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A STOCHASTIC INVARIANTIZATION METHOD FOR ITÔ

STOCHASTIC PERTURBATIONS OF DIFFERENTIAL

EQUATIONS

JACKY CRESSON, YASMINA KHELOUFI, AND KHADRA NACHI

Abstract. In general, adding a stochastic perturbation to a differential
equation possessing an invariant manifold destroys the invariance as far
as the Itô formalism is used. In this article, we propose an invarianti-
zation method for perturbations in the Itô case which can be used to
restore invariance. We then apply our results to develop a stochastic ver-
sion of the Landau-Lifshitz equation. We discuss in particular previous
results obtained by Étoré et al. in [6].

1. Introduction

We consider a deterministic ordinary differential equation of the form

dx

dt
= f(x), x ∈ Rn, n ∈ N∗. (1.1)

A stochastic perturbation is taken into account by adding a ”noise” term to
the classical deterministic equation as follows:

dx

dt
= f(x) + ”noise”. (1.2)

and to replace the ”noise” term by a stochastic one as

dXt = f(Xt)dt+ σ(Xt, t)dWt, (1.3)

where Wt is the standard Wiener process. This procedure is for example well
discussed in ([10]).

Of course, the main problem is in this case to find the form of the sto-
chastic perturbation. We do not discuss this problem which is very compli-
cated. We restrict our attention to the selection problem which is concerned
with the characterization of the set of admissible stochastic models for a given
phenomenon. By admissible we mean that the stochastic model satisfies some
known constraints like positivity of some variables, conservation law, etc. This
selection of a good candidate for a stochastic model of the phenomenon can be

2010 Mathematics Subject Classification. 60H10; 92B05; 60J28; 65C30.
Key words and phrases. stochastic differential equations, model validation, Landau-Lifshitz
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done in many ways. However, in our particular setting, dealing with the sto-
chastic extension of a known deterministic model, this selection is related to
preserving some specific constraints of the phenomenon. For example, part of
the Hodgkin-Huxley model describes the dynamical behavior of concentrations
which are typically variables which belongs to the interval [0, 1]. This property is
independent of the particular dynamics of the variables but is related to their
intrinsic nature. The same is true for the total energy of a mechanical system.
This quantity must be preserved independently of the dynamics. We formulate
the stochastic persistence problem following our approach given in [5] in a
different setting:

Stochastic persistence problem : Assume that a classical ODE of the form
(1.1) satisfies a set of properties P. Under which conditions does a stochastic
perturbation of the form (1.3) satisfy also properties P ?

The previous problem lead to characterize the set of σ preserving the consid-
ered properties P. classical properties are: Invariance of a given submanifold of
Rn, number of equilibrium points, stability properties of the equilibrium points,
etc.

The literature on invariance of manifolds for stochastic differential equations is
huge and most of the time abstract in particular for what concerns the stochastic
analogue of the Nagumo-Brezis theorem (see for example [2, 8]). This explain
perhaps why these results are not so well known in the applied community be-
cause the formulation of the conditions are not transparent for a given concrete
system. In this article, we give a direct and simple derivation of a necessary and
sufficient condition on the diffusion part in order that a submanifold globally
defined as the preimage of a smooth function is preserved under a stochastic per-
turbation. The result depends drastically on the stochastic differential framework
that one uses. In the Stratonovich case, the condition on the diffusion is the same
as the one on the drift part. However, in the Itô case, which covers most of the
applications, the constraints for invariance are so strong that in many cases, one
is unable to find a large class of admissible stochastic models. All these problems
are discussed in Section 3.

What to do if the framework for the model has to be the Itô one ? An idea
is then to develop a systematic and algorithmic invariantization method in
order to restore invariance in the Itô case. This is done in Section 4 following an
idea initiated by Étoré et al. [6]. In order to illustrate our method, we apply it
to an Itô version of the Kubo stochastic Hamiltonian system and in Section 5.2
to construct a stochastic version of the Landau-Lifshitz equation. We finally
discuss the limitations and problems posed by the invariantization method.

