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DERIVATIVES OF TRIGONOMETRIC POLYNOMIALS AND

CONVERSE THEOREM OF THE CONSTRUCTIVE THEORY

OF FUNCTIONS IN MORREY SPACES

SADULLA Z. JAFAROV

Abstract. Let T denote the interval [−0, 2π] . In this work the rela-
tionship between the modulus of smoothness of derivatives of a func-
tion and the best approximation in Morrey space Lp,λ (T) , 0 < λ ≤ 2,
1 < p < ∞ , have been investigated. In addition, the theorems re-
lated to the derivatives of trigonometric polynomials in Morrey space
Lp,λ (T) , 0 < λ ≤ 2, 1 < p <∞, are proved.

1. Introduction and the main results

Let T denote the interval [0, 2π]. Let Lp(T), 1 ≤ p < ∞ be the Lebesgue
space of all measurable 2π−periodic functions defined on T such that

‖f‖p :=

∫
T

|f(x)|p dx

 1
p

<∞.

The Morrey spaces Lp,λ0 (T) for a given 0 ≤ λ ≤ 2 and p ≥ 1, we define as the
set of functions f ∈ Lploc (T) such that

‖f‖
Lp,λ0 (T) :=

sup
I

1

|I|1−
λ
2

∫
I

|f (t)|p dt


1
p

<∞,

where the supremum is taken over all intervals I ⊂ [0, 2π]. Note that Lp,λ0 (T) be-
comes a Banach spaces, λ = 2 coincides with Lp (T) and for λ = 0 with L∞ (T) .

If 0 ≤ λ1 ≤ λ2 ≤ 2, then Lp,λ10 (T) ⊂ Lp,λ20 (T) . Also, if f ∈ Lp,λ0 (T) , then
f ∈ Lp (T) and hence f ∈ L1 (T) . The Morrey spaces, were introduced by C. B.
Morrey in 1938. The properties of these spaces have been investigated intensively
by several authors and together with weighted Lebesgue spaces Lpω play an im-
portant role in the theory of partial equations, in the study of local behavior of
the solutions of elliptic differential equations and describe local regularity more
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precisely than Lebesgue spaces Lp. The detailed information about properties of
the Morrey spaces can be found in [13-15], [17], [26 ], [31], [32], [35], [37], [40],
[44] and [45].

In what follows by Lp,λ (T) we denote the closure of the linear subspace of

Lp,λ0 (T) functions, whose shifts are continuous in Lp,λ0 (T) . Suppose that x, h are
real, and let us take into account the following series

∆α
hf(x) :=

∞∑
k=0

(−1)k
(
α
k

)
f (x+ (α− k)h) , α > 0, f ∈ Lp,λ(T).

Then, by [36, Theorem 11, p.135] the last series converges absolutely almost
everywhere (a. e). on T. Hence the operator ∆α

h by [24] is bounded in the space

Lp,λ(T). Namely,

∆α
hf(x) =

∞∑
k=0

(−1)k
(
α
k

)
f (x+ (α− k)h) =

α∑
k=0

(−1)α−k
(
α
k

)
f (x+ kh) .

The function

ωαp,λ(f, δ) := sup
|h|≤δ

‖∆α
h (f, ·)‖Lp,λ(T) , α ∈ Z

+

is called α-th modulus of smoothness of f ∈ Lp,λ (T) , 0 ≤ λ ≤ 2 and p ≥ 1.
The modulus of smoothness ωαp,λ(f, δ)M has the following properties [24] :

1) ωαp,λ(f, δ) is an increasing function,

2) lim
δ→0

ωαp,λ (f, δ) = 0 for every f ∈ Lp,λ (T) , 0 ≤ λ ≤ 2 and p ≥ 1,

3) ωαp,λ (f + g, δ) ≤ ωαp,λ (f, δ) + ωαp,λ (g, δ) for f, g ∈ Lp,λ (T)

4) ωαp,λ(f, nδ) ≤ nαωαp,λ(f, δ), n ∈ N,
5) ωαp,λ(f, sδ) ≤ (s+ 1)α ωαp,λ(f, δ),

6)ωαp,λ(f, δ) ≤ [(n+ 1) δ + 1]α ωαp,λ(f, 1
n+1), n ∈ N

For f ∈ Lp,λ (T) , we define the derivative of f as a function g satisfying the
condition

lim
h→∞

∥∥∥∥1

h
(f(·+ h)− f(·))− g(·)

∥∥∥∥
Lp,λ(T)

= 0 (1.1)

and we write g = f ′.
We denote by En(f)Lp,λ(T)the best approximation of f ∈ Lp,λ(T) by trigono-

metric polynomials of degree not exceeding n, i.e.,

En(f)Lp,λ(T) = inf
{
‖f − Tn‖Lp,λ(T) : Tn ∈ Πn

}
,

where Πn denotes the class of trigonometric polynomials of degree at most n.
We use the constants c, c1, c2, ... (in general, different in different relations)

which depend only on the quantities that are not important for the questions of
interest.

