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ON POTENTIAL WELLS AND GLOBAL SOLVABILITY OF

THE CAUCHY PROBLEM FOR SYSTEM OF SEMI-LINEAR

KLEIN-GORDON EQUATIONS WITH DISSIPATION

AKBAR B. ALIEV AND GULSHAN KH. SHAFIYEVA

Abstract. We study the Cauchy problem for the system of nonlinear
Klein-Gordon equations with weak coupling and dissipative term. By
introducing a family of potential wells and investigation of the invariant
sets, we prove the global existence and finite time blow up of solution.

1. Introduction

Klein (1927) and Gordon (1926) derived a relativistic equation for a charged
particle in an electromagnetic field, using the recently discovered ideas of quanta.
In [10] the Klein-Gordon equation is reduced to

1

c2

∂2ψ

∂t2
−∆ψ +

(mc
h

)2
ψ = 0

for the special case of a free particle in three dimensions. Later this was led to
the mathematical generalization

1

c2

∂2ψ

∂t2
−∆ψ + V ′(ψ) = 0 (1.1)

for some differentiable potential functions V , which is called the nonlinear Klein-
Gordon equation [10]. Here V is a nonlinear function which characterizes en-
vironment. According to the available literature, there are a lot of interesting
results on problem (1.1) by various analytical methods. Many results have been
obtained concerning properties of blow up and global existence of solutions to
the Cauchy problem of the nonlinear Klein-Gordon equations [2, 7, 8, 9, 11, 12,
14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 29, 31, 34, 35, 36, 37, 38, 39, 40, 41].
The motion of charged mesons in an electromagnetic field can be described by
the following coupled Klein-Gordon equations:{

utt −∆u+ g|v|p+1|u|p−1u = 0
vtt −∆v + hg|u|p+1|v|p−1v = 0

(1.2)

where ∆ is a Laplacian operator on Rn, g and h are non-zero real constants. The
system was first introduced by Segal [32].
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In this paper we consider the Cauchy problem for the system of Klein-Gordon
equations with weak coupling and dissipations

uitt −∆ui + αiui + γiuit =
m∑

j=1,j 6=i
|uj |p+1|ui|p−1ui, i = 1, . . . ,m, (1.3)

ui(0, x) = ui0(x), uit(0, x) = ui1(x), i = 1, . . . ,m, (1.4)

where u1, . . . , um are real functions depending on t ∈ [0,∞), x ∈ Rn, αi > 0,
γi > 0,i = 1, . . . ,m. We suppose that n ≥ 2 and

p > 0 if n = 2, (1.5)

0 < p ≤ 1

n− 2
if n ≥ 3. (1.6)

System (1.3) determines a model of interaction between m fields with masses
α1, . . . , αm.

We study qualitative characteristics of the family of the potential wells, the
existence and nonexistence of global solutions of problem (1.3), (1.4).

Notice that, the potential well was introduced by Sattinger [31] in 1968. The
potential well method was one of the most important methods for studying non-
linear evolution equations. There was a lot of investigations in this direction
[27, 29, 37, 40].

In the case m = 2 problem (1.3),(1.4) was studied in [20, 40]. In this direc-
tion, we also note the works [2, 3, 4, 24, 26, 30, 34, 38]. The absence of global
solutions for problem (1.3),(1.4) was investigated in [2]. The absence of global
solutions with positive arbitrary initial energy for the system of semilinear hy-
perbolic equations

uitt −∆ui + αiui + γiuit = |u1|ρj1 . . . |um|ρjm ,
t > 0, x ∈ Rn, k = 1, . . . ,m

was investigated in [5], where ρjk = pj + 1, j 6= k, ρkk = pk − 1, k, j = 1, . . . ,m,

pk > 0,
m∑
k=1

pk +m− 2 ≤ 2
n−2 if n ≥ 3.

2. Preliminaries

In the sequel, by | · |q we denote the usual Lq(R
n)- norm. For simplicity of

notation, in particular, we write |·|2 instead of |·|22. Let 〈·, ·〉 denote inner product
in L2(Rn). Let ‖ · ‖ denote the norm on the Sobolev space H1 = H1(Rn), i.e.

‖u‖ =
[
|∇u|2 + |u|2

] 1
2 , where ∇ denotes a gradient. For simplicity, in what

follows, we set αi = γi = 1 for i = 1, . . . ,m and denote the first and the second
derivatives of a function u with respect to t by u̇ and ü, respectively.

We define the following functionals

J(φ1, . . . , φm) =
1

2

m∑
j=1

‖φj‖2 −
1

p+ 1
G,

and

Iδ(φ1, . . . , φm) = δ

m∑
j=1

‖φj‖2 − 2G,
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where δ > 0 and

G = G(φ1, . . . , φm) =
m∑

i,j=1,
i<j

∫
Rn

|φi(x)φj(x)|p+1dx.