2. Reminder about Itô stochastic differential equations

In this article, we consider a parameterized differential equation of the form
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dXt = f(t,Xt, b)dt, x ∈ Rn (DE)

where b ∈ Rk is a set of parameters, f : Rn×Rk −→ Rn is a Lipschitz continuous
function with respect to x for all b. We remind basic properties and definition of
stochastic differential equations in the sense of Itô. We refer to the book [10] for
more details.

A stochastic differential equation is formally written (see [10],Chap.V) in dif-
ferential form as

dXt = f(t,Xt)dt+ σ(t,Xt)dWt, (IE)

which corresponds to the stochastic integral equation

Xt = X0 +

∫ t

0
f(s,Xs) ds+

∫ t

0
σ(s,Xs) dWs, (2.1)

where the second integral is an Itô integral (see [10], Chap.III) and Wt is the
classical Wiener process (see [10], Chap.II, p.7-8).

An important tool to study solutions to stochastic differential equations is the
multi-dimensional Itô formula (see [10], Chap. III, Theorem 4.6) which is stated
as follows :

We denote a vector of Itô processes by XT
t = (Xt,1, Xt,2, . . . , Xt,n) and we

put WT
t = (Wt,1,Wt,2, . . . ,Wt,l)to be a l-dimensional Wiener process (see [7],

Definition 5.1, p. 72), dWT
t = (dWt,1, dWt,2, . . . , dWt,l). We consider the multi-

dimensional stochastic differential equation defined by (IE). Let F be a C2(R+×
R,R)-function and Xt a solution of the stochastic differential equation (IE). We
have

dF (t,Xt) =
∂F

∂t
dt+ (∇T

XF )dXt +
1

2
(dXT

t )(∇2
XF )dXt, (2.2)

where ∇XF = ∂F/∂X is the gradient of F w.r.t. X, ∇2
XF = ∇X∇T

XF is the
Hessian matrix of F w.r.t. X, δ is the Kronecker symbol and the following rules
of computation are used : dtdt = 0, dtdWt,i = 0, dWt,idWt,j = δijdt.

3. Stochastic invariance of submanifolds

In this section, we derive an invariance criterion for a submanifold denoted
by M of codimension 1 of Rn which correspond to the zero set of a given function
F : Rn → R of class C2, i.e.

M = {x ∈ Rn \ F (x) = 0}, (3.1)

under the flow of a stochastic differential equation in the Itô sense. This result is
by itself not new and many general results are known in particular a stochastic
Naguno-Brezis Theorem as proved by Aubin-Da Prato in [2] or A. Milian in
[8]. However, most of these results are difficult to read for a non-specialist in
the field of stochastic calculus. The main interest of the following computations
are precisely that our criterion can be easily derived using basic results in
stochastic calculus.
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3.1. Geometric definition of invariance. We consider an ordinary differen-
tial equation of the form {

ẋt = f(t, xt),
x(0) = x0

(ODE)

where f : R+ × Rn −→ R is a function of class C1 and x0 ∈ Rn is the initial
condition.

Definition 3.1. A given submanifold M ⊂ Rn is said to be invariant under the
flow of the differential equation (ODE) if for all x0 ∈ M, the maximal solution
xt(x0) starting in x0 when t = 0 satisfied xt(x0) ∈M for all t ∈ R+.

We denote by TxM the tangent plane of M at x, we can write the invariance
condition as follows

f(t, x) ∈ TxM, for all (t, x) ∈ R+ ×M. (3.2)

As M is of codimension 1, for all x ∈ M we can define the normal vector N(x)
to the tangent hyperplane TxM in x, such that

TxM = {y ∈ Rd, y.N(x) = 0},
then the invariance condition can be written as

N(x) · f(t, x) = 0, for all (t, x) ∈ R+ ×M. (3.3)

When M is of the form (3.1), the normal vector to M at x is equal to ∇F (x).
Then the invariance condition reads as

∇F (x) · f(t, x) = 0, for all (t, x) ∈ R+ ×M. (IF)

In the stochastic case, the trajectories are continuous but nowhere differen-
tiable. As a consequence the previous geometric condition can not be used. In
the following we discuss two natural generalization of the notion of invariance in
the stochastic setting.

