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GENERALIZED DIRICHLET PROBLEMS FOR MAGNETIC

SCHRÖDINGER OPERATOR

SHAHIN SH. RAJABOV

Abstract. In the paper, we consider different generalizations of the
Dirichlet problem in an arbitrary domain of n-dimensional Euclidean
space Rn for a magnetic Schrödinger operator. Their equivalence un-
der different conditions on magnetic and electric potentials are proved.
Magnetic Sobolev space of first order is introduced and it is proved that
this space is topologically equivalent to the ordinary Sobolev space of
first order. The interval of a real axis for a spectral parameter, where the
Dirichlet first generalized problem has a unique solution, is shown. The
Green operator for the Dirichlet first and second generalized problems is
introduced and its boundedness from the first order conjugated Sobolev
space to the first order Sobolev space is proved.

1. Notation and Problem Statement

By x we will denote points of n-dimensional space Rn. Let xk, k = 1, 2, ..., n
stand for the coordinates of x. The element of n-dimensional volume is denoted
by dx. Besides, in the sequel, we denote the scalar product by (.,.) and the value
of a distribution f at ϕ (x) by < f,ϕ > .

Assume

Ha,V =
n∑
k=1

(
1

i

∂

∂xk
+ ak (x)

)2

+ V (x) ,

where V (x) is an electric potential, a (x) = (a1 (x) , a2 (x) , ..., an (x)) is a mag-
netic potential, i is an imaginary unit;

Ak = sup
x∈G
|ak (x)|, k = 1, 2, ..., n,

where G is an arbitrary domain in Rn;

A0 = max {A1, A2, ..., An} ;

Bk = sup
x∈G

∣∣∣∣∂ak (x)

∂xk

∣∣∣∣, k = 1, 2, ..., n;

B0 = max {B1, B2, ..., Bn} ;
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a0 = inf
x∈G

{
n∑
k=1

a2k (x)

}
;

V0 = inf
x∈G

V (x) .

Let C∞0 (G) be the set of all infinitely differentiable functions on G with a
compact support and D′ (G) be the space of all distributions on G. We denote
the functions having in G quadratically integrable generalized derivatives up to
order k, by W k

2 (G). The norm in this space is defined as follows:

‖f‖2Wk
2 (G) =

∑
|α|≤k

‖Dαf (x)‖2L2(G) ,

where α = (α1, α2, ..., αn) is a multi-index, |α| = α1 + α2 + ...+ αn,

Dαf (x) =
∂|α|f (x)

∂xα1
1 ∂xα2

2 ...∂xαnn
.

Set L2 (G) = W 0
2 (G). Denote by

0

W k
2 (G) the closure of the space C∞0 (G) in

W k
2 (G). More precisely, f (x) ∈

0

W k
2 (G), if there exists a sequence of functions

{ϕn (x)}∞n=1 from C∞0 (G) such that ϕn (x) → f in W k
2 (G). Denote the space

associated to
0

W k
2 (G) by

0
W
′,k

2 (G).
Let Bm (G) stand for the space of functions f (x) with continuous and bounded

in G partial derivatives to order m inclusively.

Definition 1.1. (Dirichlet’s first generalized problem). Let G be an arbitrary

domain in Rn and f ∈
0
W
′,1

2 (G). The problem of finding of the solution u (x)

from the class
0

W 1
2 (G), of the equation

n∑
k=1

(
1

i

∂

∂xk
+ ak (x)

)2

u (x) + V (x)u (x)− λu (x) = f (x) , (1.1)

where λ is a spectral parameter in the sense distributions in the domainG is called
Dirichlet’s first generalized problem for the magnetic Schrödinger operator.

Note that in this problem there are no conditions on behavior of the boundary
of the domain G, i.e. on the boundedness of the domain G or smoothness of its
boundary.

Definition 1.2. (Dirichlet’s second generalized problem). Let

f (x) ∈
0
W
′,1

2 (G) .

