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A REVIEW ON RECENT EXTENSIONS OF FRAMES AND

WOVEN FRAMES IN HILBERT SPACES

ASGHAR RAHIMI AND BAYAZ DARABY

Abstract. The last two decades have seen tremendous activity in the
development of frame theory and many generalizations of frames have
come into existence. In this manuscript, we present a short review on
some of the newest extensions and generalizations of frames in Hilbert
spaces.

1. Introduction

The Hilbert space is the natural framework for the mathematical description
of many areas of physics: certainly for quantum mechanics, signal, image analysis
and etc. In each cases, there arises the problem of representing an arbitrary vector
in terms of simpler ones, i.e., in terms of the elements of some basis {fj}j∈N.
The most economical solution, and the one advocated by mathematicians, is of
course to use an orthonormal basis, which gives in addition the uniqueness of the
decomposition,

f =
∑
j∈N
〈fj , f〉fj

for any f in the underlying Hilbert space. Unfortunately, orthonormal bases are
often difficult to find and sometimes hard to work with. One way to give up
orthogonality of the basis vectors and uniqueness of the decomposition- while
maintaining its other useful properties is using the notion of frames. The notion
of frames in Hilbert spaces was introduced by Duffin and Schaeffer during their
study of nonharmonic Fourier series in 1952.

Discrete frames in Hilbert spaces has been introduced by Duffin and Schaeffer
[22] and popularized by Daubechies, Grossmann and Meyer [21]. A discrete frame
is a countable family of elements in a separable Hilbert space which allows stable
and not necessarily unique decompositions of arbitrary elements in an expansion
of frame elements.

The last two decades have seen tremendous activity in the development of
frame theory and many generalizations of frames have come into existence. The
first author summarized some of that extensions in [38]. In this manuscript,

2010 Mathematics Subject Classification. 42C15, 42C40.
Key words and phrases. frame, fusion frame, g-frame, K-frame, continuous frame, controlled

frame.

90



A REVIEW ON RECENT EXTENSIONS OF FRAMES AND WOVEN FRAMES 91

we present some of the new extensions and generalizations of frames in Hilbert
spaces.

Let H be a separable Hilbert space with the inner product 〈·, ·〉. Recall that a
countable family of elements {fj}j∈J in H is a frame for H if there exist constants
A,B > 0 such that

A‖f‖2 ≤
∑
j∈J
|〈fj , f〉|2 ≤ B‖f‖2, ∀f ∈ H. (1.1)

The constants A and B are called lower and upper frame bounds, respectively.
In case A = B, it called a tight frame and if A = B = 1 it is known Parseval
frame. If the second inequality in (1.1) holds, it is called a Bessel sequence. For
a frame {fj}j∈J in H, the operator Sf =

∑
j∈J〈fj , f〉fj , f ∈ H called the frame

operator. This operator is a bounded, self-adjoint, invertible, positive operator
and any f ∈ H has an expansion

f =
∑
j∈J
〈S−1fj , f〉fj =

∑
j∈J
〈fj , f〉S−1fj . (1.2)

The family {S−1fj}j∈J is also a frame with bounds B−1, A−1, this frame is called
the canonical dual or reciprocal frame of {fj}j∈J .

For a more complete treatment of frame theory, we recommend the excellent
book of Christensen [18], the tutorials of Casazza [11, 12] and the memoir of Han
and Larson [31].

We denote by B(H) the algebra of all bounded linear operators. A bounded
operator T ∈ B(H) is called positive (respectively, non- negative), if 〈Tf, f〉 > 0
for all f 6= 0 (respectively, 〈Tf, f〉 ≥ 0 for all f ). Every non-negative operator
is clearly self-adjoint. If T ∈ B(H) is non-negative then there exists a unique

non-negative operator S such that S2 = T . This will be denoted by S = T
1
2 .

Moreover, if an operator D commutes with T then D commutes with every op-

erator in the C∗-algebra generated by T and I, specially D commutes with T
1
2 .

Let B+(H) be the set of positive operators on H. For self-adjoint operators T1

and T2, the notation T1 ≤ T2 or T2 − T1 ≥ 0 means

〈T1f, f〉 ≤ 〈T2f, f〉, ∀f ∈ H.
We denote by GL(H) the set of all bounded linear operators which have bounded
inverse. It is easy to see that if S, T ∈ GL(H) then T ∗, T−1 and ST are also in
GL(H). Let GL+(H) be the set of all positive operators in GL(H). For U ∈ B(H),
U ∈ GL+(H) if and only if there exists positive constants 0 < m ≤M <∞ such
that

mI ≤ U ≤MI.

For U−1,
M−1I ≤ U−1 ≤ m−1I.

Throughout this paper, K1, K2 and H are complex separable Hilbert spaces,
K ∈ B(H), C,C ′ ∈ GL+(H) and {Hj}∞j=1 ⊂ K1 and {Wk}∞k=1 ⊂ K2 are sequences
of closed subspaces.

The following theorem can be found in [37].

Theorem 1.1. Let T1, T2, T3 ∈ L(H) and T1 ≤ T2. Suppose T3 ≥ 0 commutes
with T1 and T2 then T1T3 ≤ T2T3.
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In the study of frames, the underlying Hilbert spaces are usually separable
Hilbert spaces, however this notion investigated also in non-separable Hilbert
spaces ( see [9]). In the current manuscript, we consider just separable Hilbert
spaces.

2. Recent generalizations of frames

In the last decade, motivated by new applications of frame theory, many gen-
eralizations and extensions of the concept of frames introduced in Hilbert and
Banach spaces: fusion frames, continuous frames, Banach frames, g-frames, K-
frames, controlled frames, operator valued frames, p-frames, pg-frames, frames for
Hilbert C∗-modules, Hilbert-Schmidt frames, and etc. Also, by composing some
of these generalizations, new families introduced and found its suitable place in
both theoretical and applications of frames: continuous fusion frames, continu-
ous g-frames, continuous K-frames, K-fusion frames, g-fusion frames, continuous
controlled frames, controlled g-frames, controlled K-frames, t-frames [8] and etc.
The authors believe that new extensions of frames will be investigated and will
be used in applications.

At the following subsections, we beefily present and review some of the recent
extensions and generalizations of the notion of frames in Hilbert spaces.