3.2. Strong stochastic invariance. Let us consider a stochastic differential
equation of the form (IE). The stochastic character of the flow allows us to
defined two natural notions of invariance.

Definition 3.2 (Strong persistence). A submanifold M is invariant in the strong
sense for the stochastic system (IE) if for every initial data x0 ∈M almost surely,
the corresponding solution x(t), satisfies

P{F (x(t)) = 0, t ∈ [t0,+∞)} = 1,

i.e., the solution almost surely takes its values within the submanifold M.

A direct computation gives the following criterion for stochastic invariance:

Theorem 3.1 (Itô ’s strong invariance). Let M be a submanifold defined by a
function F invariant under the deterministic flow associated to (DE), i.e.,

∇F (x) · f(t, x) = 0, for all x ∈M, t ≥ 0

The submanifold M is strongly invariant under the flow of the stochastic system
(IE), if and only if,

∇F (x) · σ(t, x) = 0, for all x ∈M, t ≥ 0
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and ∑
i,j

∂2F

∂xi∂xj
(xt)

l∑
k=1

σi,k(t, xt)σj,k(t, xt) = 0. (3.4)

Proof. The essential tool in this case is the Itô formula that will help us to for-
mulate the invariance condition. Indeed, a process xt leaves the submanifold M
invariant if and only if for all initial condition x0 ∈M a.s, the stochastic process
associated to xt satisfies F (xt) = 0 for all t almost surely where it is defined.

The multidimensional Itô formula reads as

d[F (xt)] = ∇F (xt)dxt +
1

2

∑
i,j

∂2F

∂xi∂xj
(xt)dxi(t)dxj(t).

So we obtain

d[F (xt] = ∇F (xt)f(t, xt)dt+∇F (xt)σ(t, xt)dWt+

+
1

2

∑
i,j

∂2F

∂xi∂xj
(xt)

l∑
k=1

σi,k(t, xt)σj,k(t, xt)dt.

The gradient of F being always normal to the tangent space of M , we have
∇F (xt) · f(t, xt) = 0 since the manifold M is assumed to be invariant in the
deterministic case. It remains

d[F (xt] = ∇F (xt)σ(t, xt)dWt+
1

2

∑
i,j

∂2F

∂xi∂xj
(xt)

l∑
k=1

σi,k(t, xt)σj,k(t, xt)dt. (3.5)

The only contribution to the stochastic part is given by ∇F (xt)σ(t, xt) and is
equal to zero if and only if the perturbation σ satisfies the invariance condition
(IF). Then the previous expression reduces to:

d[F (xt] =
1

2

∑
i,j

∂2F

∂xi∂xj
(xt)

k∑
l=1

σi,l(t, xt)σj,l(t, xt)dt. (3.6)

that gives us the third condition. �

The previous Theorem indicates that unless a very specific form for σ and F ,
there is no hope to recover invariance of a given manifold using a direct stochastic
perturbation of a deterministic equation in the Itô case.

As an example, we can specialize this result in the case of the sphere S2 which
will be important to study the invariance property of Landau-Lifshitz equation.

Corollary 3.1. The sphere S is invariant under the flow of the stochastic system
(IE) if and only if the stochastic perturbation is null on the sphere i.e.,

σi,i(t, x) = 0, i = 1, ..., n for all t ∈ R+ and x ∈ Sn−1.
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Proof. The proof follows from the fact that F (x) =
n∑
i=1

x2i so that condition 3.4

reduces to
n∑
i=1

[σi,i(t, xt)]
2 = 0, ∀(t, x) ∈ R+ × S. (3.7)

This concludes the proof. �

As a consequence, trying to impose the invariance of S in the Itô case ”anni-
hilates” the perturbation that is intended to be produced by the diffusion term.