The problem of finding of a function from the space
0

W 1
2 (G), satisfying the equal-

ity
n∑
k=1

∫
G

(
∂u (x)

∂xk
+ iak (x)u (x)

)(
∂ϕ (x)

∂xk
− iak (x)ϕ (x)

)
dx+

+

∫
G

(V (x)− λ)u (x)ϕ (x)dx =< f,ϕ > (1.2)
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for any function ϕ (x) ∈
0

W 1
2 (G), is called the Dirichlet second generalized problem

for the magnetic Schrödinger operator.

Note that the Dirichlet problem for the Laplace equation was first formulated
by K. Gauss in 1828. The first studies on solvability of this problem belongs to P.
Dirichlet (see [6]). At the early XX century Fredholm [5] proved that for domains
with rather smooth boundaries the Dirichlet problem has a unique solution.

The space of functions differentiable in generalized sense was introduced by
S.L. Sobolev (see [8]). The imbedding theorems proved by him enabled to study
different generalized boundary value problems for differential equations. A full
review of results concerning boundary value problems in domains with nonsmooth
boundaries, may be found in [6] and [7].

In spite of the fact that the magnetic Schrödinger operator in the whole space
Rn is intensively studied (see i.e. [1], [2] and [3]), the Dirichlet generalized prob-
lem for magnetic Schrödinger operator arising from variational principles and con-
venient in use, unlike the ordinary Schrödinger operator was not studied enough.
Recently, there appear classical boundary value problems for this operator (see
e.g. [4]).

In this paper, we study the existence and uniqueness of solutions of the gener-
alized Dirichlet problems in an arbitrary domain of n-dimensional space Rn for
the magnetic Schrödinger operator.

2. On equivalence of both generalized Dirichlet problems for the
magnetic Schrödinger operator

Throughout this paper we suppose that the electric and magnetic potentials
satisfy the following conditions:

a) the functions ak (x) , k = 1, 2, ..., n, are real and belong to the space B1 (G) ;
b) the function V (x) is real and belongs to the space B0 (G) ≡ B (G) .

Theorem 2.1. Under the conditions a) and b) the first and second generalized
Dirichlet problems are equivalent.

Proof. Let a function u (x) ∈
0

W 1
2 (G) be the solution of the first generalized

Dirichlet problem. Then for any function ϕ (x) from C∞0 (G) the following equal-
ity is valid:

<

n∑
k=1

(
1

i

∂

∂xk
+ ak (x)

)2

u (x) + V (x)u (x)− λu (x) , ϕ (x) >=< f,ϕ > . (2.1)

Hence, by the definition of generalized derivatives (see e.g. [9]) we have

n∑
k=1

∫
G

(
∂u (x)

∂xk
+ iak (x)u (x)

)(
∂ϕ (x)

∂xk
− iak (x)ϕ (x)

)
dx+

+

∫
G

(V (x)− λ)u (x)ϕ (x)dx =< f,ϕ > . (2.2)
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Prove that equality (2.2) is valid for any function ϕ (x) from the space
0

W 1
2 (G)

as well. Indeed, by the definition of the space
0

W 1
2 (G) there exists a sequence

of functions {ϕn (x)}∞n=1 from C∞0 (G) such that ϕn (x) → ϕ (x) in the norm
‖·‖W 1

2 (G). As ϕn (x) ∈ C∞0 (G) , n = 1, 2, ..., then equality (2.2) is valid for

them, i.e.

n∑
k=1

∫
G

(
∂u (x)

∂xk
+ iak (x)u (x)

)(
∂ϕn (x)

∂xk
− iak (x)ϕn (x)

)
dx+

+

∫
G

(V (x)− λ)u (x)ϕn (x)dx =< f,ϕn (x) >, n = 1, 2, ... . (2.3)

Taking into account u (x) ∈ L2 (G) , ∂u(x)
∂xk

∈ L2 (G) , k = 1, 2, ..., n, and passing

to the limit n→∞ in the equality (2.3) we obtain that equality (1.2) is valid for

any function ϕ (x) from
0

W 1
2 (G). Conversely, let u (x) ∈

0

W 1
2 (G) be the solution

of the second generalized Dirichlet problem, i.e. equality (1.2) be fulfilled for

any function from
0

W 1
2 (G). Again, using the definition of generalized derivatives

we are convinced that the function u (x) is the solution of the first generalized
Dirichlet problem. �

3. Magnetic Sobolev space

Assume λ0 = a0 − nB0 − 2nA2
0 + V0 and consider in C∞0 (G) the functional

ba,V,µ(u) = ha,V (u)− µ ‖u‖2L2(G) , (3.1)

where µ ∈ (−∞, λ0),

ha,V (u) =

n∑
k=1

∫
G

∣∣∣∣∂u (x)

∂xk
+ iak(x)u(x)

∣∣∣∣2 dx+

∫
G
V (x) |u(x)|2 dx.

Theorem 3.1. A quadratic form determined by the formula

‖u‖a,V,µ =
√
ba,V,µ(u),

is a norm in C∞0 (G) and this norm is equivalent to the norm ‖u‖W 1
2 (G) .

Proof. At first we estimate the following functional from below

ha,0(u) =

n∑
k=1

∫
G

∣∣∣∣∂u (x)

∂xk
+ iak(x)u(x)

∣∣∣∣2 dx, u ∈ C∞0 (G).

Let u(x) = σ(x) + iτ (x) ∈ C∞0 (G), where σ (x) = Reu (x) , τ (x) = Imu (x).
Then we have:∣∣∣∂u(x)∂xk

+ iak(x)u(x)
∣∣∣2 =

(
∂σ(x)
∂xk
− ak(x)τ(x)

)2
+
(
∂τ(x)
∂xk

+ ak(x)σ(x)
)2

=

=
∣∣∣∂u(x)∂xk

∣∣∣2 + a2k(x) |u(x)|2 + 2ak(x)
(
σ(x)∂τ(x)∂xk

− τ(x)∂σ(x)∂xk

)
.

(3.2)
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Using equality (3.2), we obtain∣∣∣∣∂u (x)

∂xk
+ iak(x)u(x)

∣∣∣∣2 =

∣∣∣∣∂u (x)

∂xk

∣∣∣∣2 + a2k(x) |u(x)|2 +

+2ak(x)
∂ (σ (x) τ(x))

∂xk
− 4ak(x)τ(x)

∂σ (x)

∂xk
(3.3)

or ∣∣∣∣∂u (x)

∂xk
+ iak(x)u(x)

∣∣∣∣2 =

∣∣∣∣∂u (x)

∂xk

∣∣∣∣2 + a2k(x) |u(x)|2−

−2ak(x)
∂ (σ (x) τ(x))

∂xk
+ 4ak(x)σ(x)

∂τ (x)

∂xk
. (3.4)

From (3.3) and (3.4) we have∫
G

∣∣∣∣∂u (x)

∂xk
+ iak(x)u(x)

∣∣∣∣2 dx =

∫
G

∣∣∣∣∂u (x)

∂xk

∣∣∣∣2 dx+

∫
G
a2k(x) |u(x)|2 dx−

−2

∫
G

∂ak (x)

∂xk
σ(x)τ(x)dx− 4

∫
G

∂σ(x)

∂xk
ak (x) τ(x)dx (3.5)

or ∫
G

∣∣∣∣∂u (x)

∂xk
+ iak(x)u(x)

∣∣∣∣2 dx =

∫
G

∣∣∣∣∂u (x)

∂xk

∣∣∣∣2 dx+

∫
G
a2k(x) |u(x)|2 dx+

+2

∫
G

∂ak(x)

∂xk
σ(x)τ(x)dx+ 4

∫
G

∂τ (x)

∂xk
ak(x)σ(x)dx. (3.6)

Using the inequalities∫
G

∂ak(x)

∂xk
σ(x)τ(x)dx ≤ 1

2
sup
x∈G

∣∣∣∣∂ak(x)

∂xk

∣∣∣∣ ∫
G
|u (x)|2 dx,

∫
G
ak(x)σ(x)

∂τ(x)