2.1. Fusion frames. In the modern life’s using of frames, many of the applica-
tions can not be modeled by one single frame system. They require distributed
processing such as sensor networks [35]. To handle such emerging applications of
frames, new methods developed. One starting point was to first build frames “lo-
cally” and then piece them together to obtain frames for the whole space. So we
can first construct frames or choose already known frames for smaller spaces and
in the second step one would construct a frame for the whole space from them.
Another construction uses subspaces which are quasi-orthogonal to construct lo-
cal frames and piece them together to get global frames[24]. An elegant approach
was introduced in [16] that formulates a general method for piecing together lo-
cal frames to get global frames. This powerful construction was introduced by
Casazza and Kutyniok in [16], named frames of subspaces which thereafter they
agree on a terminology of fusion frames. This notion provides a useful framework
in modeling sensor networks [17].

Fusion frames can be regarded as a generalization of conventional frame the-
ory. It turns out that the fusion frame theory is in fact more delicate due to
complicated relationships between the structure of the sequence of weighted sub-
spaces and the local frames in the subspaces and due to sensitivity with respect
to change of the weights.

Definition 2.1. Let H be a Hilbert space and I be a (finite or infinite) countable
index set. Assume that {Wi}i∈I be a sequence of closed subspaces in H and
{vi}i∈I be a family of weights, i.e., vi > 0 for all i ∈ I. We say that the family
W = {(Wi, vi)}i∈I is a fusion frame or a frame of subspaces with respect to
{vi}i∈I for H if there exist constants 0 < A ≤ B <∞ such that

A‖x‖2 ≤
∑
i∈I

v2
i ‖PWi(x)‖2 ≤ B‖x‖2 ∀x ∈ H,
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where PWi denotes the orthogonal projection onto Wi, for each i ∈ I. The fusion
frame W = {(Wi, vi)}i∈I is called tight if A = B and Parseval if A = B = 1.
If all vi

,s take the same value v, then W is called v-uniform. Moreover, W is
called an orthonormal fusion basis for H if H =

⊕
i∈IWi. If W = {(Wi, vi)}i∈I

possesses an upper fusion frame bound but not necessarily a lower bound, we
call it a Bessel fusion sequence with Bessel fusion bound B. The normalized
version of W is obtained when we choose vi = 1 for all i ∈ I. Note that, we use
this term merely when {(Wi, 1)}i∈I formes a fusion frame for H.

Without loss of generality, we may assume that the family of weights {vi}i∈I
belongs to `∞+ (I).
Notation: For any family {Hi}i∈I of Hilbert spaces, we use

(
∑
i∈I
⊕Hi)`2 =

{
{fi}i∈I : fi ∈ Hi,

∑
i∈I
‖fi‖2 <∞

}
with inner product

〈{fi}i∈I , {gi}i∈I〉 =
∑
i∈I
〈fi, gi〉, {fi}i∈I , {gi}i∈I ∈ (

∑
i∈I
⊕Hi)`2

and

‖{fi}i∈I‖ :=

√∑
i∈I
‖fi‖2.

It is easy to show that (
∑

i∈I ⊕Hi)`2 is a Hilbert space.
Let us state some definitions and propositions needed in the studying of fusion

frames.

Definition 2.2. Let W = {(Wi, vi)}i∈I be a fusion frame for H. The synthesis
operator TW : (

∑
i∈I ⊕Wi)`2 → H is defined by

TW({fi}i∈I) =
∑
i∈I

vifi, {fi}i∈I ∈ (
∑
i∈I
⊕Wi)`2 .

In order to map a signal to the representation space, i.e., to analyze it, the
analysis operator T ∗W is employed which is defined by

T ∗W : H → (
∑
i∈I
⊕Wi)`2 with T ∗W(f) = {viPWi(f)}i∈I ,

for any f ∈ H. The fusion frame operator SW for W is defined by

SW(f) = TWT
∗
W(f) =

∑
i∈I

v2
i PWi(f), f ∈ H.

It follows from [16] that for each fusion frame, the operator SW is invert-
ible, positive and AI ≤ SW ≤ BI. Any f ∈ H has the representation f =∑

i∈I v
2
i S
−1
W PWi(f).

Proposition 2.1. [16] Let {Wi}i∈I be a family of subspaces for H. Then the
following conditions are equivalent.

(1) {Wi}i∈I is an orthonormal fusion basis for H;
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(2) {Wi}i∈I is a 1-uniform Parseval fusion frame for H.

Like the concept of Riesz bases, this notion proposed on fusion setting.

Definition 2.3. [16] We call a fusion frame W = {(Wi, vi)}i∈I for H a Riesz
decomposition of H, if every f ∈ H has a unique representation f =

∑
i∈I fi,

fi ∈Wi.

Proposition 2.2. [16] If W = {(Wi, vi)}i∈I is an orthonormal fusion basis for
H, then it is also a Riesz decomposition of H.

Definition 2.4. [16] A family of subspaces {Wi}i∈I of H is called minimal if for
each i ∈ I,

Wi ∩ spanj 6=i{Wj}j∈I = {0}.

Proposition 2.3. [16] Let W = {(Wi, vi)}i∈I be a fusion frame for H. Then the
following conditions are equivalent.

(1) W = {(Wi, vi)}i∈I is a Riesz decomposition of H;
(2) {Wi}i∈I is minimal;
(3) the synthesis operator is one to one;
(4) the analysis operator is onto.

2.2. g-frames. Sun [45] raised the concept of g-frame and a g-Riesz bases in a
Hilbert space and obtained some results for g-frames and g-Riesz bases. He also
observed that fusion frames is a particular case of g-frame in a Hilbert space.
Also, a system of bounded quasi-projectors introduced by Fornasier [24] is a
particular case of g-frame in a Hilbert space. Thought this subsection {Hi, i ∈ I}
is a family of Hilbert spaces.

Definition 2.5. We call Λ = {Λi ∈ B(H,Hi) : i ∈ I} a g-frame for H with
respect to {Hi}i∈I , or simply, a g-frame forH, if there exist two positive constants
A,B such that

A‖f‖2 ≤
∑
i∈I
‖Λif‖2 ≤ B‖f‖2, f ∈ H.

The positive numbers A and B are called the lower and upper g-frame bounds,
respectively. We call Λ a tight g-frame if A = B and we call it a Parseval g-frame
if A = B = 1. If only the second inequality holds, we call it a g-Bessel sequence.
If Λ is a g-frame, then the g-frame operator SΛ is defined by

SΛf =
∑
i∈I

Λ∗iΛif, f ∈ H

which is a bounded, positive and invertible operator such that

AI ≤ SΛ ≤ BI

and for each f ∈ H, we have

f = SΛS
−1
Λ f = S−1

Λ SΛf =
∑
i∈I

S−1
Λ Λ∗iΛif =

∑
i∈I

Λ∗iΛiS
−1
Λ f.
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The canonical dual g-frame for Λ is defined by {ΛiS−1
Λ }i∈I with bounds

1

B
,

1

A
.

