ, η) = −U (ξ, η) q (ξ − η) (2.7)

with boundary conditions

U(ξ, 0) =
1

2

∫ ∞
ξ

q (α) dα, lim
ξ→∞

U(ξ, η) = 0, η > 0. (2.8)

Introduce the Riemann function R(ξ, η; ξ0, η0) of the equation L [U ] = ψ(ξ, η),
where ψ(ξ, η) = −U(ξ, η)q(ξ − η), i.e., the function satisfying the equation

L∗(R) ≡ ∂2R

∂ξ ∂η
− 4ξ η R = 0, 0 < η < η0, ξ0 < ξ <∞ , 0 < η < ξ

and the conditions on the characteristics

R(ξ, η; ξ0, η0) |ξ=ξ0 = 1, 0 ≤ η ≤ η0, R(ξ, η; ξ0, η0) |η=η0 = 1, ξ0 ≤ ξ <∞.

LetR (ξ, η, ξ0, η0) = J0 (z) =
∑∞

n=0
(−1)n

(n!)2

(
z
2

)2n
,z = 2

√(
ξ2 − ξ20

) (
η20 − η2

)
, where

Jn (z) is the Bessel function of the first kind. It is easy to verify that this function
satisfies the last three relations. In other words, R(ξ, η, ξ0, η0) is the Riemann
function of the equation (2.7) and has the symmetric property

R (ξ, η, ξ0, η0) = R (ξ0, η0, ξ, η) .

Using the well-known properties of the Bessel function, we find that the following
relations hold

∂R
∂ξ = O (ξ) , ∂R

∂η = O (ξ) , ∂
2R

∂ξ∂η = O (ξ) , ξ →∞,
∂2R
∂ξ2

= O
(
ξ2
)
, ∂

2R
∂η2

= O
(
ξ2
)
, ξ →∞.

(2.9)
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Now, apply the Riemann method (see [6]) to the equation (2.7). Then we
obtain the following integral equation for U(ξ0, η0)

U(ξ0, η0) =
1

2

∫ ∞
ξ0

R(ξ, 0; ξ0, η0)q(ξ)dξ

−
∫ ∞
ξ0

dξ

∫ η0

0
U(ξ, η)q(ξ − η)R(ξ, η; ξ0, η0)dη. (2.10)

Thus, for solving problem (2.7) - (2.8) it is enough to solve integral equation
(2.10) with respect to U(ξ0, η0).

Now we proceed to the investigation of the integral equation (2.10). By the
method of successive approximation, let

U0(ξ0, η0) =
1

2

∫ ∞
ξ0

R(ξ, 0; ξ0, η0)q(ξ)dξ,

Un(ξ0, η0) = −
∫ ∞
ξ0

dξ

∫ η0

0
Un−1(ξ, η)q(ξ − η)R(ξ, η; ξ0, η0)dη.

From the relation |R| ≤ 1, we have

|U0(ξ0, η0)| ≤
1

2

∫ ∞
ξ0

|R(ξ, 0; ξ0, η0) | |q(ξ)| dξ ≤
1

2

∫ ∞
ξ0

|q (ξ)| dξ,

i.e.

|U0 (ξ0, η0)| ≤
1

2
σ+ (ξ0) .

Further, we find that

|U1 (ξ0, η0)| ≤
∫∞
ξ0
dξ
∫ η0
0 |U0 (ξ, η)| · |q (ξ − η) ·R (ξ, η; ξ0, η0)| dη ≤

≤ 1
2

∫∞
ξ0
dξ
∫ η0
0 σ+ (ξ) |q (ξ − η)| dη ≤ 1

2

∫∞
ξ0
σ+ (ξ) dξ

∫ η0
0 |q (ξ − η)| dη ≤

≤ σ+(ξ0)
2

∫∞
ξ0
dξ
∫ η0
0 |q (ξ − η)| dη = σ+(ξ0)

2

∫∞
ξ0
dξ
∫ ξ
ξ−η0 |q (α)| dα ≤

≤ σ+(ξ0)
2

∫∞
ξ0

∫∞
ξ−η0 |q (α)| dαdξ ≤ σ+(ξ0)

2 σ+1 (ξ0 − η0) .
Now let

|Un−1(ξ0, η0)| ≤
1

2
σ+ (ξ0)

(
σ+1 (ξ0 − η0)

)n−1
(n− 1)!