Lemma 2.1. Let (φ1, . . . , φm ∈
[
H1\{0}

]m
. Then

(i) lim
λ→0

J(λφ1, . . . , λφm) = 0, lim
λ→+∞

J(λφ1, . . . , λφm) = −∞;

(ii) there is a single point λ∗ = λ∗(φ1 . . . , φm) in the interval 0 < λ < +∞,
where

d

dλ
J(λφ1, . . . , λφm)|λ=λ∗ = 0;

(iii) J(λφ1, . . . , λφm) is nondecreasing on 0 ≤ λ ≤ λ∗, nonincreasing on
λ∗ ≤ λ < +∞ and it reaches its maximum at the point λ = λ∗;

(iv) I1(λφ1, . . . , λφm) > 0 for 0 < λ < λ∗ ;I1(λφ1, . . . , λφm) < 0 for
λ∗ < λ < +∞ and I1(λ∗φ1, . . . , λ

∗φm) = 0.

We define the set

Nδ =
{

(φ1, . . . , φm) : (φ1, . . . , φm) ∈
[
H1\{0}

]m
, Iδ(φ1, . . . , φm) = 0

}
.

Suppose (φ1, . . . , φm) ∈ N1 , then

J(φ1, . . . , φm) =
p

2(p+ 1)

m∑
j=1

‖φj‖2 > 0, (2.1)

i.e. J is bounded from below on the set N1 .
Consider the variation problem

d(δ) = inf
(φ1,...,φm)∈Nδ

J(φ1, . . . , φm), 0 < δ < p+ 1. (2.2)

Lemma 2.2. There is (φ̄1, . . . , φ̄m) ∈ N1 such that

J(φ̄1, . . . , φ̄m) = inf
(φ1,...,φm)∈N1

J(φ1, . . . , φm) = d > 0.

For δ > 0 we define also

r(δ) = r(δ, p) =

(
δ

2µC
2(p+1)
∗

) 1
p

,

where C∗ = sup
‖u‖6=0

|u|2(p+1)

‖u‖ , µ is the lowest η number satisfy the inequality

m∑
i,j=1,
i<j

ap+1
i ap+1

j ≤ η

 m∑
j=1

a2
i

p+1

.

Here ai ≥ 0, i = 1, . . . ,m,
m∑
i=1

a2
i > 0.

Lemma 2.3. If (u1, . . . , um) ∈
[
H1\{0}

]m
and

m∑
j=1
‖uj‖2 < r(δ), then

Iδ(u1, . . . , um) > 0.
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Lemma 2.4. If (u1, . . . , um) ∈
[
H1\{0}

]m
and Iδ(u1, . . . , um) < 0, then

m∑
j=1
‖uj‖2 > r(δ).

Lemma 2.5. If (u1, . . . , um) ∈
[
H1\{0}

]m
and Iδ(u1, . . . , um) = 0, then

m∑
j=1
‖uj‖2 ≥ r(δ).

Lemma 2.6. Suppose that conditions (1.3),(1.4) are fulfilled. Then

d(δ) ≥ a(δ)r(δ), (2.3)

where

d(δ) = δ
1
p
p+ 1− δ

p
d, (2.4)

a(δ) =
p+ 1− δ
2(p+ 1)

d. (2.5)

It is obvious that

lim
δ→+0

d(δ) = 0, (2.6)

d(p+ 1) = 0, (2.7)

d(1) = d, (2.8)

d′(δ) > 0, δ ∈ (0, 1), (2.9)

d′(δ) < 0, δ ∈ (1, p+ 1). (2.10)

The following theorem on the local solvability of the problem (1.3), (1.4) holds.
This theorem can be proved by using Galerkin method (see[22]) or methods of
nonlinear evolution equations (see[5]).

Theorem 2.1. Let the conditions (1.5),(1.6) hold, then for any (u10, . . . , um0) ∈
[H1]m, (u11, . . . , um1) ∈ [L2(Rn)]m there exists T ′ ∈ (0,∞) such that the problem
(1.3),(1.4) has a weak solution (u1, . . . , um) ∈ C

(
[0, T ′]; [H1]m

)⋂
C1 ([0, T ′]; [L2(Rn)]m). If Tmax = supT ′,i.e. Tmax the length of the maxi-

mal existence interval of the solution (u1(t, ·), . . . , um(t, ·)) ∈ C
(
[0, Tmax); [H1]m

)⋂
C1 ([0, Tmax); [L2(Rn)]m) then either: Tmax = +∞ or

lim
t→Tmax−0

sup
m∑
j=1

[
|u̇j(t, ·)|2 + ‖uj(t, ·)‖

]
= +∞

Remark 2.1. 1) If (u10, . . . , um0) ∈ [Hs]m, (u11, . . . , u1m) ∈ [Hs−1]m ,
s ≥ 1, then (u1, . . . , um) ∈ C ([0, Tmax); [Hs]m)

⋂
C1
(
[0, Tmax); [Hs−1]m

)
2) If {(u10k , . . . , um0k)}∞k=1 ⊂ [H2]m, {(u11k , . . . , um1k)}∞k=1 ⊂ [H1]m and

uiok −→ ui0 in H1, ui1k −→ ui1 in L2(Rn), i = 1, . . . ,m as k → +∞,

then for any T ∗ ∈ (0, Tmax)