∂xk
dx ≤ 1

2
sup
x∈G
|ak(x)|

∫
G

[
1

ε
σ2(x) + ε

(
∂τ(x)

∂xk

)2
]
dx,

∫
G
ak(x)τ(x)

∂σ(x)

∂xk
dx ≤ 1

2
sup
x∈G
|ak(x)|

∫
G

[
1

ε
τ2(x) + ε

(
∂σ(x)

∂xk

)2
]
dx,

where ε is any positive number, from(3.5) and (3.6) we obtain∫
G

∣∣∣∣∂u (x)

∂xk
+ iak(x)u(x)

∣∣∣∣2 dx ≥ ∫
G

∣∣∣∣∂u (x)

∂xk

∣∣∣∣2 dx+

∫
G
a2k(x) |u(x)|2 dx−

−sup
x∈G

∣∣∣∣∂ak (x)

∂xk

∣∣∣∣ ∫
G
|u(x)|2 dx−2sup

x∈G
|ak (x)|

∫
G

[
1

ε
τ2(x) + ε

(
∂σ(x)

∂xk

)2
]
dx (3.7)

or ∫
G

∣∣∣∣∂u (x)

∂xk
+ iak(x)u(x)

∣∣∣∣2 dx ≥ ∫
G

∣∣∣∣∂u (x)

∂xk

∣∣∣∣2 dx+

∫
G
a2k(x) |u(x)|2 dx−

−sup
x∈G

∣∣∣∣∂ak (x)

∂xk

∣∣∣∣ ∫
G
|u(x)|2 dx− 2sup

x∈G
|ak (x)|

∫
G

[
1

ε
σ2(x) + ε

(
∂τ(x)

∂xk

)2
]
dx.

(3.8)
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From inequalities (3.7) and (3.8) we have∫
G

∣∣∣∣∂u (x)

∂xk
+ iak(x)u(x)

∣∣∣∣2 dx ≥ ∫
G

∣∣∣∣∂u (x)

∂xk

∣∣∣∣2 dx+

∫
G
a2k(x) |u(x)|2 dx−

−sup
x∈G

∣∣∣∣∂ak (x)

∂xk

∣∣∣∣ ∫
G
|u(x)|2 dx− sup

x∈G
|ak (x)|

∫
G

[
1

ε
(u(x))2 + ε

∣∣∣∣∂u(x)

∂xk

∣∣∣∣2
]
dx. (3.9)

Summing the inequality (3.9) over k in the range from 1 to n, we obtain the
estimation

ha,0(u) ≥
n∑
k=1

∫
G

∣∣∣∣∂u (x)

∂xk

∣∣∣∣2 dx+

+

∫
G

(
n∑
k=1

a2k (x)

)
|u (x)|2 dx−

n∑
k=1

sup
x∈G

∣∣∣∣∂ak (x)

∂xk

∣∣∣∣

∫
G
|u(x)|2 dx−

−
n∑
k=1

{
sup
x∈G
|ak (x)|

}
1

ε

∫
G
|u(x)|2 dx− ε

n∑
k=1

{
sup
x∈G
|ak (x)| ·

∫
G

∣∣∣∣∂u (x)

∂xk

∣∣∣∣2 dx
}
.

(3.10)
By means of inequality (3.10), we obtain the lower bound for the functional
ba,V,µ (u) :

ba,V,µ (u) ≥ (1− εA0)

n∑
k=1

∫
G

∣∣∣∣∂u (x)

∂xk

∣∣∣∣2 dx+

+

(
a0 − nB0 − nA0

1

ε
+ V0 − µ

)
·
∫
G
|u (x)|2 dx. (3.11)

Choosing ε = 1
2A0

in the estimation (3.11), we have

ba,V,µ (u) ≥ 1

2

n∑
k=1

∫
G

∣∣∣∣∂u (x)

∂xk

∣∣∣∣2 dx+
(
a0 − nB0 − 2A2

0n+ V0 − µ
)
·
∫
G
|u (x)|2 dx.