The problems of approximation theory in the weighted and non-weighted Mor-
rey spaces have been investigated by several authors (see, for example, [6 ], [7],
[9], [18], [24], [25 ] and [34] ).

In this work the relationship between the modulus of smoothness of the deriva-
tives of the function and the best approximation in Morrey space Lp,λ (T) , 0 <
λ ≤ 2 and 1 < p < ∞ , have been investigated. In addition, the theorems
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related to the derivatives of the trigonometric polynomials in Morrey space
Lp,λ (T) , 0 < λ ≤ 2 and 1 < p <∞ are proved.

The similar problems in the different spaces were investigated in [1-5], [10],
[11], [16], [19-23], [27-30], [33], [38], [39], [42] and [43].

Our main results are the following.

Theorem 1.1. If f ∈ Lp,λ (T) , 0 < λ ≤ 2 and 1 < p <∞, and if the condition

∞∑
m=1

mr−1Em(f )p,λ <∞,

is fulfilled for some r ∈ Z+ . If Tn ∈ Πn is a near best approximation of f , then
has derivative of order r in the sense of (1.1) and the estimate

∥∥∥f (r) − T (r)
n

∥∥∥
Lp,λ(T)

≤ c1

nrEn(f)Lp,λ(T) +
∞∑

µ=n+1

µr−1Eµ(f)Lp,λ(T)

 .

holds with a constant c1 = c2 (p, λ, r) > 0 independent of n.

Corollary 1.1. If f ∈ Lp,λ (T) , 0 < λ ≤ 2 , 1 < p <∞ and the condition

∞∑
m=1

mr−1Em(f )Lp,λ(T)<∞,

is fulfilled for some r ∈ Z+, then f has the r − th derivative f (r) in the sense of
Lp,λ (T) and the estimate

ωαp,λ(f (r),
1

n
) ≤ c2

{
1

nα

n∑
ν=0

(ν + 1)(α+r)−1Eν (f)Lp,λ(T) +

∞∑
ν=n+1

νr−1Eν (f)
Lp,λ(T)

}

holds, where c2 = c2 (p, λ, α, r) > 0 is a constant independent of n.

Theorem 1.2. Let f ∈ Lp,λ (T) , 0 < λ ≤ 2 and 1 < p <∞ and Tn a sequence
of trigonometric polynomials of degree n satisfies the following conditions:

‖f − Tn‖Lp,λ(T) = o

(
1

n

)
and

∥∥g − T ′n∥∥Lp,λ(T) = o(1), n→∞.

Then we obtain f ′ = g, that is, the function g satisfies the condition (1.1).

Corollary 1.2. Let f, g1, ..., gk ∈ Lp,λ (T) , 0 < λ ≤ 2 and 1 < p < ∞ and
Tn be a sequence of trigonometric polynomials satisfying, for i = 1, ..., k , the
conditions

‖f − Tn‖
Lp,λ(T)

= o

(
1

nk

)
, ...n→∞,∥∥∥gi − T (i)

n

∥∥∥
Lp,λ(T)

= o

(
1

nk−1

)
, ...n→∞

Then we obtain gi = g′i−1 (f = g0)in the sense of (1.1).
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Theorem 1.3. Let f ∈ Lp,λ (T) , 0 < λ ≤ 2 and 1 < p < ∞, α, r ∈ Z+

(r > α > 0) and let Tn(f) ∈ Πn be the polynomial of best approximation to f in
Lp,λ (T) . In order that ∥∥∥T (r)

n (f)
∥∥∥
Lp,λ(T)

= O(nr−α)

it is necessary and sufficient that

En(f )Lp,λ(T)= O(n−α).

2. Proofs of main results

The following lemmas for the Morrey spaces f ∈ Lp,λ (T) , 0 < λ ≤ 2 and
1 < p <∞ play an important role in the proofs of the main results.

Lemma 2.1. [24] Let f ∈ Lp,λ (T) , 0 < λ ≤ 2 and 1 < p <∞.Then for every
α ∈ Z+ the inequality

En (f)
Lp,λ(T)

≤ c3ω
α
p,λ(f ,

1

n+ 1
)

holds with a constant c3 > 0 independent of n.