(u1k(t, ·), . . . , umk(t, ·)) −→ (u1(t, ·), . . . , um(t, ·))

in C
(
[0, T ∗]; [H1]m

)⋂
C1 ([0, T ∗]; [L2(Rn)]m).
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3. Principal results

We denote by E(t) the following energy function:

E(t) =
1

2

m∑
j=1

[
|u̇j(t, ·)|2 + ‖uj(t, ·)‖2

]
− 1

p+ 1

m∑
i,j=1,
i<j

|uiuj |p+1
p+1

and we define the following sets

Wδ =
{

(u1, . . . , um) ∈ [H1]m, Iδ(u1, . . . , um) > 0,

J(u1, . . . , um) < d(δ)}
⋃
{0, . . . , 0}, 0 < δ < p+ 1,

Vδ =
{

(u1, . . . , um) ∈ [H1]m, Iδ(u1, . . . , um) < 0,

J(u1, . . . , um) < d(δ)} , 0 < δ < p+ 1.

From (2.6)-(2.10) it follows that for every e ∈ (0, d) the equation d(δ) = e has
two roots δ1, δ2, so that δ1 < 1 < δ2.

Theorem 3.1. Suppose that (u10, . . . , um0) ∈ [H1]m, (u11, . . . , u1m) ∈ [L2(Rn)]m,
and conditions (1.5),(1.6) hold. If 0 < e < d and δ1 < δ2 are the roots of the
equation d(δ) = e, then the following assertions are valid:

a) if I1(u10, . . . , um0) > 0 or ‖u10‖ = . . . = ‖um0‖ = 0, then all weak solu-
tions (u1(t, ·), . . . , um(t, ·)) of problem (1.3),(1.4) with initial energy
0 < E(0) ≤ e, belong to Wδ, where δ1 < δ < δ2;

b) if I1(u10, . . . , um0) < 0, then for all weak solutions (u1(t, ·), . . . , um(t, ·))
of problem (1.3),(1.4) with initial energy 0 < E(0) ≤ e, belong to Vδ,
where δ1 < δ < δ2.

Proof. a) Let (u10, . . . , um0) ∈ [H1]m, (u11, . . . , u1m) ∈ [L2(Rn)]m and

0 < E(0) ≤ e. (3.1)

Let
I1(u10, . . . , um0) > 0 or ‖u10‖ = . . . = ‖um0‖ = 0. (3.2)

Taking into account the Remark 2.1 from (1.3),(1.4) we have the following energy
equality

E(t) +

m∑
j=1

t∫
0

|u̇j(s, ·)|2ds = E(0), 0 ≤ t < Tmax. (3.3)

By virtue of (3.1) and (3.3), J(u1(t, ·), . . . , um(t, ·)) ≤ e, 0 ≤ t < Tmax. On the
other hand for δ1 < δ < δ2 we have e < d(δ). Therefore

J(u1(t, ·), . . . , um(t, ·)) < d(δ), 0 ≤ t < Tmax. (3.4)

Suppose that assertion a) does not hold. Then in view of (3.2) and (3.4) there
exists t̄ ∈ (0,∞) such that

Iδ(u1(t, ·), . . . , um(t, ·)) > 0, t ∈ (0, t̄), (3.5)

Iδ(u1(t̄, ·), . . . , um(t̄, ·)) = 0. (3.6)

Thus, (u1(t̄, ·), . . . , um(t̄, ·)) ∈ Nδ, therefore, by the definition of d(δ) we have

d(δ) ≤ J(u1(t, ·), . . . , um(t, ·))
which contradicts (3.4).
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Now we prove assertion b).
Let (u10, . . . , um0) ∈ [H1]m, (u11, . . . , u1m) ∈ [L2(Rn)]m, 0 < E(0) ≤ e and

I1(u10, . . . , um0) < 0. Arguing in a similar manner as in step a), we obtain the
existence of t̄ ∈ [0, T ], such that for any t ∈ [0, t̄) the inequality

I1(u1(t, ·), . . . , um(t, ·)) < 0,

and the equality I1(u1(t̄, ·), . . . , um(t̄, ·)) = 0 are fulfilled.
We again obtain the following contradiction

d(δ) ≤ J(u1(t̄, ·), . . . , um(t̄, ·)) ≤ e < d(δ).

�

By Theorem 3.1 we have the following statement

Theorem 3.2. Suppose that (u10, . . . , um0) ∈ [H1]m, (u11, . . . , u1m) ∈ [L2(Rn)]m,
and conditions (1.5),(1.6) hold. If 0 < E(0) ≤ e and δ1, δ2 are the roots of
the equation d(δ) = e, then the sets Wδ1δ2 =

⋃
δ1<δ<δ2

Wδ and Vδ1δ2 =
⋃

δ1<δ<δ2

Vδ

are invariant on the trajectories of the dynamical system generated by problem
(1.3),(1.4).