In other words, {ΛiS−1
Λ }i∈I and {Λi}i∈Λ are dual g-frames with respect to each

other.

It is easy to show that by letting Hi = Wi, Λi = PWi and vi = 1, a fusion is a
g-frame.

2.3. t-frames. In [8], B. Bilalov and F. Guliyeva considered the tensor prod-
uct of Hilbert spaces and the bilinear mapping generated by this product. They
introduced the concept of t-frame using the Hilbert-valued scalar product. The-
oretically, some facts about t-frames can be established using earlier results for
G-frames obtained in [44, 45]. But, the concept of t-frame allows many facts re-
lating to ordinary frames to be extended to the case of t-frame. Also, they studied
and proved the stability of t-frameness with respect to quadratic closeness.

Let X and Y be some Hilbert spaces and Z = X
⊗
Y be their tensor product.

Modifying the notations of [8], we have the following definition.

Definition 2.6. System {yn} ⊆ Y is called a t-frame in Z if there exist positive
numbers A and B such that

A‖z‖2Z ≤
∞∑
n=1

‖〈yn, z〉‖2X ≤ B‖z‖2Z , z ∈ Z.

Constants A and B are called the bounds of t-frame. A t-frame is called tight if
A = B.

For detailed studies on t-frames and its stability, we recommend the extensive
paper [8].

2.4. K-frames. Atomic systems for subspaces were first introduced by Feichtinger
and Werther in [23] based on examples arising in sampling theory. In 2011,
Gavruta [28] introduced K-frames in Hilbert spaces to study atomic decompo-
sition systems, and discussed some properties of them. Let K be a linear and
bounded operator on H. A family of elements {fj}j∈J in H is a K-frame for H
if there exist constants A,B > 0 such that

A‖K∗f‖2 ≤
∑
j∈J
|〈fj , f〉|2 ≤ B‖f‖2, ∀f ∈ H. (2.1)

K-frames are limited to the range of a bounded linear operator in Hilbert spaces,
that is, they replace the lower bound condition A‖f‖2 of classical frames (2.1)
by new lower condition A‖K∗f‖2. In recent years, K-frames have been widely
studied in [29] and [49] with a paramount field in frame theory.

2.5. K-g-frames. After introducing g-frames and K-frames, a natural general-
ization is K-g-frames. In [50], Y. Zhou and Y. Zhu put forward the concept of
K-g-frames, which are more general than ordinary g-frames in Hilbert spaces.
Naturally, K-g-frames have become one of the most active fields in frame theory
in recent years. Like K-frames, K-g-frames are limited to the range of a bounded
linear operator in Hilbert spaces and have gained greater flexibility in practical
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applications relative to g-frames. In [50, 51], several properties and characteriza-
tions of K-g-frames were obtained. In [32], the interchangeability of two g-Bessel
sequences with respect to a K-g-frame studied.

Definition 2.7. Let K ∈ B(H), we call Λ = {Λi ∈ B(H,Hi) : i ∈ I} a K-g-
frame for H with respect to {Hi}i∈I for H, if there exist two positive constants
A,B such that

A‖K∗f‖2 ≤
∑
i∈I
‖Λif‖2 ≤ B‖f‖2, f ∈ H.

The positive numbers A and B are called the lower and upper g-frame bounds,
respectively. We call Λ a tight K-g-frame. If only the second inequality holds, we
call it a K-g-Bessel sequence.

It is immediately follows from the above definition that: Every K-g-frame is a
g-Bessel sequence for H with respect to {Hi} and when K = I, K-g-frame is the
g-frame. For more details and properties of K-g-frames, see [50, 51, 32, 33].

2.6. Continuous frames. The concept of generalization of frames was pro-
posed by G. Kaiser [34] and independently by Ali, Antoine and Gazeau [2] to a
family indexed by some locally compact space endowed with a Radon measure.
These frames are known as continuous frames. Gabardo and Han in [27] called
these frames frames associated with measurable spaces, Askari-Hemmat, Dehghan
and Radjabalipour in [5] called these frames generalized frames and in mathemat-
ical physics are referred to Coherent states[2]. The strong motivation to study
of continuous frames is that the windowed Fourier transform and the continuous
wavelet transform are both special cases. The reader is referred to [1, 26, 30] for
a detailed account of windowed Fourier transform and wavelet transform. For
more studies on continuous frames and its applications, the interested reader can
refer to [1, 2, 5, 19, 25, 27, 39]. In this paper, we focus on positive measures and
separable complex Hilbert spaces.

Wavelet and Gabor frames are used very often in signal processing algorithms.
Both systems are derived from a continuous transform, which can be seen as a
continuous frame [1, 26, 30].

Definition 2.8. Let H be a complex Hilbert space and (Ω, µ) be a measure space
with positive measure µ. The mapping F : Ω → H is called a continuous frame
with respect to (Ω, µ), if

(1) F is weakly-measurable, i.e., for all f ∈ H, the function ω → 〈f, F (ω)〉 is
a measurable function on Ω;

(2) there exist constants A,B > 0 such that

A‖f‖2 ≤
∫

Ω
|〈f, F (ω)〉|2 dµ(ω) ≤ B‖f‖2, f ∈ H. (2.2)

The constants A and B are called continuous frame bounds. F is called a tight
continuous frame if A = B and Parseval if A = B = 1. The mapping F is called
Bessel if the second inequality in (2.2) holds. In this case, B is called the Bessel
constant.
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If µ is counting measure and Ω = N then F is a discrete frame. In this sense
continuous frames are the more general setting.

The first inequality in (2.2), shows that F is complete, i.e.,

span{F (ω)}ω∈Ω = H.
Let F be a continuous frame with respect to (Ω, µ), then the mapping

SF f =

∫
Ω
〈f, F (ω)〉F (ω) dµ(ω) (f ∈ H),

which is valid in the weak sense, called the continuous frame operator. The
identity 〈SF f, f〉 =

∫
Ω |〈f, F (ω)〉|2 dµ(ω), shoes that SF is positive, invertible

and AI ≤ SF ≤ BI, also 1
B I ≤ S

−1
F ≤

1
AI.

Thus, every f ∈ H has the representations

f = S−1
F SF f =

∫
Ω
〈f, F (ω)〉S−1

F F (ω) dµ(ω)

f = SFS
−1
F f =

∫
Ω
〈f, S−1

F F (ω)〉F (ω) dµ(ω).