Lemma 2.2. [25] Let f ∈ Lp,λ (T) , 0 ≤ λ ≤ 2 and p ≥ 1. Then for each
trigonometric polynomial Tn of degree n, the inequality∥∥∥T (k)

n

∥∥∥
Lp,λ(T)

≤ c4nk ‖Tn‖Lp,λ(T) (2.1)

holds with a constant c4 independent of n.

Lemma 2.3. [25] Let f ∈ Lp,λ (T) , 0 < λ ≤ 2 and 1 < p < ∞. Then the
estimate

ωαp,λ(f,
1

n
) ≤ c5

nα

n∑
k=1

kα−1Ek (f)Lp,λ(T) , α ∈ Z
+, n = 1, 2, ...

holds with a const c5 = c5 (p, α, λ) > 0independent of n.

Proof of Theorem 1.1. There exist a sequence of trigonometric polynomils
{Tn}∞n=1 such that

‖f − Tn‖Lp,λ(T) = En(f)Lp,λ(T).

From the conditions of theorem the following expressions holds:

‖T2i − T2i−1‖Lp,λ(T) ≤ 2E2i−1(f)Lp,λ(T),

f = T1 +
∞∑
i=1

(T2i − T2i−1) =
∞∑
i=0

V2i

Now, we show that for j = 1, ..., r there exist the function ψj(x) ∈ Lp,λ (T)
such that

ψj(x) =

∞∑
i=0

V
(j)

2i
(x)

and
ψj(x) = f (j)(x).
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Using (2.1) for j = 1 we obtain∥∥∥∥f(·+ h)− f(·)
h

− ϕ1(·)
∥∥∥∥
Lp,λ(T)

≤

∥∥∥∥∥
∞∑
i=0

V2i(·+ h)− V2i(·)
h

−
∞∑
i=0

V ′2i(·)

∥∥∥∥∥
Lp,λ(T)

≤
n0∑
i=0

∥∥∥∥V2i(·+ h)− V2i(·)
h

− V ′2i(·)
∥∥∥∥
Lp,λ(T)

+
∞∑

i=n0+1

(∥∥∥∥V2i(·+ h)− V2i(·)
h

∥∥∥∥
Lp,λ(T)

+ ‖V2i‖Lp,λ(T)

)

≤
n0∑
i=0

∥∥∥∥V2i(·+ h)− V2i(·)
h

− V ′2i(·)
∥∥∥∥
Lp,λ(T)

+ c6

∞∑
i=n0+1

2iβ ‖V2i‖Lp,λ(T) . (2.2)

From the inequality (2.2) for h→ 0 and n ≥ n0 we have

f ′(x) = ψ1(x).

For j = 2, ..., n, to prove theorem we use the method of induction.
Taking (2.1) we have∥∥∥T (r)

n − f (r)
∥∥∥
Lp,λ(T)

≤
∥∥∥T (r)

n − T (r)
2m

∥∥∥
Lp,λ(T)

+

∞∑
i=m+1

∥∥∥T (r)

2i
− T (r)

2i−1

∥∥∥
Lp,λ(T)

≤ c7

{
nrEn(f)Lp,λ(T) +

∞∑
i=m+1

2irE2i−1(f)Lp,λ(T)

}
.

(2.3)

For i = 1, 2, ..., the following inequality holds:

2irE2i−1(f)Lp,λ(T) ≤ 22r
2i−1∑

µ=2i−2+1

µr−1Eµ(f)Lp,λ(T). (2.4)

Choosing m such that 2m−1 ≤ n < 2m, using (2.3) and (2.4) we obtain∥∥∥T (r)
n − f (r)

∥∥∥
Lp,λ(T)

≤ c8

{
nrEn(f)Lp,λ(T) +

∞∑
i=m+1

2riE2i−1(f)Lp,λ(T)

}

≤ c9

nrEn(f)Lp,λ(T) +

∞∑
µ=n+1

µr−1Eµ(f)Lp,λ(T)

 .