The following statement is a consequence of Theorem 3.2 and shows that there
is a so-called vacuum zone between the two invariant sets.

Theorem 3.3. If the assumptions of Theorem 3.2 hold, then all solutions of prob-
lem (1.3),(1.4) satisfy the relation (u1(t, ·), . . . , um(t, ·)) 6∈ Nδ1δ2 =

⋃
δ1<δ<δ2

Nδ.

Now, consider the case E(0) ≤ 0.

Theorem 3.4. Suppose that (u10, . . . , um0) ∈ [H1]m, (u11, . . . , u1m) ∈ [L2(Rn)]m,
and conditions (1.5),(1.6) hold. If E(0) ≤ 0, ‖u10‖+ . . .+ ‖um0‖ 6= 0 , then the
solution of problem (1.3),(1.4) satisfies the inequality

m∑
j=1

‖uj(t, ·)‖2 ≥ r0, (3.7)

where r0 =

(
p+1

2µC
2(p+1)
∗

) 1
p

.

Proof. Let (u1(t, ·), . . . , um(t, ·)) be the solution of problem (1.1),(1.2) with initial
energy E(0) ≤ 0, where ‖u10‖+ . . .+ ‖um0‖ 6= 0 .

Let [0, Tmax) be the maximum interval of existence of the solution
(u1(t, ·), . . . , um(t, ·)). In view of the definition of E(t), we have

E(t) =
1

2

m∑
j=1

|u̇j(t, ·)|2 + J(u1(t, ·), . . . , um(t, ·))

= E(0)−
m∑
j=1

∫ t

0
|u̇j(s, ·)|2ds, t ∈ [0, Tmax), (3.8)

It follows that

J(u1(t, ·), . . . , um(t, ·)) ≤ 0 < d(δ), t ∈ [0, Tmax) (3.9)
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and
m∑
j=1

‖ui(t, ·)‖2 ≤
2

p+ 1

m∑
i,j=1,
i<j

|uiuj |p+1
p+1. (3.10)

On the other hand, using the Hölder’s inequality and embeddingH1 ⊂ L2(p+1)(R
n),

also taking into account the definition of µ we have

2

p+ 1

m∑
i,j=1,
i<j

|uiuj |p+1
p+1 ≤

2

p+ 1
µC

2(p+1)
∗

 m∑
j=1

‖uj‖2
p+1

. (3.11)

Since‖u10‖ + . . . + ‖um0‖ 6= 0 , then there exists a half-interval [0, t1), where
‖u1(t, ·)‖+ . . .+ ‖um(t, ·)‖ 6= 0. Then from (3.10),(3.11) we obtain that

m∑
j=1

‖uj(t, ·)‖2 ≥

(
p+ 1

2µC
2(p+1)
∗

) 1
p

= r0, t ∈ [0, t1).

It follows that ‖u1(t1, ·)‖+ . . .+‖um(t1, ·)‖ 6= 0, therefore (3.7) is also valid on the
half-open interval [t1, t2), for some t2 > t1. Thus, (3.7) is true on [0, Tmax). �

Theorem 3.5. Suppose that (u10, . . . , um0) ∈ [H1]m\{0, . . . , 0}, (u11, . . . , u1m) ∈
[L2(Rn)]m, and conditions (1.5),(1.6) hold. If E(0) < 0 or E(0) = 0 and
(u11, . . . , u1m) 6= (0, . . . , 0), then (u1(t, ·), . . . , um(t, ·)) ∈ Vδ for t ∈ [0, Tmax),
where 0 < δ < p+ 1.

Proof. If E(0) < 0, then from (3.3) we obtain

J(u1(t, ·), . . . , um(t, ·)) ≤ E(0) < 0 < d(δ). (3.12)

On the other hand,

J(u1(t, ·), . . . , um(t, ·)) =
1

2

(
1− δ

p+ 1

) m∑
j=1

‖uj(t, ·)‖2

+
1

2(p+ 1)
Iδ(u1(t, ·), . . . , um(t, ·)), (3.13)

therefore,

Iδ(u1(t, ·), . . . , um(t, ·)) < 0, t ∈ [0, Tmax) if 0 < δ < p+ 1. (3.14)

If E(0) = 0, then in view of Theorem 3.4, from (3.7),(3.12) we find that inequality
(3.14) is also true in this case if 0 < δ < p+ 1.

Thus (u1(t, ·), . . . , um(t, ·)) ∈ Vδ, where 0 < δ < p+ 1. �

Theorems 3.3-3.5 imply the following result.