Theorem 2.1. [40] Let (Ω, µ) be a measure space and let F be a Bessel mapping
from Ω to H. Then the operator TF : L2(Ω, µ)→ H weakly defined by

〈TFϕ, h〉 =

∫
Ω
ϕ(ω)〈F (ω), h〉 dµ(ω), h ∈ H

is well defined, linear, bounded and its adjoint is given by

T ∗F : H → L2(Ω, µ), (T ∗Fh)(ω) = 〈h, F (ω)〉, ω ∈ Ω.

The operator TF is called the pre-frame operator or synthesis operator and T ∗F is
called the analysis operator of F .

It is well known that discrete Bessel sequences in a Hilbert space are norm
bounded above: if ∑

n

|〈f, fn〉|2 ≤ B ‖ f ‖2

for all f ∈ H, then ‖ fn ‖≤
√
B for all n. For continuous Bessel mappings, the

following example shows that, it is possible to make a continuous Bessel mapping
which is unbounded.

Example 2.1. [39] Take an (essentially) unbounded (Lebesgue) measurable func-
tion a : R → C such such that a ∈ L2(R) \ L∞(R). It is easy to see that such
functions indeed exist; consider for example the function

b(x) :=
1√
|x|
, 0 < |x| < 1, b(x) =

1

|x|2
, |x| ≥ 1 and b(x) = 0, x = 0.

This function is clearly in L1(R)\L∞(R) and furthermore, b(x) ≥ 0 for all x ∈ R.

Now take a(x) =
√
b(x). Choose a fixed vector h ∈ H, h 6= 0. Then, the mapping

F : R→ H, ω 7→ F (ω) = a(ω)h

is weakly (Lebesgue) measurable and a continuous Bessel mapping, but ‖F (ω)‖
is unbounded.
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Also, even continuous frames need not necessarily norm bounded, see an ex-
ample in [39].

For any separable Hilbert space there exists a frame and more generally any
separable Banach space can be equipped with a Banach frame with respect to an
appropriately chosen sequence space [13]. Concerning the existence of continuous
frames, it is natural to ask: dose there exist continuous frames for any Hilbert
space and any measure space? The existence of continuous frame depends on the
dimension of space and the measure of Ω which is studied in [39]. In that paper,
they considered four cases:

• µ(Ω) =∞ and dimH =∞;
• µ(Ω) <∞ and dimH <∞;
• µ(Ω) =∞ and dimH <∞;
• µ(Ω) <∞ and dimH =∞.

2.7. Continuous K-g-frames. The continuous version of K-g-frames have been
introduced in [3] in the following way.

Definition 2.9. A family Λ = {Λω ∈ B(H,Hω) : ω ∈ Ω} is called a continuous
K-g-frame or c-K-g-frame for H with respect to {Hω}ω∈Ω, if

(i) {Λωf}ω∈Ω is strongly measurable for each f ∈ H;
(ii) there exist constants 0 < A ≤ B <∞ such that

A‖K∗f‖2 ≤
∫

Ω
‖Λωf‖2 dµ(ω) ≤ B‖f‖2, f ∈ H. (2.3)

The constants A, B are called lower and upper c-K-g-frame bounds, respec-
tively. If A, B can be chosen such that A = B, then {Λω}ω∈Ω is called a tight
c-K-g-frame and if A = B = 1, it is called Parseval c-K-g-frame. The family
{Λω}ω∈Ω is called a c-g-Bessel family if the right hand inequality in (2.3) holds.
In this case, B is called the Bessel constant.

Now, suppose that {Λω}ω∈Ω is a c-K-g-frame for H with respect to {Hω}ω∈Ω

with frame bounds A, B. The c-K-g-frame operator is defined by

S : H −→ H

〈Sf, g〉 =

∫
Ω
〈f,Λ∗ωΛωg〉 dµ(ω), f, g ∈ H.

Therefore,
AKK∗ ≤ S ≤ BI.

Example 2.2. Suppose that H is an infinite dimensional separable Hilbert space
and {en}∞n=1 is an orthonormal basis for H. Define the operator K ∈ B(H) as
follow:

Ke2n = e2n + e2n−1; Ke2n−1 = 0, n = 1, 2, ... .

For each f ∈ H, we have

Kf =

∞∑
n=1

〈f, e2n〉(e2n + e2n−1)

and

K∗f =
∞∑
n=1

〈f, e2n + e2n−1〉e2n.
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Also,

‖K∗f‖2 ≤
∞∑
n=1

|〈f, e2n + e2n−1〉|2 ≤ 4‖f‖2,

that is, {fn}∞n=1 = {e2n + e2n−1}∞n=1 is a K-frame for H. Now, let (Ω, µ) be a
σ-finite measure space with infinite measure and {Hω}ω∈Ω be a family of Hilbert
spaces. Since Ω is σ-finite, it can be written as a disjoint union Ω =

⋃
Ωk of

countably many subsets Ωk ⊆ Ω such that µ(Ωk) < ∞ for all k ∈ N. Without
less of generality, assume that µ(Ωk) > 0 for all k ∈ N. For each ω ∈ Ω, define
the operator Λω : H −→ Hω by

Λω(f) =
1

µ(Ωk)
〈f, fk〉hω, f ∈ H,

where k is such that ω ∈ Ωk and hω is an arbitrary element of Hω such that
‖hω‖ = 1. For each f ∈ H, {Λωf}ω∈Ω is strongly measurable (since hω’s are
fixed) and ∫

Ω
‖Λωf‖2dµ(ω) =

∞∑
n=1

|〈f, fn〉|2.

Therefore

‖K∗f‖2 ≤
∫

Ω
‖Λωf‖2dµ(ω) =

∞∑
n=1

|〈f, fn〉|2 ≤ 4‖f‖2,

that is, {Λωf}ω∈Ω is a c-K-g-frame for H with respect to {Hω}ω∈Ω.

Remark 2.1. Like K-frame operator, the c-K-g-frame operator is not invertible.
In general if K has closed range, then S is invertible on R(K) and we have (see
[49])

B−1‖f‖2 ≤ 〈(S|R(K))
−1f, f〉 ≤ A−1‖K†‖2‖f‖2, f ∈ H.