.

Using last relation we get

|Un(ξ0, η0)| ≤
∫ ∞
ξ0

dξ

∫ η0

0
|q(ξ − η)R(ξ, η, ξ0, η0)Un−1(ξ, η)| dη ≤

1

2
σ+ (ξ0)

∫ ∞
ξ0

(
σ+1 (ξ − η)

)n−1
(n− 1)!

∫ ξ

ξ−η0
|q (α)| dαdξ

≤ 1

2
σ+ (ξ0)

∫ ∞
ξ0

(
σ+1 (ξ − η)

)n−1
(n− 1)!

∫ ∞
ξ−η0
|q (α)| dαdξ

= −1

2
σ+ (ξ0)

∫ ∞
ξ0

(
σ+1 (ξ − η0)

)n−1
(n− 1)!

dσ+1 (ξ − η0) =
1

2
σ+ (ξ0)

(
σ+1 (ξ0 − η0)

)n
n!

.
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Thus, the series U (ξ0, η0) =
∑∞

n=0 Un (ξ0, η0) converges absolutely and uniformly
and its sum is a solution of equation (2.10). Moreover, U (ξ0, η0) satisfies the
inequality

|U (ξ0, η0)| ≤
1

2
σ+ (ξ0) e

σ+
1 (ξ0−η0). (2.11)

Differentiating equation (2.10) directly and using relations (2.9), we find that
the function U (ξ0, η0) and thus the function K+ (x, t) = U

(
t+x
2 , t−x2

)
are twice

continuously differentiable. Moreover, for each fixed x we have the relations

∂K+(x,t)
∂x = O

(
t2
)
, ∂K

+(x,t)
∂t = O

(
t2
)
,

∂2K+(x,t)
∂x2

= O
(
t4
)
, ∂

2K+(x,t)
∂t2

= O
(
t4
)
, t→∞.

From this and (2.11) it follows that the function K+ (x, t) = U
(
t+x
2 , t−x2

)
satisfies

the problem (2.5), (2.6). This completes the proof of the theorem. �

3. Inverse problem

Consider the quantum-mechanical harmonic oscillator

_
T= − d2

dx2
+ x2

on L2 (−∞,∞) . It is well known that the spectrum of
_
T is purely discrete

and consists of the simple eigenvalues λn = 2n + 1, n = 0, 1, .... The corre-
sponding normalized eigenfunctions {ψ0 (x, λn)}∞n=0 have the form ψ0 (x, λn) =(
α0
n

)−1
f±0 (x, λn) =

(
α0
n

)−1
2−

n
2 e−

x2

2 Hn (±x), where Hn (x) is the Hermite poly-
nomial and

(
α0
n

)2
=

∫ ∞
−∞

∣∣f±0 (x, λn)
∣∣2 dx = n!

√
π. (3.1)

Further, as in the papers [12,14], we assume that the perturbed oscillators T have

the same spectrum as the harmonic oscillator T̂ . The functions f+ (x, λn) and
f− (x, λn) are eigenfunctions of the perturbed oscillators T and there exists a
sequence Cn such that

f+ (x, λn) = Cnf
− (x, λn) , Cn 6= 0. (3.2)

Define the weight numbers α±n by the formulas

α±n =

√∫ ∞
−∞
|f± (x, λn)|2 dx , n = 0, 1, 2, .... (3.3)

The numbers {λn = 2n+ 1; α+
n > 0}∞n=0 or {λn = 2n+ 1; α−n > 0}∞n=0 are called

spectral data of perturbed harmonic oscillator T . The inverse scattering prob-
lem for perturbed harmonic oscillator T is recovering the potential q (x) by the
spectral data.

Below we need some properties of the weight numbers.
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Lemma 3.1. For n→∞ the following asymptotic formulae hold

Cn = (−1)n
[
1 +O

(
n−

1
2

)]
, (3.4)

(
α±n
)2

=
(
α0
n

)2 [
1 +O

(
n−

1
2

)]
. (3.5)

Proof. We use the notation{u, v} = uv′ − u′v for the Wronskian of u, v. Let

f (x, λ) be some solution of (1.1). The standard identity f2 =
{
ḟ , f

}′
yields(

α±n
)2

= −C±1n ∆̇ (λn) , (3.6)

where ∆ (λ) ≡
{
f+0 (x, λ) , f−0 (x, λ)

}
= −2e−( c2+ln 2)λ∏∞

n=0

(
1− λ

λn

)
e
λ
λn , c is

the Euler constant and ḟ = ∂f
∂λ(see [1,5]).