4. The stochastic invariantization method

In this section, we develop a procedure to restore invariance of manifold fol-
lowing a procedure initiated by Etoré and al [6] in a particular case. The basic
idea is that in some cases, it is possible to project a flow which does not leave
the manifold invariant on the manifold.

4.1. First idea: projection procedure. Consider submanifolds of codimen-
tion 1 of Rn, that is defined by a homogeneous function of degree q ∈ N;F :
Rn −→ R of class C2, i.e.,

M = {x ∈ Rn/F (x) = 1} and F (λx) = λqF (x), for all x ∈ Rn, λ ∈ R+.

Let us assume that the coefficients of the system (IE) satisfy the invariance con-
dition (IF), i.e.,

∇F (x) · f(t, x) = ∇F (x) · σ(t, x) = 0, for all x ∈M, t ≥ 0,

where σ is a vector of Rn and Wt is a scalaire Brownian motion, and assume that

n∑
i,j

∂2F

∂xi∂xj
(xt)σi(t, xt)σj(t, xt)dt 6= 0.

Then, by Theorem (3.1) we know that M is not invariant under the flow of (IE).

A very simple way to construct an invariant stochastic process is to project on
the manifold. In general, a projection on a manifold is difficult to compute. In
our case, it reduces simply to consider the stochastic process

yt =
xt

F (xt)
1
q

, (4.1)

called the ”projected” process associated to the stochastic process xt and the
function F .

Although simple, the previous method is in general not interesting. Indeed,
the projected process satisfies in general a very complicated equation.

Theorem 4.1. Let us assume that xt is the solution of Itô equation(IE) and M is
defined by F of class C2 as above. The projected process yt satisfies the equation
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dyk =

[
F (x)

− 1
q fk(t, x)− 1

2q

∂F

∂xk
(x).F (x)

− 1+q
q σ2k(t, x)

]
dt+

+
1

2

n∑
i,j

−1

q
xkσi(t, x)σj(t, x)

[
F (x)

− 1+q
q

∂2F

∂xi∂xj
(x)−

− 1 + q

q
F (x)

− 1+2q
q
∂F

∂xi
(x)

∂F

∂xj
(x)

]
dt+

+
[
F (x)

− 1
q σk(t, x)

]
dWt; for each k = 1, ..., n.

We leave the proof to the reader as it follows easily from the Itô formula.

Even for a simple manifold as a sphere, the corresponding equation does not
simplify.

Corollary 4.1. Let us assume that xt is the solution of Itô equation(IE). The
projected process yt = xt

F (xt)
1
2

on the sphere Sn−1 satisfies the equation

dyk =

[
F (x)−

1
2 fk(t, x)− 1

2
xkF (x)−

3
2σ2k(t, x)+

+
3

2
xk

n∑
i,j

σi(t, x)σj(t, x)F (x)−
5
2xixj

 dt
+
[
F (x)−

1
2σk(t, x)

]
dWt; for each k = 1, ..., n.

(4.2)

We leave the proof to the reader.

The previous expression has many problems:

• The resulting stochastic differential is far from being simple and can not
in general be written only with respect to yt.
• The form of the deterministic part can not be seen as a perturbation of
f. This induces difficulties for the interpretation of the new equation.

In the following, we follow a different strategy initiated by P.Étoré et al. in
[6].

4.2. The invariantization method. We first introduce the notion of invaria-
tized process.

Definition 4.1 (Invariantized process). Let xt be a diffusion process defined by

dxt = f(t, xt)dt+ σ(t, xt)dWt. (4.3)

The invariantized process associated to (4.3) and the submanifold M defined by
F is defined by 

dyt = f(t, xt)dt+ σ(t, xt)dWt

xt = yt

(F (yt))
1
q

y0 = y ∈M
(4.4)
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This terminology is justified by the fact that we have

F (xt) = 1, for all t ≥ 0.

The method associating to a given process and a submanifold M its invari-
antized process is called the invariantization method.