Theorem 2.2. [3] Let K ∈ B(H). Then the following statements are equivalent.

(i) {Λω}ω∈Ω is a c-K-g-frame for H with respect to {Hω}ω∈Ω.
(ii) {Λω}ω∈Ω is a c-g-Bessel family for H with respect to {Hω}ω∈Ω and there

exists a c-g-Bessel family {Γω}ω∈Ω for H with respect to {Hω}ω∈Ω such
that

〈Kf, h〉 =

∫
Ω
〈Λ∗ωΓωf, h〉dµ(ω) , f, h ∈ H. (2.4)

2.8. Controlled frames. Controlled frames, as one of the newest generaliza-
tions of frames, have been introduced to improve the numerical efficiency of iter-
ative algorithms for inverting the frame operator on abstract Hilbert spaces [6],
however, they are used earlier just as a tool for spherical wavelets [10]. Since then,
controlled frames have been widely studied. In 2016, Hua and Huang [33] intro-
duced (C,C ′)-controlled K-g-frame as follows: Assume that K,C,C ′ be linear
and bounded operators on H such that C and C ′ are positive and have bounded
inverse. The family {Λj : H → Kj}j∈J is called (C,C ′)-controlled K-g-frame for
H with respect to {Kj}j∈J , if there exist constants 0 < A ≤ B <∞ such that

A‖K∗f‖2 ≤
∑
j∈J
〈ΛjCf,ΛjC ′f〉 ≤ B‖f‖2, f ∈ H.
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2.9. Controlled continuous K-g-frames. In this subsection, the notions of
continuous, controlled, K-frames and g-frames composition used under the name
continuous (C,C ′)-controlled K-g-frames. This notion introduced in [42] and
some of its properties obtained.

Definition 2.10. [42] Assume that K ∈ B(H) and C,C ′ ∈ GL+(H). We say
that Λ = {Λω ∈ B(H,Kω) : ω ∈ Ω} is a continuous (C,C ′)-controlled K-g-frame
for H with respect to {Kω}ω∈Ω if

(1) for each f ∈ H, {Λωf}ω∈Ω is strongly measurable,

(2) there are two constants 0 < A ≤ B <∞ such that

A‖K∗f‖2 ≤
∫

Ω

〈
ΛωCf,ΛωC

′f
〉
dµω ≤ B‖f‖2, f ∈ H. (2.5)

We call A, B lower and upper frame bounds for continuous (C,C ′)-controlled
K-g-frame, respectively. If the right-hand side of (2.5) holds then we call Λ =
{Λω ∈ B(H,Kω) : ω ∈ Ω} a continuous (C,C ′)-controlled g-Bessel family for H
with respect to {Kω}ω∈Ω.
If K = I then we call Λ = {Λω ∈ B(H,Kω) : ω ∈ Ω} a continuous (C,C ′)-
controlled g-frame for H with respect to {Kω}ω∈Ω.
If C ′ = I then we call Λ = {Λω ∈ B(H,Kω) : ω ∈ Ω} a continuous C-controlled
K-g-frame for H with respect to {Kω}ω∈Ω.
If C = C ′ = I then we call Λ = {Λω ∈ B(H,Kω) : ω ∈ Ω} a continuous K-g-frame
for H with respect to {Kω}ω∈Ω.

3. Woven frames

Woven frames in Hilbert spaces were introduced by Bemrose et al. [7, 14, 15]
in 2015. After that, Vashisht, Deepshikha, Arefijamaal and etc. have done more
studies over the past few years [4, 20, 46, 47]. The frame related operators for
this families have been defined [41] and some of the properties of woven frames
have been characterized in terms of synthesis, analysis and frame operators of
woven frames. For m ∈ N, we use [m] := {1, 2, 3, ...,m}.

In the following, we briefly mention definition of woven frames by presenting
an example.

Definition 3.1. Let F = {fij}i∈I for j ∈ [m] be a family of frames for the
separable Hilbert space H. If there exist universal constants C and D, such that
for every partition {σj}j∈[m] of I and for every j ∈ [m], the family Fj = {fij}i∈σj
is a frame for H with bounds C and D, then F is said a woven frames. For every
j ∈ [m], the frames Fj = {fij}i∈σj are said weaving frames.

The constants C and D are called the lower and upper woven frame bounds. If
C = D, then F = {fij}i∈I,j∈[m] is said a tight woven frame and if for every j ∈ [m],

the family Fj = {fij}i∈σj is a Bessel sequence, then the family F = {fij}i∈I,j∈[m]

is said a Bessel woven.

In the continuation, we dissect woven and weaving frames for m = 2.
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Example 3.1. Let {ei}2i=1 be an orthonormal basis for the two dimensional

vector space V = span {ei}2i=1 with inner product and suppose that F and G are
the sets:

F = {2e1, 2e2 − e1, 3e2} , G = {2e1, 2e1 + e2, 2e2} .
Since both of F and G span the space V , then those are frames. For obtaining
their bounds, we have:

3∑
i=1

|〈f, fi〉|2 = |〈f, 2e1〉|2 + |〈f, 2e2 − e1〉|2 + |〈f, 3e2〉|2 ,

then

4‖f‖2 ≤
3∑
i=1

|〈f, fi〉|2 ≤ 17‖f‖2,

thus F = {fi}3i=1 is a frame for V with lower bound 4 and upper bound 17.

Similarly, G = {gi}3i=1 is a frame for V with frame bounds 4 and 9. The sets F
and G are woven frames for V . For example, if σ1 = {1, 2}, then for every f ∈ V ,
we have

4 ‖f‖2 ≤
∑
i∈σ1

|〈f, fi〉|2 +
∑
i∈σc

1

|〈f, gi〉|2 ≤ 12 ‖f‖2 .

So {fi}i∈σ1
⋃
{gi}i∈σc

1
is a weaving frame with bounds C1 = 4 and D1 = 12.

Now, if we take:

C = min {Ci; 1 ≤ i ≤ 8} , D = max {Di; 1 ≤ i ≤ 8} ,
then F and G form a woven frames for V with universal bounds C and D.

For each family of subspaces
{(
`2(I)

)
j

}
j∈[m]

of `2(I), we have

(
`2(I)

)
j

=

{cij}i∈σj | cij ∈ C , σj ⊂ I,
∑
i∈σj

|ci|2 <∞

 , ∀j ∈ [m].

