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THE SWEEP ALGORITHM FOR SOLVING THE SYSTEM OF

HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS

DESCRIBING THE MOTION IN OIL PRODUCTION

F. A. ALIEV, N. A. ALIEV, Y. Z. FARZALIYEV, AND K. K. GASANOV

Abstract. The initial problem for the system of partial differential
equations of hyperbolic type, arising in modeling of the oil production by
the gas lift method, is considered. The sweep algorithm for its solution
is suggested, requiring to solve two differential equations, one of which
corresponds to the classical quasi-linear partial differential equations,
and the second is a linear ordinary differential equation of the first or-
der, whose coefficients depend on the solution of the first equation with
appropriate initial conditions. Covering the domain of definition of the
solution of the system of quasi-linear equations by the uniform grid, two
types of templates are used which define the solution in the all nodal
points of the considered domain. This allows to solve for each time layer
the linear ordinary differential equation with the help of fundamental so-
lutions. Then, using the corresponding difference schemes the solution
(the volume of gas or gas-liquid mixture, depending on the coordinates
and pressure) is constructed for the original system of hyperbolic partial
differential equations. On a simple example, when the initial data are
constant, it is shown that the solutions coincide with the known ones.

1. Introduction

It is known [2–6, 11, 13, 14, 16, 17] that for finding of the volume of gas-liquid
mixture (GLM) and the pressure at any point of the lift in the oil production
by gas lift method (after changing the role of arguments x and t) the following
system of partial differential equations of hyperbolic type of the first order should
be investigated

∂P (x,t)
∂x = − c

F ·
∂Q(x,t)
∂t ,

∂Q(x,t)
∂x = −F ∂P (x,t)

∂t − 2aQ(x, t), −∞ < x <∞, t > 0,

(1.1)

with initial conditions

P (x, 0) = Po(x), Q (x, 0) = Q0 (x) , ∞ < x <∞ , (1.2)
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Figure 1

where a, F, c are constants, which have the concrete physical values [12], and
P0(x), Q0(x) are given continuous and differentiable functions on x.

From the linearity of the equation (1.1), analogically to [6, 7, 13, 15], we can
seek the pressure P (x, t) , as a linear function of the volume of GLM - Q (x, t)
in the following form [8–10]

P (x, t) = S(x, t) ·Q(x, t) + α(t)R(x), (1.3)

where S(x, t), R(x) will be determined, but in regard of a scalar function α(t),
it is any function satisfying the following conditions [4]

α(0) = 0,

∞∫
0

α(t)dt = 1, (1.4)

i.e., in a special case, α(t) can be chosen as α(t) = te−t.

2. Sweep method

As proved in [4], for determining the coefficient S(x, t) from (1.3) we have the
following quasi-linear partial differential equation

∂S(x, t)

∂x
+ FS(x, t)

∂S(x, t)

∂t
− 2aS(x, t) = 0, (2.1)

with initial condition [1, 19]

S(x, 0) = r(x) =
P0(x)

Q0(x)
. (2.2)

R(x) is found from the linear ordinary differential equation

R′(x)− F

 ∞∫
0

S(x, t)α′(t)dt

R(x) +
(
FS2(x, 0)− c

F

)
Q(x, 0) = 0, (2.3)
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with condition

lim
x→∞

R(x) = 0. (2.4)

Note that this condition arises from the fact that the pressure and the gas volume
(or GLM) at infinity is damped, i.e. from (1.3) we have the relation (2.2).

To find a solution of equation (2.1), (1.4), (2.4) with the conditions (2.2) and
(2.3), respectively, one can use different numerical methods (due to their quasi-
linearity). Now we focus on the solution of the problem (2.1), (2.2).

3. The numerical algorithm for solving of the equation (2.1) with
condition (2.2)

First, we focus on the construction of a numerical algorithm [18] for the quasi-
linear equation (2.1) with the initial condition (2.2), at (x, t) ∈ D ⊂ R2, where
D = {(x, t) : x ∈ (0, L), t ∈ (0, T )}. Consider a grid with step h = L

N in the

direction of the axis x, with step τ = T
M in the direction of the axis t, i.e.

xi = ih, i = 0, N, hN = L,
tj = jτ, j = 0,M, τM = T.