The main property of the invariantization method is that the stochastic differ-
ential equation satisfied by xt is simple in the contrary to the projection method.

Theorem 4.2 (Invariantization). Assume that F is homogeneous of degree q and
that F (yt) is a non random process, i.e. that there exists a function h(t) such
that

dF (yt) = h(t)dt. (4.5)

Let us denote by H(t) the function defined by

H(t) = 1 +

t∫
0

h(s) ds. (4.6)

Let us assume that H(t) > 0 for t > 0, then the invariantized stochastic process
associated to yt and F satisfies the stochastic differential equation

dxt =

[
−1

q

Ḣ(t)

H(t)
xt +

1

(H(t))
1
q

f(t, xt)

]
dt+

1

(H(t))
1
q

σ(t, xt)dWt (4.7)

where Ḣ denotes the derivative of H with respect to t.

Proof. This is a simple computation. As F (yt) = H(t), the stochastic process

xt = yt/H(t)1/q satisfies

dxt = −1

q

Ḣ(t)

H(t)1/q+1
yt +

1

H(t)1/q
dyt. (4.8)

Replacing yt by xtH(t)1/q and dyt by its expression, we obtain

dxt =

[
−1
q
Ḣ(t)
H(t)xt + 1

(H(t))
1
q
f(t, xt)

]
dt

+ 1

(H(t))
1
q
σ(t, xt)dWt.

This concludes the proof. �

5. Applications: an Itô Kubo oscillator and a stochastic
Landau-Lifshitz equation

5.1. Example: Itô version of the Kubo oscillator model. Let us consider
the Kubo oscillator (see for example [9]) in the Itô case, which can be written as

dXt = JaXtdt+ JσXtdWt, (5.1)

where X =

(
X1

X2

)
∈ R2, a, σ ∈ R,Wt is a 1-dimensional Brownian motion and

Jk =

(
0 −k
k 0

)
, ∀k ∈ R.
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The Stratonovich version of the Kubo oscillator has any circle X2
1 + X2

2 = r2,
∀r ∈ R+, invariant under the flow. However, the circles are not invariant under
the flow of the Itô version of the Kubo oscillator. Indeed, we have using the Itô
formula with F (X1, X2) = X2

1 +X2
2 , that

dF ((X1, X2) = σ2(X2
1 +X2

2 )dt. (5.2)

Assuming that F (X1, X2) = r2, r 6= 0 is invariant under the flow gives

dF ((X1, X2) = σ2r2dt. (5.3)

As a consequence, the condition dF = 0 is satisfied if and only if σ = 0. This
means that in the Itô case, invariance can not be preserved while the flow is
stochastic (i.e., σ 6= 0).

If we apply the last transformation such that Xt = Yt
|Yt| we find that Xt is the

solution of the stochastic system

dXt = J̃a,σ,t Xtdt+
1√

σ2t+ 1
JσXtdWt, (5.4)

where

J̃a,σ,t =

(
− σ2

2(σ2t+1)
− a√

σ2t+1
a√

σ2t+1
− σ2

2(σ2t+1)

)
,

which preserve the invariance of S under the flow of the deterministic equation

dXt = JaXtdt, for all a ∈ R. (5.5)

5.2. An Itô stochastic Landau-Lifshitz equations. In this Section, we de-
rive a stochastic Landau-Lifshitz equation in the Itô setting. We first remind the
construction of the classical Landau-Lifshitz equation and then its main proper-
ties. We then review classical stochastic approach used by different authors and
the difficulties associated with these models.

5.2.1. The Landau-Lifshitz equation. The Landau-Lifshitz equation is a general-
ization of the classical Larmor equation. The Larmor equation is conservative.
However, dissipative processes take place within dynamic magnetization
processes. The microscopic nature of this dissipation is still not clear and is
currently the focus of considerable research [1, 3]. The approach followed by
Landau and Lifshitz consists of introducing dissipation in a phenomenological
way. They introduce an additional torque term that pushes magnetization in the
direction of the effective field. The Landau-Lifshitz equation becomes

dµ

dt
= −µ× b− αµ× (µ× b), (LLg)

where µ ∈ R3 is the single magnetic moment, × is the cross product in R3, b is
the effective field and α > 0 is the damping effects.