Theorem 3.6. If E(0) < d, then W1 and V1 are invariant with respect to the
dynamical system generated by problem (1.3),(1.4).
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4. Existence of global solutions

Theorem 3.6 implies the following theorem on global solvability:

Theorem 4.1. Suppose that (u10, . . . , um0) ∈ [H1]m, (u11, . . . , u1m) ∈ [L2(Rn)]m,
E(0) < d and conditions (1.3),(1.4) hold. If (u1(t0, ·), . . . , um(t0, ·)) ∈W1 at some
moment of time t0 ∈ [0, Tmax) , then Tmax = +∞ and (u1(t, ·), . . . , um(t, ·)) sat-
isfies a priori estimate

m∑
j=1

[
|u̇j(t, ·)|2 + ‖uj(t, ·)‖2

]
≤ 2d(p+ 1)

p
, t ∈ [0, Tmax). (4.1)

Proof. By Theorem 3.1 (u1(t, ·), . . . , um(t, ·)) ∈W1, t ∈ [0, Tmax), therefore
I1(u1(t, ·), . . . , um(t, ·)) > 0, 0 ≤ t < Tmax. Then from (3.8) and (3.13) we obtain
that for 0 ≤ t < Tmax the apriori estimate (4.1) holds, therefore Tmax = +∞, i.e.
problem (1.3),(1.4) has a global solution. �

Theorem 4.1 implies the following statement:

Theorem 4.2. Suppose that (u10, . . . , um0) ∈ [H1]m, (u11, . . . , u1m) ∈ [L2(Rn)]m,
and conditions (1.3),(1.4) hold. If 0 < E(0) < d and Iδ2(u10, . . . , um0) > 0
or ‖u10‖ = . . . = ‖um0‖ = 0, where δ1 < δ2 are the roots of the equation
d(δ) = E(0), then problem (1.3),(1.4) has a unique solution (u1(·), . . . , um(·)) ∈
C
(
[0,∞); [H1]m

)⋂
C1 ([0,∞); [L2(Rn)]m) and (u1(t, ·), . . . , um(t, ·)) ∈ Wδ, δ1 < δ < δ2, 0 ≤ t <

+∞.

Proof. By virtue of Theorem 3.1 and 4.1, it suffices to prove that
I1(u10, . . . , um0) > 0. Indeed, otherwise there would exist δ̄ ∈ [1, δ2) such
that Iδ̄(u10, . . . , um0) = 0. Since Iδ2(u10, . . . , um0) > 0, therefore ‖u10‖ +
. . . + ‖um0‖ 6= 0. Then J(u10, . . . , um0) ≥ d(δ), which contradicts the inequality
J(u10, . . . , um0) ≤ E(0) < d(δ), for δ1 < δ < δ2. �

5. The absence of global solutions

In this part we consider the case of αj = 1 and γj = γ, j = 1, 2, . . . ,m

Theorem 5.1. Suppose that p ≥ 1, (u10, . . . , um0) ∈ [Hs]m and (u11, . . . , u1m) ∈
[Hs−1]m , where s > n

2 . Suppose also that conditions (1.5),(1.6) and one of the
following conditions hold:

a) E(0) < 0;
b) 0 ≤ E(0) < d, I(u10, . . . , um0) < 0, αj = 1, γj = γ, j = 1, 2, . . . ,m and

0 ≤ γ < p−1
2C∗

,

Then Tmax < +∞ and lim
t→Tmax−0

m∑
j=1
|uj(t, ·)|2 = +∞.

Proof. a) If E(0) < 0, then repeating the proof given in [4], we obtain the asser-
tion of the theorem.
b) Let 0 ≤ E(0) < d, I1(u10, . . . , um0) < 0 and 0 ≤ γ < p−1

2C∗
.
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Let’s denote

F (t) =
m∑
j=1

|uj(t, ·)|2, t ∈ [0, Tmax).

Then we obtain

Ḟ (t) = 2

m∑
j=1

〈uj(t, ·), u̇j(t, ·)〉 , t ∈ [0, Tmax). (5.1)

Assume that the assertion of Theorem 4.1 is not true, i.e. Tmax = +∞. Since
(u10, . . . , um0) ∈ [Hs]m and (u11, . . . , u1m) ∈ [Hs−1]m , where s > n

2 ,

then (u1(t, x), . . . , um(t, x)) ∈ C ([0,∞); [Hs]m)
⋂
C1
(
[0,∞); [Hs−1]m

)
and ob-

viously F̈ (t) ∈ C[0,∞). Taking into account (1.3), by a simple calculation we
obtain

d

dt
[eγtḞ (t)] =

= 2eγt
m∑
j=1

|u̇j(t, ·)|2 + 2(δ − 1)eγt
m∑
j=1

‖uj(tj)‖2

−2eγtIδ(u1(t, ·), . . . , um(t, ·)). (5.2)

Since E(0) < d, therefore there exists δ1, δ2 such that δ1 < 1 < δ2 and

d(δi) = E(0), i = 1, 2.