Then, taking designations

S(xi, tj) = S(ih, jτ) = Sij ,

by replacing the derivatives ∂S(x,t)
∂x and ∂S(x,t)

∂t by

∂S(x, t)

∂x
≈ Si+1j − Si,j

h
,
∂S(x, t)

∂t
≈ Sij+1 − Si,j

τ
,

the equations (2.1) are discretized as follows

Si+1j − Si,j
h

+ FSij
Si,j+1 − Si,j

τ
− 2aSij = 0, i = 0, N − 1;j = 0,M − 1,

which after corresponding changes turns to

τSi+1j − τSij + FhSijSi,j+1 − FhS2
ij − 2ahτSij = 0,

where from the latter for Sij+1 we find the expression

Sij+1 = Sij +
τ

Fh
(1 + 2ah)− τ

Fh

Si+1j

Sij
, i = 0, N − 1;j = 0,M − 1. (3.1)

Now, getting back to equation (2.1), taking another discretization (significantly
different from the previous)

∂S(x, t)

∂x
≈ Sij − Si−1j

h
,
∂S(x, t)

∂t
≈ Sij+1 − Si,j

τ
,

and substituting them into (2.1), we have:

Sij − Si−1j
h

+ FSij
Si,j+1 − Si,j

τ
− 2aSij = 0, i = 1, N ;j = 0,M − 1.

After simple transformations the last takes the form

τSij − τSi−1j + FhSijSi,j+1 − FhS2
ij − 2ahτSij = 0,
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which allows to determine Sij+1 by the following relation:

Sij+1 = Sij + (2ah− 1)
τ

Fh
+

τ

Fh

Si−1j
Sij

, i = 1, N ;j = 0,M − 1. (3.2)

The approximate formulas (3.1) and (3.2) alone can not define Sij at the all nodes
of the defined above grid. Therefore, we try to combine (3.1) and (3.2) so as to
completely embrace all nodes of the specified grid.

Suppose that in (2.2) the function S(x, 0) is known. Let us write it in the form

S(ih, 0) = Si0 =
P (ih)

Q(ih)
=
Pi0
Qi0

, i = 0, N. (3.3)

In order to cover all grid nodes, we proceed as follows
11) from (3.1) at i = 0, j = 0 we have

S01 = S00 +
τ

Fh
(1 + 2ah)− τ

Fh

S10
S00

, (3.4)

12) from (3.2) at i = 1, j = 0 we obtain

S11 = S10 + (2ah− 1)
τ

Fh
+

τ

Fh

S00
S10

. (3.5)

Continuing this process, we will define S02 and S12 as follows
21) from (3.1) at i = 0, j = 1 we have:

S02 = S01 + τ
Fh(1 + 2ah)− τ

Fh
S11
S01

= S00 + 2τ
Fh(1 + 2ah)−

− τ
Fh

S10
S00
− τ

Fh

S10+(2ah−1) τ
Fh

+ τ
Fh

S00
S10

S00+
τ
Fh

(2ah+1)− τ
Fh

S10
S00

.

(3.6)

22) from (3.2) at i = 1, j = 1 we will define S12 in the form:

S12 = S11 + (2ah− 1) τ
Fh + τ

Fh
S01
S11

= S10 + (−1 + 2ah) 2τ
Fh+

+ τ
Fh

S00
S10

+ τ
Fh

S00+
τ
Fh

(1+2ah)− τ
Fh

S10
S00

S10+(2ah−1) τ
Fh

+ τ
Fh

S00
S10

,

(3.7)

here we defined S02 and S12 through S00, S10. Continuing this process, we define
all S0j and S1j on the vertical strips at j = 1,M . Indeed, if there were determined

all S0j and S1j at j = 1,M − 1, then
M1) from (3.1) at i = 0, j = M − 1 we have:

S0M = S0M−1 +
τ

Fh
(1 + 2ah)− τ

Fh

S1M−1
S0M−1

, (3.8)

where S0M−1 and S1M−1 are known.
M2) from (3.2) at i = 1, j = M − 1 we obtain:

S1M = S1M−1 + (2ah− 1)
τ

Fh
+

τ

Fh

S0M−1
S1M−1

, (3.9)

Thus, from formulas (3.4) - (3.9), we define all S0j and S1jat j = 1,M with
the initial condition (3.3).
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Further, on the basis of (3.2) at i = 2, j = 0,M − 1, we get all S2j at j = 1,M .
Continuing this process (based only on the formula (3.10)), we get all

Sij , i = 0, N ;j = 1,M. (3.10)

Indeed, the last column SNj , is obtained from (3.2) at i = N , j = 0,M − 1.
Note 3.1. As is seen from the above scheme, in order to compute Sij at all

node points there have been used two types of templates; one of them replaces
derivatives on x by the step forward and the other discretizes the derivatives on
x by the step back. This proves the following theorem.

Theorem 3.1. Let c, F and a be given real constants, P0(x) and Q0(x) be
given continuous functions, α(t) satisfies the condition (1.4), R(∞) = 0, then
Sij at i = 0, N , j = 0,M are determined at all node points with the help of two
types of columns (3.1) and (3.2), respectively.