This completes the proof of Theorem 1.1.
Corollary 1.1 follows immediately from lemma 2.3 and theorem 1.1.
Proof of Theorem 1.2. We take ε > 0. We choose natural number n0 = n0(ε)

such that for n ≥ n0

‖f − Tn‖Lp,λ(T) ≤ ε
1

n
,

∥∥g − T ′n∥∥Lp,λ(T) ≤ ε. (2.5)
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Taking account of (2.5) for h satisfying the condition
√
ε
n ≤ h ≤

1
n we obtain∥∥∥∥f(·+ h)− f(·)

h
− T (·+ h)− Tn(·)

h

∥∥∥∥p
Lp,λ(T)

≤ 2
p
2 . (2.6)

Considering [12] we have

∆r
hTn(x) =

r∑
i=0

(
r
i

)
(−1)iTn

(
x+

(r
2
− i
)
h
)

=
∞∑
j=r

r∑
i=0

(
r
i

)
(−1)i

(r
2
− i
)j hj

j!
T (j)
n (x)

= hrT (r)
n (x) +

∞∑
j=r+1

η(r, j)j−rT (j)
n (x), (2.7)

where − r
2 < η(r, j) < r

2 and η(r, j) = 0 if j − r is odd. Then using (2.7) and

Lemma 2.2 for
√
ε
n ≤ h <

2
√
ε

n we find that∥∥∥∥Tn(·+ h)− Tn(·)
h

− T ′n(·)
∥∥∥∥p
Lp,λ(T)

≤
∞∑
m=2

(
hm−1

m!

)p ∥∥∥T (m)
n

∥∥∥p
Lp,λ(T)

≤
∞∑
m=2

(hn)(m−1)p ‖Tn‖pLp,λ(T)

≤ 4
ε

1− 2pεp/2
‖Tn‖pLp,λ(T) ≤ c12ε

p ‖Tn‖pLp,λ(T) . (2.8)

Using (2.6), (2.8) and (2.5) for
√
ε
n ≤ h <

2
√
ε

n we reach∥∥∥∥f(·+ h)− f(·)
h

− g
∥∥∥∥p
Lp,λ(T)

≤
∥∥∥∥f(·+ h)− f(·)

h
− Tn(·+ h)− Tn(·)

h

∥∥∥∥p
Lp,λ(T)

+

∥∥∥∥Tn(·+ h)− Tn(·)
h

− T ′n(·)
∥∥∥∥p
Lp,λ(T)

+
∥∥T ′n − g∥∥pLp,λ(T) ≤ c10 (εp/2 + εp ‖f‖p

Lp,λ(T) + εp
)
.

From the last inequality we have g = f ′ in the sense of (1.1). Then the proof of
Theorem 1.2 is completed.

Proof of Theorem 1.3. We suppose that

En(f)Lp,λ(T) = ‖f − Tn(f)‖Lp,λ(T) = O(n−α), (α > 0). (2.9)

We use the method of the proofs in [12] and [41] we can prove that∥∥∥T (r)

n (f)
∥∥∥
Lp,λ(T)

≤ c11nrωrp,λ(f,
1

n
) (2.10)

ωrp,λ(f,
1

n
) ≤ c12n−r

∥∥∥T (r)

n (f)
∥∥∥
Lp,λ(T)

(2.11)

Then applying ( 2.10), lemma 2.3 and relation (2.9) we obtain∥∥∥T (r)

n (f)
∥∥∥
Lp,λ(T)

≤ c13nr−α.
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Now we suppose that the relation∥∥∥T (r)

n (f)
∥∥∥
Lp,λ(T)

= O(nr−α) (2.12)

holds. By virtue of lemma 2.1, (2.11) and (2.12) we get

‖T2n(f)− Tn(T2n(f))‖Lp,λ(T) ≤ c14ω
r
p,λ(f,

1

n+ 1
)

≤ c15n−r
∥∥∥T (r)

2n (f)
∥∥∥
Lp,λ(T)

≤ c16n−r(nr−α) ≤ c17n−α.
(2.13)

On the other hand, since Tn(T2n(f)) is a polynomial of order n the following
inequality holds:

‖T2n(f)− Tn(T2n(f))‖Lp,λ(T) = ‖f − Tn(T2n(f))− (f − T2n(f))‖Lp,λ(T)
≥ ‖f − Tn(T2n(f))‖Lp,λ(T) − ‖f − T2n(f))‖Lp,λ(T)

≥ En(f)Lp,λ(T) − E2n(f)Lp,λ(T) ≥ 0. (2.14)

By (2.13) and (2.14) we obtain

0 ≤ En(f)Lp,λ(T) − E2n(f)Lp,λ(T) ≤ c18n−α. (2.15)

Since En(f)Lp,λ(T) → 0 the inequality (2.15) yields

∞∑
k=n0

{
E2k(f)Lp,λ(T) − E2k+1(f)Lp,λ(T)

}
≤ c19

∞∑
k=n0

2−kα.

Then from the last inequality we conclude that

E2n0 (f)Lp,λ(T) ≤ c202−n0α. (2.16)

Note that inequality (2.16) is equivalent to En(f)Lp,λ(T) ≤ c21(n−α).The theorem
is proved.
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