In (3.4), we put δ1 = δ2 . According to Theorem 3.5

Iδ2(u1(t, ·), . . . , um(t, ·)) ≤ 0, (5.3)

therefore, from (5.2),(5.3) we get

d

dt
[eγtḞ (t)] ≥ 2(δ − 1)eγt

m∑
j=1

‖uj(t, ·)‖2. (5.4)

On the other hand, applying Lemma 2.4, we have the following estimation
m∑
j=1

‖uj(t, ·)‖2 > r(δ2). (5.5)

From (5.3) and (5.5) it follows that

d

dt
[eγtḞ (t)] ≥ eγtc(δ2), (5.6)

where c(δ2) = 2(δ2 − 1)r(δ2). From (5.6), we find that for sufficiently large t0

Ḟ (t) ≥ c(δ2)

2λ
, t ≥ t0. (5.7)

Thus,

lim
t→+∞

F (t) = +∞. (5.8)

On the other hand,

F̈ (t) = 2

m∑
j=1

[
|u̇j(t, ·)|2 − ‖uj(t, ·)‖2

]
− 2γ

m∑
j=1

〈uj(t, ·), u̇j(t, ·)〉
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+2 ·
m∑

i,j=1,
i<j

|uiuj |p+1
p+1 = (p+ 3)

m∑
j=1

|u̇j(t, ·)|2 + (p− 1)
m∑
j=1

‖uj(t, ·)‖2

−2γ 〈uj(t, ·), u̇j(t, ·)〉+ 2γ(p+ 1)

m∑
j=1

t∫
0

|u̇j(s, ·)|2ds− 2(p+ 1)E(0). (5.9)

Using the Hölder and Young inequalities, we have∣∣∣∣∣∣2γ
m∑
j=1

〈uj(t, ·), u̇j(t, ·)〉

∣∣∣∣∣∣ ≤ (p− 1− ε)
m∑
j=1

|u̇j(t, ·)|2

+
4γ2

p− 1− ε

m∑
j=1

|uj(t, ·)|2. (5.10)

When using the imbedding H1 ⊂ L2(Rn) from (5.8) and (5.10), we get

F̈ (t) ≥ (4 + ε)

m∑
j=1

|u̇j(t, ·)|2 + ψ(t), (5.11)

where

ψ(t) =

(
p− 1− 4γ2C2

∗
p− 1− ε

) m∑
j=1

‖uj(t, ·)‖2 − 2(p+ 1)E(0).

By virtue of (5.8), for sufficiently small ε > 0,there exists t1 such that for any
t ≥ t1 we have the estimation

F̈ (t) ≥ (4 + ε)

m∑
j=1

|u̇j(t, ·)|2. (5.12)

It follows from (5.1) and (5.12)

F̈ (t)F (t)−
(

1 +
ε

4

)
Ḟ 2(t) ≥ (4 + ε)

m∑
j=1

|u̇j(t, ·)|2
m∑
j=1

|uj(t, ·)|2

−4
(

1 +
ε

4

) m∑
j=1

〈uj(t, ·), u̇j(t, ·)〉

2

, t ≥ t1.

Using Hölder’s inequality, we obtain

F̈ (t)F (t)−
(

1 +
ε

4

)
Ḟ 2(t) ≥ 0, t ≥ t1. (5.13)

From (5.11) and (5.13) we have the following inequality(
F−

ε
4 (t)

)′′
≤ 0, t ≥ t1, (5.14)

From (5.7) it follows that(
F−

ε
4 (t)

)′
= − εF ′(t)

4 · F 1+ ε
4 (t)

< 0, t ≥ t1. (5.15)
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In view of (5.14) and (5.15) there exists t∗ ∈ (0, t1) such that lim
t→t∗

F−1(t) = 0, i.e.

lim
t→t∗

F (t) = +∞ . This contradiction shows that our assumption is not true. �

Remark 5.1. Under the assumptions of Theorem 5.1

lim
t→Tmax−0

m∑
j=1

[
‖uj(t, ·)‖2 + |u̇j(t, ·)|2

]
= +∞.

6. Proofs of Lemmas

Proof of Lemma 2.1. Properties of (i) follow directly from

J(λφ1, . . . , λφm) = λ2 1

2

m∑
j=1

(
|∇φj |2 + |φj |2

)
−λ2p+2 1

p+ 1

m∑
i,j=1,
i<j

|φiφj |p+1
p+1;

(ii) Elementary computation shows that

d

dλ
J(λφ1, . . . , λφm)

= λ

m∑
j=1

‖φj‖2 − 2λ2p+1
m∑

i,j=1,
i<j

∫
Rn

|φiφj |p+1dx (6.1)

Hence, it is evident that at the point

λ∗ =

∣∣∣∣∣∣∣∣∣∣∣

m∑
j=1
‖φj‖2

2
m∑

i,j=1,
i<j

∫
Rn
|φiφj |p+1dx

∣∣∣∣∣∣∣∣∣∣∣

1
2p

the following equality holds

d

dλ
J(λφ1, . . . , λφm)|λ=λ∗ = 0.

(iii) From (6.1) it is clear that

d

dλ
J(λφ1, . . . , λφm) > 0 for 0 < λ < λ∗,

and
d

dλ
J(λφ1, . . . , λφm) < 0 for λ∗ < λ < +∞,

i.e. the assertion (iii) is true.
(iv) From definitions of the functionals J and I1 and also from (6.1) it follows

that

I1(λφ1, . . . , λφm) = λ
d

dλ
J(λφ1, . . . , λφm).
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Proof of Lemma 2.2. From (2.1) it follows that if (u1, . . . , um) ∈ N1, then

J(u1, . . . , um) =
p

2(p+ 1)

m∑
j=1

‖uj‖2. (6.2)

Let (u1k, . . . , umk) be a minimizing sequence, i.e.

lim
k→∞

J(u1k, . . . , umk) = inf
(u1,...,um)∈N1

J(u1, . . . , um) = d.