Thus, the following algorithm can be proposed for finding the solution of equa-
tion (2.1).
Algorithm 3.1.

1. The parameters c, F, a included to the equation (1.1) are given, Pi0, Qi0
from (3.6) and steps of partitioning h on coordinates x, τ of time t in the form

xi = ih, i = 0, N ; tj = jτ, j = 0,M.

2. All nodes S0j and S1j are filled from the formulas (3.1) and (3.2), respec-

tively, by columns i = 0, j = 1,M and i = 1, j = 1,M with alternation.
3. Other nodes Sij at i = 2, N, j = 1,M are defined by using of the formulas

(3.2).

4. After appropriate interpolations Sij , the obtained polynomial S̃(x, t) is sub-
stituted into (2.1), and the discrepancy is determined. If it satisfies the required
accuracy, the calculation is terminated, otherwise, by reducing the steps h and
τ , the above steps are repeated.

4. The computational algorithm for finding R(x) from (2.3)

Now we consider the calculation of R(x) from the equations (2.3) with the
condition (2.4). For this first on the basis of (2.4) we give the formula for finding
R(0) to make up a computational algorithm for finding R(x). Since the equation
(2.3) is a linear inhomogeneous system of ordinary differential equations, then its
general solution can be represented as follows [20]

R(x) = e
F
x∫
0

(∞∫
0

S(ξ,t)α′(t)dt

)
dξ
R (0)−

x∫
0

e
F
x∫
η

(∞∫
0

S(ξ,t)α′(t)dt

)
dξ (

FS2 (η, 0)− c

F

)
Q (η, 0) dη. (4.1)

Considering the conditions (2.4) in (4.1) for the R(0) after simple transforma-
tions we obtain the following expression

R(0) =

∞∫
0

e
−F

η∫
0

(∞∫
0

S(ξ,t)α
′
(t)dt

)
dξ (

FS2 (η, 0)− c

F

)
Q (η, 0) dη, (4.2)
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i.e., from the relation (4.2) R(0) can be calculated through the corresponding
difference scheme, in which instead of S(x, t) it is necessary to consider Sij from
(3.10). Thus, with the initial condition R(0) in the form (4.2) from (2.3) according
to the following difference scheme R(xi) = Ri can be determined in the form

Ri+1 =

1 + Fhτ

∞∑
j=0

Sij (1− τj) e−τ j
Ri − h

(
FS2

i0 −
c

F

)
Qi 0. (4.3)

Here R(0) from (4.2) is computing according to the following approximate formula

R0 = h
∞∑
j=0

e
−hτF

j∑
k=0

∞∑
m=0

Skm(1−τm)e−τm (
FS2

j0 −
c

F

)
Qj0. (4.4)

Thus, we have proved the following theorem.

Theorem 4.1. Under the conditions of Theorem 3.1, Ri is determined at all
nodal points i = 1, N by formulas (4.3), (4.4).

Thus for the approximate calculation of R(x) we have following
Algorithm 4.1.

(1) By using Sij , computed in Algorithm 3.1, R0 is found from the formula
(4.4).

(2) With help of the formulas (4.4) and (3.10), from the recurrence relation
(4.3) Ri, i = 1, N are defined.

(3) Similarly to claim 4. of Algorithm 3.1, upon receipt of the Ri the dis-
crepancy of the equation (2.3) is checked, where the specification of steps
h and τ is consistent with the results of Algorithm 3.1.

5. The difference scheme for calculating P (x, t) and Q(x, t)

From the difference equations (3.1), (3.2) at initial conditions (3.3) we are
defining the functions Si,j and are supplying them into (4.3), by the initial condi-
tion (4.4) we are determining Ri. Then, substituting the found functions S(i, j)
and R(i) into discrete analogue (1.3)

Pij = SijQij + τje−τjRi, (5.1)

we find Pij using Qij .
By substituting the found relations for the function Pij into the discrete ana-

logue of the system (1.1)

Pi+1j − Pij
h

= − c
F

Qij+1 −Qij
τ

,
Qi+1j −Qij

h
= −F Pij+1 − Pij

τ
− 2aQij , (5.2)

from the first difference equation (5.2) we have

hcQij+1 + FτSi+1jQi+1j − FτSijQij + Fτ2je−τjRi+1 − Fτ2je−τjRi − hcQij = 0,
i = 0, N − 1, j = 0,M − 1,

(5.3)
with initial condition

Qi0 = Qi. (5.4)
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Considering (5.4) in (5.3) at j = 0 we have

Qi1 =
1

hc
[−FτSi+1,0Qi+1 + (FτSi0 + hc)Qi] .