Taking into account the relation f+0 (x, λn) = (−1)n f−0 (x, λn), by virtue of
(3.6) we get (

α0
n

)2
= (−1)n+1 ∆̇ (λn) . (3.7)

As is shown in the work [16], the behavior of f± (x, λ) as λ → ∞ and fixed x
is determined by the expansion

f± (x, λ) = π−
1
2 2

λ−1
4 Γ

(
λ+ 1

4

){
cos

[
π
λ− 1

4
∓ x
√
λ

]
+O

(
λ−

1
2

)}
. (3.8)

Using (3.3), (3.8) and taking into account that λn = 2n + 1, we obtain (3.4).
Further, using (3.6), (3.7) we get (3.5).

We note that relations (3.6) allows one to establish connections between the
spectral data {λn = 2n+ 1; α+

n > 0}∞n=0 and{λn = 2n+ 1; α−n > 0}∞n=0. More
precisely, from the given data {λn = 2n+ 1; α+

n > 0}∞n=0 one can uniquely re-
construct {λn = 2n+ 1; α−n > 0}∞n=0 (and vice versa).

Denote

F± (x, y) =

∞∑
n=0

{(
α±n
)−2 − (α0

n

)−2}
f±0 (x, λn) f±0 (y, λn) . (3.9)

Since
(
α0
n

)2
= n!

√
π =
√
πΓ (n+ 1), by virtue of the well-known relations for the

Gamma function it follows from (3.8) that for each fixed x the relation
f±0 (x,λn)

α0
n

=

O
(
n−

1
4

)
, n→∞ holds. From this and (3.9) it follows that for each fixed x the

series (3.9) converges in the metric of L2 (−∞,∞). Hence, for each fixed x the
function F (x, y) belongs to L2 (−∞,∞) as a function of y. �

The central role for constructing the solution of the inverse spectral problem
is played by the so-called main equation which is a linear integral equation of
Fredholm type.

Theorem 3.1. For each fixed x, x ∈ (−∞,∞), the functions K± (x, y), defined
in representation (2.2) satisfy the linear integral equations
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F± (x, y) +K± (x, y)±
∫ ±∞
x

K± (x, t)F± (t, y) dt = 0, ±y > ±x. (3.10)

Equations (3.10) are called the main equations or Gelfand-Levitan-Marchenko
equations.

Proof. The functions
{
f±0 (x,λn)

α0
n

}∞
n=0

and
{
f±(x,λn)

αn

}∞
n=0

are normalized eigenfunc-

tions of T̂ and T respectively. Consequently,

∞∑
n=0

f±0 (x, λn)

α0
n

f±0 (y, λn)

α0
n

= δ (x− y) ,

∞∑
n=0

f± (x, λn)

α±n

f± (y, λn)

α±n
= δ (x− y) ,

(3.11)
where δ (x) is the Dirac delta-function. On the other hand, one can consider the
relation (2.2) as a Volterra integral equation with respect to f±0 (x, λ). Solving
this equation we obtain

f±0 (y, λ) = f±(y, λ)±
∫ ±∞
y

K̃±(y, t)f±(t, λ)dt. (3.12)

Moreover, from the well-known properties of the transformation operators[19] it

follows that the kernel K̃± (y, t) satisfies an inequality analogous to (2.3). Since

K̃± (y, x) = 0, ±x > ±y, then from (3.11), (3.12), we have

∞∑
n=0

f± (x, λn)

α±n

f±0 (y, λn)

α±n
=

=

∞∑
n=0

f± (x, λn)

α±n

f± (y, λn)

α±n
±
∫ ±∞
y

K̃± (y, t)

{ ∞∑
n=0

f± (x, λn)

α±n

f± (t, λn)

α±n

}
dt =

= δ (x− y)±
∫ ±∞
y

K̃± (y, t) δ (x− t) dt = δ (x− y)± K̃ (y, x) = δ (x− y) ,

and hence with the help of (2.2),

∞∑
n=0

f± (x, λn)

α±n

f±0 (y, λn)

α±n
=

=
∞∑
n=0

f±0 (x, λn)

α±n

f±0 (y, λn)

α±n
±
∫ ±∞
x

K± (x, t)

{ ∞∑
n=0

f±0 (t, λn)

α±n

f±0 (y, λn)

α±n

}
dt =

= δ (x− y) + F± (x, y) +K± (x, y)±
∫ ±∞
x

K± (x, t)F± (t, y) dt.