Let us denote ujλ = λuj , j = 1, . . . ,m and denote by νjk = (u∗jk)µk the Schwartz

symmetrization [6, 13, 28] of the function yjk = µkujk with respect to the variable
x, where µk is chosen so that (ν1k, . . . , νmk) ∈ N1 . By virtue of (6.2)

J(ν1k, . . . , νmk) =
p

2(p+ 1)

m∑
j=1

‖νjk‖2. (6.3)

On the other hand, ∫
Rn

‖∇νjk‖2dx =

∫
Rn

‖∇(u∗jk)µk‖2dx

=

∫
Rn

‖(∇(ujk)µk)
∗‖2dx ≤

∫
Rn

‖∇(ujk)µk‖2dx (6.4)

(see [6, 13, 28]).
From (6.3), (6.4) it follows that

J(ν1k, . . . , νmk) ≤ J((u1k)µk, . . . , (umk)µk). (6.5)

On the other hand, according to the choice of

J((u1k)µk, . . . , (umk)µk) ≤ J(u1k, . . . , umk). (6.6)

Consequently, lim
k→∞

J(ν1k, . . . , νmk) = d . It follows that

‖∇νjk‖ ≤ c, (6.7)

where c > 0 is a constant not dependent on k = 1, 2, . . .. Then we conclude
that there exists such a (ν1∞, . . . , νm∞) ∈ [H1]m that, possibly taking along a
subsequence,

νjk → νj∞ weakly in H1 as k → +∞, j = 1, . . . ,m. (6.8)

Then by virtue of the compactness of embedding H1
radial ⊂ Lq(R

n) [33], where

q ≤ 2n
n−2 , it follows that

νjk → νj∞ in Lq(R
n) as k → +∞, j = 1, . . . ,m. (6.9)

Let us prove that (ν1∞, . . . , νm∞) 6= (0, . . . , 0) . Assume the opposite, i.e.

(ν1∞, . . . , νm∞) = (0, . . . , 0). (6.10)

Using the Hölder inequality
m∑
j=1

‖νjk‖2 =
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= 2
m∑

i,j=1,
i<j

∫
Rn

|νik|p+1 · |νjk|p+1dx ≤ 2
m∑

i,j=1,
i<j

‖νik‖p+1
L2(p+1)

· ‖νjk‖p+1
L2(p+1)

, (6.11)

from (1.6), (6.9), (6.10) we obtain

G(ν1k, . . . , νmk)→ 0, as k → +∞.

On the other hand, I(ν1k, . . . , νmk) = 0, so from (6.9) it follows that

νjk → 0 star in H1 as k → +∞, j = 1, . . . ,m. (6.12)

By the multiplicative inequality of Gagliardo-Nirenberg type [1], we have

‖νjk‖p+1
L2(p+1)(R

n) ≤ |∇νjk|
(p+1)θ|νjk|(p+1)(1−θ), (6.13)

where

θ = n

(
1

2
− 1

2(p+ 1)

)
=

np

2(p+ 1)
, j = 1, . . . ,m.

From (6.7) and (6.13) we have

‖νjk‖p+1
L2(p+1)(R

n) ≤ c|∇νjk|
(p+1)θ, j = 1, . . . ,m.

Therefore by virtue of (6.11) and (6.14) we have

m∑
j=1

‖νjk‖2 ≤ C

 m∑
j=1

‖νjk‖2


np
2

,

where C > 0 is a constant not dependent on k = 1, 2, . . .. It follows that

m∑
j=1

‖νjk‖2 ≥ c1 > 0,

where c1 = C
−2
np−2 . Therefore, our assumption isn’t correct. Thus d > 0.

Proof of Lemma 2.3. It follows from (3.11) that

G ≤
m∑

i,j=1,
i<j

‖ui‖p+1
2(p+1) · ‖uj‖

p+1
2(p+1) ≤ µC

2(p+1)
∗

 m∑
j=1

‖uj‖2
p+1

.

If
m∑
j=1
‖uj‖2 < r(δ), then we get 2G ≤ δ

m∑
j=1
‖uj‖2. From the definition of

Iδ(u1, . . . , um), we have Iδ(u1, . . . , um) > 0.
Proof of Lemma 2.4. If (u1, . . . , um) ∈

[
H1
]m

, ‖u10‖ 6= 0, . . . , ‖um0‖ 6= 0 and
Iδ(u1, . . . , um) < 0, then we have the following inequality

δ

m∑
j=1

‖uj‖2 < 2

m∑
i,j=1,
i<j

|uiuj |p+1
p+1 ≤ 2µC

2(p+1)
∗

 m∑
j=1

‖uj‖2
p+1

from which the required inequality is obtained.
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Proof of Lemma 2.5. If ‖u10‖ + . . . + ‖um0‖ 6= 0, then from
Iδ(u1, . . . , um) = 0 we get

δ

m∑
j=1

‖uj‖2 = 2
∑
i,j=1,
i<j

|uiuj |p+1
(p+1) ≤ 2µC

2(p+1)
∗

 m∑
j=1

‖uj‖2
p+1

Thus,

m∑
j=1

‖uj‖2 ≥ r(δ) =

(
δ

2µC
2(p+1)
∗

) 1
p

.