Continuing this process, for Qij we obtain the following approximate expression
in the form

Qij = 1
hc [−FτSi+1,j−1Qi+1,j−1+

(FτSij−1 − hc)Qij−1 − Fτ2(j − 1)e−τ(j−1)(Ri+1 −Ri)],
(i = 0, N − 1, j = 1, M),

(5.5)

what proves the following theorem.

Theorem 5.1.Under the conditions of the theorem 4.1, Qij and Pij are defined
using the (5.5) and (4.3), respectively.

Thus, at the each marked i we determine Qij at all nodes of the domain under
consideration and we compute Pij from (5.1) with (5.5), which allows to offer the
next Algorithm 5.1.

(1) Considering Si,j and Ri from the algorithms 3.1, 4.1 from (5.5) we deter-
mine the Qij with the initial condition (5.4).

(2) Substituting the defined Qij , Si,j , Ri into (5.1) we find Pij .
(3) Similar to the previous algorithms on the base of finding the discrepancy

of the system of equations (1.1). the steps h and τ are specified by the
given accuracy.

Let us illustrate the above results on the following example, when Qi0, Pi0
are constant.

Example 5.1. Let us consider the particular case, when Si0 doesn’t depend
on i, i.e. Si0 = S = const, S = P

Q . Then from (3.4) and (3.5) we have:

S01 = S +
τ

Fh
(1 + 2ah)− τ

Fh

S

S
= S +

τ

Fh
+ 2a

τ

F
− τ

Fh
= S +

2aτ

F
,

S11 = S + (2ah− 1)
τ

Fh
+

τ

Fh

S

S
= S +

2aτ

Fh
− τ

Fh
+

τ

Fh
= S +

2aτ

F
.

Similarly, from (3.6) and (3.7) we have:

S02 = S01 + τ
Fh(1 + 2ah)− τ

Fh
S11
S01

= S + 2aτ
F +

+ τ
Fh + 2aτ

F −
τ
Fh

S+ 2aτ
F

S+ 2aτ
F

= S + 4aτ
F = P

Q + 2a
F (2τ),

S12 = S11 + (2ah− 1) τ
Fh + τ

Fh
S01
S11

= S + 2aτ
F + 2aτ

F −
τ
Fh+

+ τ
Fh +

S+ 2aτ
F

S+ 2aτ
F

= S + 4aτ
F = P

Q + 2a
F (2τ).

Thus,taking

Sij = S +
2a

F
jτ

from (3.2) we can easily calculate

Sij+1 = S +
2a

F
(j + 1)τ. (5.6)

If, S2 = c
F 2 substituting (5.6) into (4.3) and (4.4) for Ri we have:

Ri = 0, i ≥ 0. (5.7)
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Taking into account (5.6) and (5.7) for Qij from (5.5) we obtain

Qij = Q = const. (5.8)

Finally, substituting (5.6), (5.7) and (5.8) into for Pij we have the following
formula

Pij = P +
2a

F
(jτ)Q.

Let us note that from (5.6)-(5.8) at h → 0 and τ → 0 (in other words at
i → ∞, j → ∞) for the Q(x, t), P (x, t), S(x, t), R(x) we have Q(x, t) = Q,
P (x, t) = P + 2a

F tQ, S(x, t) = P
Q + 2a

F t, R(x) = 0 , which completely coincide with

the results obtained in [3, 4, 8–10].
In the future, we will consider the continuous dependence of the solution of

the problem on the initial data.
Now, we will illustrate the computer realization on the algorithms 3.1-5.1 with a

comparison of analytical solutions San (x, t) , P an (x, t) , Qan (x, t) , Ran (x) .
Suppose that in (1.1) the parameters have the following concrete values
a = 1.4896 , c = 850m/ sec , g = 9.8m/ sec2, F = 0.073m, ρ = 700kg/m3 ,
l = 1485m , τ = 0, 5 , h = 0, 1

then using the formulas (3.1), (3.2)

‖S(i, j)− San(i, j)‖ = max
i,j
|S(i, j)− San(i, j)| =∼ 3.5 · 10−8,

analogously,

‖P (i, j)− P an(i, j)‖ = max
i,j
|P (i, j)− P an(i, j)| =∼ 2.7 · 10−5,

‖Q(i, j) −Qan(i, j)‖ = max
i,j
|Q(i, j)−Qan(i, j)| =∼ 2.3 · 10−7,

which confirms that the numerical solution of the problem (1.1), (1.2) requires
more accurate approach.
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