We define the space:∑
j∈[m]

⊕(
`2(I)

)
j


`2

=
{
{cij}i∈I,j∈[m] | {cij}i∈I ∈

(
`2(I)

)
j
, ∀j ∈ [m]

}
,

with the inner product〈
{cij}i∈I,j∈[m] ,

{
c′ij
}
i∈I,j∈[m]

〉
=

∑
i∈I,j∈[m]

∣∣∣cijc′ij∣∣∣ ,
it is easy to show that this space is a Hilbert space.

Theorem 3.1. The family {fij}i∈I,j∈[m] is a Bessel woven if and only if the
operator

TF :

∑
j∈[m]

⊕(
`2(I)

)
j


`2

−→ H , TF {cij}i∈I,j∈[m] =
∑

i∈I,j∈[m]

cijfij

is well defined, linear and bounded.
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Definition 3.2. Let F = {fij}i∈I,j∈[m] be a woven Bessel. Then for every par-

tition {σj}j∈[m], the family Fj = {fij}i∈σj for j ∈ [m] is a Bessel sequence.

Therefore, we define the analysis operator of Fj by

Uσj : H −→
(
`2(I)

)
j
, Uσj (f) = {〈f, fij〉}i∈σj , ∀j ∈ [m], f ∈ H,

also Ran
(
Uσj
)
⊆
(
`2(I)

)
j
⊆ `2(I). The adjoint of Uσj is called the synthesis

operator and in this paper, we denote by Tσj = U∗σj . By elementary calculation,

for every j ∈ [m], we have:

Tσj :
(
`2(I)

)
j
−→ H, Tσj {cij}i =

∑
i∈σj

cijfij , ∀ {cij}i ∈
(
`2(I)

)
j
.

The frame operator of a weaving Bessel is obtained by combination of analysis
and synthesis operators. For every f ∈ H and j ∈ [m]:

Sσjf = TσjUσjf = Tσj {〈f, fij〉}i∈σj =
∑
i∈σj

〈f, fij〉 fij .

The operator Sσj is bounded, self-adjoint and invertible. We call the family{
S−1
σj fij

}
i∈σj

standard dual weaving frame of Fj . Now, we define the analysis

and synthesis operators for the Bessel woven F = {fij}i∈I,j∈[m]:

UF : H −→

∑
j∈[m]

⊕(
`2(I)

)
j


`2

, UF (f) = {〈f, fij〉}i∈I,j∈[m] ,

and

TF :

∑
j∈[m]

⊕(
`2(I)

)
j


`2

−→ H, TF {cij}i∈I,j∈[m] =
∑

i∈I,j∈[m]

cijfij .

The operators UF and TF are well defined and bounded, they are called analysis
and synthesis operators, respectively. Also, by combination of UF and TF , the
woven frame operator SF , for all f ∈ H, is defined by

SF : H −→ H, SF f = TFUF f =
∑

i∈I,j∈[m]

〈f, fij〉 fij .

The operator SF is bounded, linear and self-adjoint operator. Also every f ∈ H
can be represented as

f =
∑

i∈I,j∈[m]

〈
f, S−1

F fij
〉
fij =

∑
i∈I,j∈[m]

〈f, fij〉S−1
F fij .

The family
{
S−1
F fij

}
i∈I,j∈[m]

is said the standard dual woven of F .

In the next theorem, we demonstrate that the woven frames are equivalent to
boundedness of woven frame operator.

Theorem 3.2. Let {fij}i∈I,j∈[m] be finite family of Bessel sequences in H. Then

the following conditions are equivalent:

(i) {fij}i∈I,j∈[m] is woven frames with universal woven frame bounds C and

D.
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(ii) for the operator SF f =
∑

i∈I,j∈[m] 〈f, fij〉 fij, we have CIH ≤ SF ≤ DIH.

The next result shows that, we can constitute tight woven frames from every
woven frames by weaving operators.

Theorem 3.3. Let F = {fij}i∈I,j∈[m] be woven frame for H with universal woven

bounds C and D and the woven frame operator SF . Then

{
S
− 1

2
F fij

}
i∈I,j∈[m]

is a

tight woven frame and

f =
∑

i∈I,j∈[m]

〈
f, S

− 1
2

F fij

〉
S
− 1

2
F fij f ∈ H.

In the following theorem, we investigate the effect of a bounded and invertible
operator on woven frames.

Theorem 3.4. Let F = {fij}i∈I,j∈[m] be a woven frame for H with woven frame

operator SF and universal bounds C and D and E : H −→ H be a bounded
operator. Then the operator E is invertible if and only if {Efij}i∈I,j∈[m] is woven

frame for H. In this case, the universal bounds of F are C
∥∥E−1

∥∥−2
, D ‖E‖2 and

the woven frame operator is ESFE
∗.

From the previous theorem, we can obtain the next result.

Theorem 3.5. Let F = {fij}i∈I,j∈[m] be woven frame with universal woven

bounds C and D for H and woven frame operator SF . Then for every σj ⊂ I,
j ∈ [m], we have:

(i) The sequence
{
Sσjfij

}
i∈σj

for every j ∈ [m] is a weaving frame i.e. the

family {SF fij}i∈I,j∈[m] is woven frame for H, with universal lower and

upper woven bounds C3 and D3, respectively.

(ii) The sequence
{
S−1
σj fij

}
i∈σj

for every j ∈ [m] is a weaving frame i.e. the

family
{
S−1
F fij

}
i∈I,j∈[m]

is a woven frame for H, with universal lower and

upper woven bounds C
D2 and D

C2 , respectively.

3.1. Woven-weaving fusion frames. As, we mentioned fusion frames have a
lot of applications and all of papers published in this area. Extension of woven-
weaving to fusion frames have been investigated in [41]. In this subsection, we
review this notion.

Definition 3.3. A family of fusion frames {Wij}∞i=1, for j ∈ [m] , with respect to
weights {νij}i∈I,j∈[m], is said woven fusion frames if there are universal constant
A and B, such that for every partition {σj}j∈[m] of I, the family {Wij}i∈σj ,j∈[m] is
a fusion frame for H with lower and upper frame bounds A and B. Each family
{Wij}i∈σj ,j∈[m] is called a weaving fusion frame.