As for the Larmor equation, this equation possess many particular properties
which can be used to derive a stochastic analogue. We review some of them in
the next Section.
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5.2.2. Properties of the Landau-Lifshitz equation. In this Section, we give a self-
contained presentation of some classical features of the LL equation. Readers
which are familiar with the LL equation can switch this Section.
Invariance. The following result is fundamental is all the stochastic generalization
of the LL equation.

Lemma 5.1. Let µ(0) ∈ S2, then the solution µt satisfies for all t ∈ R, ‖ µt ‖= 1,
i.e. the sphere S2 is invariant under the flow of the LL equation.

We give the proof for the convenience of the reader.

Proof. Let µt be a solution of the LL equation. We have

d
dt [µt.µt] = 2µt.

dµt
dt ,

= µt. [−µt × b− αµt × (µt × b)] .
(5.6)

By definition of the cross product, the vectors µt × b and αµt × (µt × b) are
orthogonal to µt so that

d

dt
[µt.µt] = 0. (5.7)

As a consequence, using the fact that µ0 ∈ S2, we deduce that

‖µt‖ = ‖µ0‖ = 1, (5.8)

which concludes the proof. �

As a consequence, a solution starting on the sphere S2 will remains always on it.
The sphere being a two dimensional compact manifold, we can use classical result
to deduce the asymptotic behavior of the solutions. But first, let us compute the
equilibrium points.
Equilibrium points. The equilibrium points of the LL equation are easily ob-
tained.

Lemma 5.2. The LL equation possesses as equilibrium points b/ ‖ b ‖ and
−b/ ‖ b ‖.

We give the proof for the convenience of the reader.

Proof. An equilibrium point µ ∈ R3 satisfies

−µ× b− αµ× (µ× b) = 0, (5.9)

which gives
−µ× b = αµ× (µ× b). (5.10)

The vector µ must be orthogonal to µ× b and at the same time equal to −µ× b
up to a factor α > 0. As µ0 ∈ S2, we have µ 6= 0 and the only solution is

µ× b = 0. (5.11)

We then obtain µ = λb, with λ ∈ R. By Lemma 5.1, we must have µ ∈ S2 so
that λ = ±1/ ‖ b ‖. This concludes the proof. �

We see that the equilibrium point of the LL equation coincide with those of
the Larmor equation.

The stability of the previous equilibrium point can be easily studied using the
Lyapunov theory.



A STOCHASTIC INVARIANTIZATION METHOD FOR ITÔ STOCHASTIC . . . 85

5.2.3. Toward a stochastic Landau-Lifshitz equation. In this Section, we discuss
the usual way of deriving a stochastic analogue of the Landau-Lifshitz equation
by considering an external perturbation of the effective magnetic field. We focus
on the Stratonovich and the Itô interpretation and we explain the strategy used
in Étoré et al. [6] to bypass the obstruction that the Itô version does not preserve
the sphere S2 using the invariantization method.
Classical approach to the stochastic Landau-Lifshitz equation. The main ap-
proach to deal with the stochastic behavior of the effective magnetic field is to as-
sume that the effective field b is subject to a stochastic perturbation b+ε”noise”.
Due to the linearity with respect to the parameter b, we obtain an equation of
the form

dµt = [−µt×b−αµt× (µt×b)]dt+ε[−µt×”noise”−αµt×µt×”noise”]. (5.12)

Interpreting the previous equation in the Itô formalism of stochastic differential
equation leads to the following stochastic model:

dµt = [−µt × b− αµt × (µt × b)]dt+ ε[−µt × dWt − αµt × µt × dWt], (ELL)

where the term σ(t, x) = −x× · − αx× (x× ·) can be written as

σ(t, x) =

 α(x23 + x22) x3 − αx1x2 −x2 − αx3x1
−x3 − αx1x2 α(x23 + x21) x1 − αx3x2
x2 − αx1x3 −x1 − αx3x2 α(x22 + x21)