(3.12)
Assuming

mµ = min

{
1

2
, a0 − nB0 − 2A2

0n+ V0 − µ
}

in the inequality (3.12), we obtain that for any u (x) ∈ C∞0 (G) there is the
inequality

ba,V,µ (u) ≥ mµ ‖u‖2W 1
2 (G) . (3.13)

From the boundedness of the functions ak(x), k = 1, 2, ..., n, V (x) in the domain
G it follows that there exists such a positive number Mµ that

ba,V,µ (u) ≤Mµ ‖u‖2W 1
2 (G) , u ∈ C∞0 (G). (3.14)

From inequalities (3.13) and (3.14) it follows that the norms ‖u‖a,V,µ =
√
ba,V,µ(u)

and ‖u‖2W 1
2 (G) are equivalent. �
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Denote by Wa,V,µ the closure of the space C∞0 (G) in the norm ‖·‖a,V,µ. The
Hilbert space Wa,V,µ is called a magnetic Sobolev space of first order.

According to Theorem 3.1, the norms ‖·‖a,V,µ and ‖·‖W 1
2 (G) are equivalent,

therefore the space Wa,V,µ as a topological space coincides with the space W 1
2 (G).

However, we think they are different as they have various scalar products. But

in spite of this, their associated spaces W ∗a,V,µ and
0
W
′,1

2 (G), as functional spaces,
coincide.

4. Existence and uniqueness of the solution of the generalized
Dirichlet problem for the magnetic Schrödinger operator

for µ ∈ (−∞, λ0)
Letf ∈W ∗a,V,µ. By the Riesz theorem (see e.g. [7]) there exists a unique element

from the space Wa,V,µ such that < f, ϕ(x) >= (u, ϕ)Wa,V,µ
for all ϕ(x) ∈Wa,V,µ

and

‖u‖Wa,V,µ
= ‖f‖W ∗a,V,µ . (4.1)

On the other hand, as noted above, f ∈
0
W
′,1

2 (G). Therefore

< f, ϕ(x) >= (u, ϕ)
0

W 1
2 (G)

.

Taking into account the definition of the scalar product in Wa,V,µ we obtain that

for any f ∈
0
W
′,1

2 (G) there exists a unique element u (x) from the space Wa,V,µ

such that for any ϕ (x) ∈
0

W 1
2 (G) the following equality is valid:∑n

k=1

∫
G

(
∂u(x)
∂xk

+ iak(x)u(x)
)(

∂ϕ(x)
∂x − iak(x)ϕ(x)

)
dx+

+
∫
G (V (x)− µ)u(x)ϕ(x)dx = < f, ϕ >,

(4.2)

i.e. for any µ from the interval (−∞, λ0) the following equality is valid

<

n∑
k=1

(
1

i

∂

∂xk
+ ak(x)

)2

u(x)+V (x)u(x)−µu(x), ϕ (x) >= < f, ϕ > . (4.3)

According to Theorem 2.1, in view of equality (4.3) we obtain the following
statement.

Theorem 4.1. Let G be an arbitrary domain in Rn and the conditions a) and b)
be fulfilled. Then for any number from the interval (−∞, λ0) the first generalized
Dirichlet problem for the magnetic Schrödinger operator has a unique solution.

From inequality (4.1) and Theorem 3.1 we obtain that if µ ∈ (−∞, λ0), then

there exists a positive number Lµ such that for any f ∈
0
W
′,1

2 (G) there exists a

unique element u(x) ∈
0

W 1
2 (G) such that the following inequality is fulfilled

‖u‖ 0

W 1
2 (G)

≤ Lµ ‖f‖ 0
W
′,1
2 (G)

. (4.4)
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The operator that associates to every functional f from
0
W
′,1

2 (G) a unique

element from the space
0

W 1
2 (G) is denoted by Gµ. The operator Gµ is said to

be the Green operator of the first generalized Dirichlet problem for the magnetic
Schrödinger operator.

From estimation (4.4) it follows the following theorem.

Theorem 4.2. Under the conditions of Theorem 4.1, the linear Green operator

Gµ is a continuous operator from the space
0
W
′,1

2 (G) to
0

W 1
2 (G).
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