For abbreviation, we use W.F.F instead of the statement of woven fusion frame.
The following theorem states the equivalence conditions between woven frames
and woven fusion frames (W.F.F).
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Theorem 3.6. Suppose for every i ∈ I, Ji is a subset of the index set I and
νi, µi > 0. Let {fi,j}j∈Ji and {gi,j}j∈Ji be frame sequences in H with frame
bounds (Afi ,Bfi) and (Agi ,Bgi) respectively. Define

Wi = span {fi,j}j∈Ji , Vi = span {gi,j}j∈Ji , ∀i ∈ I,

and choose orthonormal bases {ei,j}j∈Ji and {e′i,j}j∈Ji for each subspaces Wi and
Vi, respectively. Suppose that

0 < Af = inf
i∈I
Afi ≤ Bf = sup

i∈I
Bgi <∞

and

0 < Ag = inf
i∈I
Afi ≤ Bg = sup

i∈I
Bgi <∞.

Then the following conditions are equivalent:

(i) {νifi,j}i∈I,j∈Ji and {µigi,j}i∈I,j∈Ji are woven frames in H.

(ii) {νiei,j}i∈I,j∈Ji and
{
µie
′
i,j

}
i∈I,j∈Ji

are woven frames in H.

(iii) {Wi}i∈I and {Vi}i∈I are W.F.F in H with respect to weights {νi}i∈I ,
{µi}i∈I, respectively.

Proof. Since for every i ∈ I, {fi,j}j∈Ji and {gi,j}j∈Ji are frames for Wi and Vi
with frame bounds (Afi ,Bfi) and (Agi ,Bgi), then for σ ⊂ I;

Af
∑
i∈σ

ν2
i ‖PWi (f) ‖2 +Ag

∑
i∈σc

µ2
i ‖PVi (f) ‖2

≤
∑
i∈σ
Afiν

2
i ‖PWi (f) ‖2 +

∑
i∈σc

Agiµ2
i ‖PVi (f) ‖2

=
∑
i∈σ
Afi‖νiPWi (f) ‖2 +

∑
i∈σc

Agi‖µiPVi (f) ‖2

≤
∑
i∈σ

∑
j∈Ji

|〈νiPWi (f) , fi,j〉|2 +
∑
i∈σc

∑
j∈Ji

|〈µiPVi (f) , gi,j〉|2

≤
∑
i∈σ
Bfi‖νiPWi (f) ‖2 +

∑
i∈σc

Bgi‖µiPVi (f) ‖2

≤ Bf
∑
i∈σ
‖νiPWi (f) ‖2 + Bg

∑
i∈σc

‖µiPVi (f) ‖2.

(i) ⇒ (iii): Let {νifi,j}i∈I,j∈Ji and {µigi,j}i∈I,j∈Ji be woven frame for H, with

universal frame bounds C and D. The above calculation shows that for every
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f ∈ H, ∑
i∈σ

ν2
i ‖PWi (f) ‖2 +

∑
i∈σc

µ2
i ‖PVi (f) ‖2

≤ 1

A

∑
i∈σ

∑
j∈Ji

|〈PWi (f) , νifi,j〉|2 +
∑
i∈σc

∑
j∈Ji

|〈PVi (f) , µigi,j〉|2


=
1

A

∑
i∈σ

∑
j∈Ji

|〈f, νifi,j〉|2 +
∑
i∈σc

∑
j∈Ji

|〈f, µigi,j〉|2


≤ D
A
‖f‖2,

where A = min {Af ,Ag}. For lower frame bound,∑
i∈σ

ν2
i ‖PWi (f) ‖2 +

∑
i∈σc

µ2
i ‖PVi (f) ‖2

≥ 1

B

∑
i∈σ

∑
j∈Ji

|〈PWi (f) , νifi,j〉|2 +
∑
i∈σc

∑
j∈Ji

|〈PVi (f) , µigi,j〉|2


=
1

B

∑
i∈σ

∑
j∈Ji

|〈f, νifi,j〉|2 +
∑
i∈σc

∑
j∈Ji

|〈f, µigi,j〉|2


≥ C
B
‖f‖2,

for every f ∈ H, B = max {Bf ,Bg}. This calculations consequences (iii).
(iii) ⇒ (i): Let {Wi}i∈I and {Vi}i∈I be W.F.F with universal frame bounds C

and D. Then for every f ∈ H, we have∑
i∈σ

∑
j∈Ji

|〈f, νifi,j〉|2 +
∑
i∈σc

∑
j∈Ji

|〈f, µigi,j〉|2

=
∑
i∈σ

∑
j∈Ji

|〈νiPWi (f) , fi,j〉|2 +
∑
i∈σc

∑
j∈Ji

|〈µiPVi (f) , gi,j〉|2

≥
∑
i∈σ
Afiν

2
i ‖PWi (f) ‖2 +

∑
i∈σc

Agiµ2
i ‖PVi (f) ‖2

≥ A

(∑
i∈σ

ν2
i ‖PWi (f) ‖2 +

∑
i∈σc

µ2
i ‖PVi (f) ‖2

)
≥ AC‖f‖2,

and similarly ∑
i∈σ

∑
j∈Ji

|〈f, νifi,j〉|2 +
∑
i∈σc

∑
j∈Ji

|〈f, µigi,j〉|2 ≤ BD‖f‖2.

So (i) holds.
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(ii)⇔ (iii): Since {ei,j}j∈Ji and
{
e′i,j

}
j∈Ji

are orthonormal bases for subspaces

Wi and Vi, respectively, then for any f ∈ H, we have:∑
i∈σ

ν2
i ‖PWi (f) ‖2 +

∑
i∈σc

µ2
i ‖PVi (f) ‖2

=
∑
i∈σ

ν2
i ‖
∑
j∈J
〈f, ei,j〉ei,j‖2 +

∑
i∈σc

µ2
i ‖
∑
j∈J
〈f, e′i,j〉e′i,j‖2

=
∑
i∈σ

ν2
i

∑
j∈J
|〈f, ei,j〉|2 +

∑
i∈σc

µ2
i

∑
j∈J
|〈f, e′i,j〉|2

=
∑
i∈σ

∑
j∈J
|〈f, νiei,j〉|2 +

∑
i∈σc

∑
j∈J
|〈f, µie′i,j〉|2.

So (ii) is equivalent with (iii). �

Combining of Theorem 3.4 and Theorem 3.6, we get the following result.

Theorem 3.7. Assume that {Wi}i∈I and {Vi}i∈I are fusion frames with weights
{µi}i∈I and {νi}i∈I respectively. Also, if {Wi}i∈I and {Vi}i∈I are W.F.F and E
is a self-adjoint and invertible operator on H, such that E∗E(W ) ⊂W , for every
closed subspace W of H. Then for every σ ⊂ I, the sequence {EWi}i∈σ

⋃
{EVi}i∈σc

is a fusion frame with frame operator ESσE
−1 where Sσ is frame operator of

{EWi}i∈σ
⋃
{EVi}i∈σc, i.e. {EWi}i∈I and {EVi}i∈I are W.F.F.