Comparing the last two equations, we arrive at (3.10).
If q (x) satisfies condition (1.2) for j = 2, then as is shown in [8](see Lemma

6.3) the kernel F± (x, y) of the main equation (3.10) for each fixed asatisfies the
inequality

∣∣F± (x, y)
∣∣ ≤ C± (a)σ±

(
x+ y

2

)
, ±x > a, ±y > a. (3.13)
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In addition, function F± (x, y) is symmetric with respect to x,yand is continuous
in the set of arguments. It follows from (3.13) that

±
∫ ±∞
a

sup
±(x−a)>0

∣∣F± (x, y)
∣∣ dy <∞. (3.14)

�

Theorem 3.2. If function F± (x, y) satisfies conditions (3.14), (3.14), then for
each fixed x, x ∈ (−∞,∞) equation (3.10) has a unique solution K± (x, y) in
L2 (x,±∞).

Proof. For definiteness we consider equation (3.10) in the case “+”. For the case
“-” the arguments are the same. It is easy to check that for each fixed x, the
operator

Ωxf (y) =

∫ ∞
x

F+ (y, t) f (t) dt

is compact in L2 (x,∞).
Indeed, we have∫ ∞

x
dt

∫ ∞
x

∣∣F+ (t, y)
∣∣2 dy ≤ ∫ ∞

x
sup
y≥x

∣∣F+ (t, y)
∣∣ dt∫ ∞

x

∣∣F+ (t, y)
∣∣ dy ≤

≤
∫ ∞
x

sup
y≥x

∣∣F+ (t, y)
∣∣ dt∫ ∞

x
sup
t≥x

∣∣F+ (t, y)
∣∣ dy <∞

Hence, the operator Ωx is a Hilbert-Schmidt type operator.
Since (3.10) is a Fredholm equation it is sufficient to prove that the homoge-

neous equation

h (y) +

∫ ∞
x

F+ (t, y)h (t) dt = 0 (3.15)

has only the trivial solution h (y) = 0. Leth (y) be a solution of (3.15). Then∫ ∞
x

h2 (y) dy +

∫ ∞
x

∫ ∞
x

F+ (t, y)h (t)h (y) dtdy = 0,

or ∫ ∞
x

h2 (y) dy +
∞∑
n=0

(
α+
n

)−2(∫ ∞
x

h (y) f+0 (y, λn) dy

)2

−

−
∞∑
n=0

(
α0
n

)−2(∫ ∞
x

h (y) f+0 (y, λn) dy

)2

= 0.

Using Parsevals equality
∫∞
x h2 (y) dy =

∑∞
n=0

(
α0
n

)−2 (∫∞
x h (y) f+0 (y, λn) dy

)2
for

the function h (y), extended by zero for y < x, we obtain

∞∑
n=0

(
α+
n

)−2(∫ ∞
x

h (y) f+0 (y, λn) dy

)2

= 0.
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Since (α+
n )
−2

> 0, then
∫∞
x h (y) f+0 (y, λn) dy = 0, n ≥ 0. The system of functions{

f+0 (y, λn)
}∞
0

is orthogonal basis in L2 (−∞,∞). This yields h (y) = 0. �

Remark 3.1. The solution of the inverse scattering problem can be constructed
by the following algorithm. Calculate the function F± (x, y) by the spectral data
{λn, α±n > 0}∞n=0 and (3.9). Find K (x, y) by solving the main equation (3.10).
Construct q (x) by (2.4). In this case, following the corresponding arguments
in the paper [18], in a narrower class of potentials, one can achieve a complete
solution of the inverse problem.

Remark 3.2. The obtained results also extend to the case when the spectra of
perturbed harmonic oscillators are different. In this case we will have to use the

asymptotic formula (see [4, 16]) λn = 2n+ 1 +O
(
n−

1
2

)
, n→∞.
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