 . (5.13)

Most authors use the Stratonovich formalism in order to give a sense to the
previous equation. The main reason is that in this case, the invariance of S2 is
ensured. However, as pointed out by Étoré et al. in [6], the Stratonovich ver-
sion of the Landau-Lifshitz equation leads to several difficulties, such as the fact
that the stability of the equilibrium points of the deterministic LL equation is lost.

The previous point has motivated the work [6] in which the authors discuss the
Itô case. However, the Itô approach lead to other difficulties. Details are given
in the next Section.
Stochastic Itô perturbation of the Landau-Lifshitz equation. The Itô version of
the stochastic Landau-Lifchitz equation possesses many drawback and the main
one follows directly from the invariance criterion that we derive in Corollary 3.1.
Indeed, we have:

Lemma 5.3. The sphere S2 is not invariant under the flow of the Itô version of
equation (ELL).

Proof. By Corollary 3.1, the diffusion term must be zero on the sphere S2 and
all t ∈ R. The condition on σ on the diagonal terms implies that α = 0, i.e.
that we can not have a dissipative term and we recover the Larmor equation in
contradiction with our assumption that α 6= 0. This concludes the proof. �

The previous result excludes the use of the Itô formalism for a direct stochastic
generalization of the Landau-Lifshitz equation. However, we can use the invari-
antization method exposed in Section 4 in order to obtain an Itô model, related
to the previous one, but which satisfies the invariance of the sphere S2.
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Invariantization of the Landau-Lifshitz stochastic Itô model. Let us consider the
stochastic LL equation (ELL). The sphere S2 is defined by the homogeneous

function F (x1, x2, x3) =
∑3

i=1 x
2
i of degree 2. Let us consider the invariantized

process defined by{
dyt = [−µt × b− αµt × (µt × b)]dt+ ε[−µt × dWt − αµt × µt × dWt],
µt = yt

‖yt‖ .

(5.14)
A simple computation gives (see also ([6], Proposition 1)):

Lemma 5.4. The process F (yt) is random. Precisely, we have dF (yt) = 2ε2(α2+
1)dt.

As a consequence, Theorem 4.2 applies and we have:

Lemma 5.5. The invariantized stochastic differential equation associated to
F (x) =

∑3
i=1 x

2
i and the Itô stochastic differential equation (ELL) is given by

dxt =

[
−1

2

2ε2(α2 + 1)

2ε2(α2 + 1)t+ 1
xt +

1√
2ε2(α2 + 1)t+ 1

f(t, xt)

]
dt+

+
1√

2ε2(α2 + 1)t+ 1
σ(t, xt)dWt, (5.15)

Proof. This is a simple computation. �

We recover the Étoré et al. version of the Stochastic Landau-Lifshitz
equation proposed in [6].

5.2.4. About equilibrium points. A natural question about the previous invari-
antized model is to up to which extent it answers to the reasonable constraints
one waits for a stochastic version of the Landau-Lifshitz equation. For example, if
one is interested in preserving equilibrium points of the initial system, the model
is not satisfying. Indeed, we have:

Lemma 5.6. The points µ = ±b/‖b‖ are not equilibrium points of equation
(5.15).