3.2. Weaving g-frames. Recently the notions of woven and weaving frames
extend to weaving g-frames for Hilbert spaces in [36]. They developed some of
the fundamental properties of weaving g-frames for their own sake.

Definition 3.4. A family of g-frames {Λi,j}i∈I,j∈[m] for a Hilbert space H is said
to be woven if there are universal constants A and B so that for every partition
{σj}j∈[m] of I, the family {Λi,j}i∈σj ,j∈[m] is a g-frame for H with lower and upper
frame bounds A and B , respectively.

Also, they showed that:

Proposition 3.1. Let {Λi,j}i∈I,j∈[m] be a woven family of g-frames for H with
common frame bounds A and B. If the operator T has a closed range on H, then
{Λi,jT}i∈I,j∈[m] is also woven with bounds A‖T †‖−2 and B‖T‖2.

and

Theorem 3.8. Let {Λi}i∈N and {Γi}i∈N be two g-Riesz bases for which there
are common constants 0 < A ≤ B < ∞ so that for every σ of N, the family
{Λi}i∈σ

⋃
{Γi}i∈σc is a g-Riesz sequence with Riesz bounds A and B. Then for

every partition σ of N the family {Λi}i∈σ
⋃
{Γi}i∈σc is actually a g-Riesz basis,

that is, the two g-Riesz bases are woven.

Theorem 3.9. Let Λ := {Λi}i∈N be a g-Riesz basis and let Γ := {Γi}i∈N be a
g-frame for H. If Λ and Γ are woven, then Γ must actually be a g-Riesz basis.
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3.3. Controlled weaving K-g-frames. Motivated and inspired by the above
mentioned extensions, the concept of controlled weaving K-g-frame introduced
in [43]. This notion includes ordinary frame, K-frame, g-frame, controlled frame
and weaving frame.

Definition 3.5. Two (C,C ′)-controlled K-g-frames Λ = {Λj}∞j=1 and Ω =

{Ωk}∞k=1 for H with respect to {Hj}∞j=1 and {Wk}∞k=1 (respectively) are (C,C ′)-
controlled K-g-woven if there are universal constants 0 < A ≤ B < ∞ so that
for every subset σ of N, the family {Λj}j∈σ ∪ {Ωk}k∈σc is a (C,C ′)-controlled
K-g-frame for H (with respect to {Hj}j∈σ ∪ {Wk}k∈σc) with lower and upper
K-g-frame bounds A and B, respectively.

The following Theorem gives some equivalent conditions which can be useful
to characterization of these families.

Theorem 3.10. [43] Let Λ = {Λj}∞j=1 and Ω = {Ωj}∞j=1 be sequences of operators

such that Λj ∈ B(H, Hj) and Ωj ∈ B(H, Wj) for all j ∈ N. Then the following
conditions are equivalent.

(i) Λ and Ω are (C,C ′)-controlled K-g-woven frames for H.
(ii) (a) There exists A > 0 such that for any subset σ of N there exists a

bounded linear operator Uσ :

( ∞∑
n=1

⊕Zσn

)
`2

→ H ( here, Zσn = Hn

for n ∈ σ and Zσn =Wn for n ∈ σc) such that

Uσ
(
Ξ∗jΞj{gn}∞n=1

)
=


(CC ′)

1
2 Λ∗j (gj) , j ∈ σ

(CC ′)
1
2 Ω∗j (gj) , j ∈ σc

for all

{gn}∞n=1 ∈

( ∞∑
n=1

⊕Zσn

)
`2

,

where {Ξn}∞n=1 is the standard g-orthonormal basis for( ∞∑
n=1

⊕Zσn

)
`2

.

(b) AKK∗ ≤ UσU∗σ .

An arbitrary (C,C ′)-controlledK-g-Bessel sequence inH need not be a (C,C ′)-
controlled K-g- frame for H. The following theorem gives sufficient conditions
for (C,C ′)-controlled K-g-Bessel sequences to constitute woven (C,C ′)-controlled
K-g-frames for the underlying space.

Theorem 3.11. [43] Let Λ ≡ {Λj}∞j=1 and Ω ≡ {Ωj}∞j=1 be (C,C ′)-controlled

K-g- Bessel sequences for H with respect to {Hj}∞j=1 such that for each f ∈ H,

K(f) =
∑
i∈N

CΛ∗iΩiC
′(f) and CΛ∗iΩiC

′ = CΩ∗iΛiC
′ i ∈ N.

Then, Λ and Ω are (C,C ′)-controlled K-g-woven frames for H.
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The next theorem provides a necessary and sufficient condition for (C,C ′)-
controlledK-g-woven frames which connects to ordinary weavingK-frames. More
precisely, if frame bounds of frames associated with atomic spaces are positively
confined, then (C,C ′)-controlled K-g-woven frames give ordinary weaving K-
frames and vice-versa.

Theorem 3.12. [43] Suppose that Λ ≡ {Λj}∞j=1 and Ω ≡ {Ωj}∞j=1 are (C,C ′)-

controlled K-g-frames for H with respect to {Hj}∞j=1 and {Wj}∞j=1, respectively.

Let {fjk}k∈Ij⊂N and {gjk}k∈Qj⊂N be frames for Hj and Wj, respectively (j ∈ N)
with frame bounds α, β and α′, β′, respectively. Then the following conditions are
equivalent.

(i) Λ and Ω are (C,C ′)-controlled K-g-woven.

(ii) {(CC ′)
1
2 Λ∗jfjk}j∈N,k∈Ij and {(CC ′)

1
2 Ω∗jgjk}j∈N,k∈Qj

are woven K-frames
for H.

The following theorem gives a sufficient condition for weaving K-g-frames in
terms of positive operators associated with given K-g frames.

Theorem 3.13. [43] Let Λ ≡ {Λj}∞}=1 and Ω ≡ {Ωj}∞j=1 be K-g-frames for H
with respect to {Hj}∞j=1 and {Wj}∞j=1, respectively. For any J ⊆ N, suppose that
the operator UJ : H → H defined by

UJ(f) =
∑
i∈J

[Ω∗iΩi(f)− Λ∗iΛi(f)], f ∈ H,

is a positive linear operator. Then Λ and Ω are K-g-woven.
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