Proof of Lemma 2.6. In view of Lemma 2.5, for each (u1, . . . , um) ∈ N1 we
have

m∑
j=1

‖uj‖2 ≥ r(δ).

Therefore,

J(u1, . . . , um) =
1

2

(
1− δ

p+ 1

) m∑
j=1

‖uj‖2 ≥ a(δ)r(δ),

where 0 < δ < p + 1, a(δ) = p+1−δ
2(p+1)d. It follows that d(δ) = a(δ)r(δ). Suppose

that (ū1, . . . , ūm) ∈ N1 is a minimizing element, i.e. d = J(ū1, . . . , ūm).
For any δ > 0, λ = λ(δ) is chosen so that

δ

m∑
j=1

‖λūj‖2 = 2

m∑
i,j=1,
i<j

|λūiλūj |p+1
p+1 . (6.14)

Hence we obtain that

λ(δ) =


δ
m∑
j=1
‖ūj‖2

2
∑
i,j=1,
i<j

|ūiūj |p+1
p+1


1
2p

= δ
1
2p .

In view of (6.14), (λ(δ)ū1, . . . , λ(δ)ūm) ∈ Nδ, therefore, by definition of d(δ), we
have the following inequality

d(δ) ≤ J(λ(δ)ū1, . . . , λ(δ)ūm) =
1

2
δ

1
p

m∑
j=1

‖ūj‖2

− 1

p+ 1
δ
p+1
p

m∑
i,j=1,
i<j

|ūiūj |p+1
p+1 . (6.15)

On the other hand,

(ū1, . . . , ūm) ∈ N1. (6.16)



ON POTENTIAL WELLS AND GLOBAL SOLVABILITY . . . 133

Therefore,

2
m∑

i,j=1,
i<j

|ūiūj |p+1
p+1 =

m∑
j=1

‖ūj‖2. (6.17)

It follows from (6.15) and (6.17) that

d(δ) ≤ 1

2
δ

1
p

(
1− δ

p+ 1

) m∑
j=1

‖ūj‖2. (6.18)

Since (ū1, . . . , ūm) is the minimizing element, we have

d = J(ū1, . . . , ūm) =
p

2(p+ 1)

m∑
j=1

‖ūj‖2

i.e.
m∑
j=1

‖ūj‖2 =
2(p+ 1)

p
d. (6.19)

It follows from (6.18) and (6.19) that

d(δ) ≤ 1

2
δ

1
p

(
1− δ

p+ 1

)
2(p+ 1)

p
d =

p+ 1− δ
p

δ
1
pd. (6.20)

Let (ν̄1, . . . , ν̄m) ∈ Nδ be the minimizing element of the functional J(u1, . . . , um),
i.e.

J(ν̄1, . . . , ν̄m) = min
(ν1,...,νm)∈Nδ

J(ν1, . . . , νm) = d(δ).

The parameter µ = µ(δ) is chosen so that

(µν̄1, . . . , µν̄m) ∈ N1, i.e. I1(µν̄1, . . . , µν̄m) = 0 (6.21)

Then,

µ = µ(δ) =


m∑
j=1
‖ν̄j‖2

2
m∑

i,j=1,
i<j

|ν̄iν̄j |p+1
(p+1)



1
2p

=

(
1

δ

) 1
2p

.

By the definition of d, we have

d ≤ J(µν̄1, . . . , µν̄m) =
1

2

(
1

δ

) 1
p

m∑
j=1

‖ν̄j‖2

− 1

p+ 1

(
1

δ

) p+1
p

m∑
i,j=1,
i<j

|ν̄iν̄j |p+1
(p+1) =

(
1

δ

) 1
p p

2(p+ 1)

m∑
j=1

‖ν̄j‖2. (6.22)

On the other hand,

J(ν̄1, . . . , ν̄m) =

(
1

2
− δ

2(p+ 1)

) m∑
j=1

‖ν̄j‖2.
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Hence we have
m∑
j=1

‖ν̄j‖2 =
2(p+ 1)

p+ 1− δ
J(ν̄1, . . . , ν̄m) =

2(p+ 1)

p+ 1− δ
· d(δ). (6.23)

From (6.22) and (6.23) it follows that

d ≤
(

1

δ

) 1
p p

p+ 1− δ
· d(δ),

i.e.

d(δ) ≥ p+ 1− δ
p

δ
1
pd. (6.24)

Comparing (6.20) and (6.24), we obtain that

d(δ) =
p+ 1− δ

p
δ

1
pd.
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