Proof. For µ = ±b/ ‖ b ‖, we have for all v ∈ R3 that

σ(t,±b/ ‖ b ‖).v = − b

‖ b ‖
× v −±α b

‖ b ‖
× (± b

‖ b ‖
× v). (5.16)

The second term is always zero but the first one is only zero when v is co-linear
with b. However, as v takes arbitrary values, we can not ensure this equality. As
a consequence, the initial equilibrium points are destroyed under the stochastic
perturbation. �

It must be noted that the previous problem can be easily solved by modifying
a little bit the modeling of the stochastic behavior of the effective magnetic field.
Indeed, let us consider instead of dWt the following vector

bdWt, (5.17)

where Wt is a one dimensional Brownian motion. This assumptions is equivalent
to say that we consider only stochastic behavior in the direction of the initial
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field b. This is of course very particular, but in this case the new model preserves
the equilibrium points of the initial system:

Lemma 5.7. Let us consider the modified Étoré et al. stochastic Landau-Lifshitz
equation defined by

dxt =

[
−1

2

2ε2(α2 + 1)

2ε2(α2 + 1)t+ 1
xt+

+
1√

2ε2(α2 + 1)t+ 1
f(t, xt)

]
dt+

1√
2ε2(α2 + 1)t+ 1

σ(t, xt) · [bdWt] , (5.18)

where σ is defined by equation (5.13) and Wt is a one dimensional Brownian
motion. This equation possesses as equilibrium points ±b/‖b‖.

Proof. This follows easily from the previous proof only saying that v is always
co-linear to b. �

6. The invariantization method as a stochastic perturbation

Although the invariantization method leads to a simpler equation than the pro-
jection procedure, it is not very easy to understand the procedure as a stochastic
perturbation of the deterministic model. In this Section, assuming that the dif-
fusion is governed by a small parameter 0 < ε << 1, we write the invariantized
equation as a perturbation.

6.1. Small perturbation and invariantization. In the following, we use the
notations of Section 4. For σ = 0, the invariantized process reduces to the
deterministic equation. Let us assume that σ is of the form

σ(x) = εσ0(x), 0 < ε << 1, (6.1)

where σ0 and f satisfy the invariance conditions.

Using the Itô formula, we obtain

dF (yt) = ∇F (yt).dyt +
1

2
∂2F∂y2dyt.dyt. (6.2)

As dyt.dyt = ε2σ20(xt)dt, and F and σ0 satisfy the invariance relation, we finally
obtain

dF (yt) = ε2
1

2

∂2F

∂y2
σ20(xt)dt. (6.3)

Denoting by γ(t) the function

γ(t) =
1

2

t∫
0

∂2F

∂y2
σ20(xt)dt, (6.4)

we then obtain using Theorem 4.2 a function hε of the form

hε(t) = ε2γ(t), (6.5)

and a function Hε of the form

Hε(t) = 1 + ε2δ(t). (6.6)
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As a consequence, we can develop the drift part with respect to ε and we obtain
for the invariantized process an equation of the form

dxt =

(
f +

1

q
(ε2)1/q ?+ . . .

)
dt+

(
εσ0 +

1

q
(ε2)1/q?̃+ . . .

)
dWt. (6.7)

We do not search for explicit expression of the perturbation terms ? and ?̃.

6.2. Limitation of the method. From a modeling point of view, we believe
that a stochastic model of a deterministic equation must satisfy the following
constraints:

• First, the drift part must be relied early to the deterministic equation and
moreover must be understandable as a perturbation of it, i.e. of the form

f(t, x(t)) + P (t, x(t)) (6.8)

where P (t, x(t)) is the perturbation term.
• Second, the new equation must be easy to interpret and must keep a sense

with respect to the field of applications.

What can be said about the invariantization method ?

The first modeling constraint is then satisfied by our invariantization method.
However, the perturbation term obtained in equation (6.7) is very complicated
and the role of each term in the dynamics is not easily recovered.

7. Conclusion and perspectives

For Itô stochastic perturbation of ordinary differential equations, we have de-
rived a general method allowing to preserve invariance of a given codimension
one submanifold under the stochastic flow. This method has however some lim-
itations and lead to difficulties in the interpretation of the resulting model from
a perturbative point of view. A natural question is then to find other stochas-
tization procedure which still use the Itô formalism for stochastic differential
equations but for which invariance can be ensured under reasonable constraints.
We refer to [4] where this problem is discussed in general in the framework of
random ordinary differential equations and used to construct a new model of a
stochastic Landau-Lifshitz equation.
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