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GLOBAL BIFURCATION FROM INFINITY IN NONLINEAR

ONE DIMENSIONAL DIRAC PROBLEMS

HUMAY SH. RZAYEVA

Abstract. In this paper, we study the asymptotic bifurcation in nonlin-
ear eigenvalue problems for the one-dimensional Dirac equation. For an
asymptotically linear nonlinearity, we shows the existence of two fami-
lies of unbounded continua of solutions emanating from asymptotically
bifurcation points and having usual nodal properties near these points.

1. Introduction

We consider the nonlinear Dirac problem

`w(x) ≡ Bw′(x)− P (x)w(x) = λw(x) + g(x,w(x), λ), 0 < x < π, (1.1)

U1(w) := (sinα, cosα)w(0) = v(0) cosα+ u(0) sinα = 0, (1.2)

U2(w) := (sinβ, cosβ)w(π) = v(π) cosβ + u(π) sinβ = 0, (1.3)

where

B =

(
0 1
−1 0

)
, P (x) =

(
p(x) 0
0 r(x)

)
, w(x) =

(
u(x)
v(x)

)
,

where λ ∈ R is a spectral parameter, p(x), r(x) ∈ C([0, π];R), α and β are

real constants such that 0 ≤ α, β < π, and the nonlinear term g =

(
g1

g2

)
∈

C
(
[0, π]× R2 × R ; R2

)
satisfies the condition:

g(x,w, λ) = o(|w|) as |w| → ∞, (1.4)

uniformly with respect to x ∈ [0, π] and λ ∈ Λ for every compact interval Λ ⊂ R
(here | · | denotes a norm in R2).

It is obvious that Eq. (1.1) is equivalent to the system of two ordinary differ-
ential equations of first order

v′(x)− p(x)u(x) = λu(x) + g1(x, u(x), v(x), λ),
u′(x) + r(x)v(x) = −λv(x)− g2(x, u(x), v(x), λ).

(1.5)

In studying the global bifurcation of solutions from zero and infinity of nonlin-
ear eigenvalue problems for ordinary differential equations, the nodal properties
of the solutions is played an important role for detailed analysis of the structure
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and behavior of continua of solutions. The oscillation properties of the eigen-
functions of the ordinary differential operators were investigated in [1-3, 6, 7,
9, 11-16, 18-21, 29]). For the first time, in a recent paper [3], the oscillatory
properties of eigenvector-functions of the one-dimensional Dirac problem (1.1)-
(1.3) with g ≡ 0 were studied, where the number of zeros of the components of
eigenvector-functions were found.

If the nonlinear term g satisfies the condition

g(x,w, λ) = o(|w|) as |w| → 0, (1.6)

uniformly with respect to x ∈ [0, π] and λ ∈ Λ for every compact interval Λ ⊂ R,
then we can consider bifurcation from zero problem. This problem for the Sturm-
Liouville equation has been considered in [23] where the existence of two families
of unbounded continua of solutions, corresponding to the usual nodal properties
and emanating from the bifurcation points corresponding to the eigenvalues of
linear problem are proved. Further, nonlinearizable Sturm-Liouville problems
are studied in [8, 10, 25, 27] and the existence of two families of unbounded
components of the solutions set, having usual nodal properties and emanating
from bifurcation intervals of the line of trivial solutions are shown. The similar
results for nonlinear eigenvalue problems for ordinary differential equations of
fourth order were obtained in the papers [1, 2, 22].

If condition (1.4) hold, then we can consider bifurcation from infinity prob-
lem (or asymptotically bifurcation problem). Bifurcation from infinity problems
for Sturm-Liouville equation have been investigated in the works [10, 24, 25, 28,
30]. In these papers the authors show the existence of two families of unbounded
continua of solutions emanating from asymptotically bifurcation points and inter-
vals, and having the usual nodal properties in near of these points and intervals.
It should be noted that this problem for the nonlinear eigenvalue problems for
ordinary differential equations of fourth order, for the first time, completely in-
vestigated in recent paper [3].

In [5] using the oscillation properties of the linear problem (1.1)-(1.3) with g =
0 obtained in [4] and the global bifurcation technique from [23], the bifurcation
from zero problems for nonlinear Dirac equation was studied.

The purpose of this paper, is to study the global bifurcation of solutions from
infinity for asymptotically linear Dirac problems (1.1)-(1.3).

2. Preliminaries

It is known (see [19, Ch. I, § 10, 11]) that the linear one dimensional Dirac
eigenvalue problem

`w(x) = λw(x), 0 < x < π,

U(w) =

(
U1(w)
U2(w)

)
= 0,

(2.1)

has a sequence {λk}∞k=1 real and simple eigenvalues that take values from −∞ to
+∞ and can be numbered in increasing order.
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For each fixed λ ∈ C there exists a unique solution w(x, λ) =

(
u(x, λ)
v(x, λ)

)
of

equation
`w(x) = λw(x), 0 < x < π,

satisfying the initial condition

u(0, λ) = cosα, v(0, λ) = − sinα ; (2.2)

moreover, for each fixed x ∈ [0, π] the functions u(x, λ) and v(x, λ) are entire
functions of the argument λ (see [4] and [19, Ch. 1, § 1]).

We introduce the Prüfer angular variable θ(x, λ) = tan−1(v(x, λ)/u(x, λ)) (see
[6, Ch. 8, § 3]), or more precisely,

θ(x, λ) = arg{u(x, λ) + iv(x, λ)}. (2.3)

Taking account of relation (2.2), we define the initial value as

θ(0, λ) = −α. (2.4)

For the remaining values of x and λ, the function θ(x, λ) is given by (2.3) modulo
2π, since the functions u(x, λ) and v(x, λ) cannot vanish simultaneously. This
multiple of 2π is to be fixed so that θ(x, λ) satisfies (2.4) and is continuous in x
and λ. Since the (x, λ)-region, namely, 0 ≤ x ≤ π, −∞ < λ < +∞, is simply-
connected, this defines θ(x, λ) uniquely.

The problem (2.1) has the following oscillation properties.
Theorem 2.1. [4, Theorem 3.1] The eigenvalues λk, k ∈ Z, of the problem (2.1)
can be numbered in ascending order on the real axis

... < λ−k < ... < λ−1 < λ0 < λ1 < ... < λk < ... ,

so that the corresponding angular function θ(x, λk) at x = π satisfy the condition

θ(π, λk) = −β + kπ. (2.5)

The eigenvector-functions wk(x) = w(x, λk) =

(
u(x, λk)
v(x, λk)

)
=

(
uk(x)
vk(x)

)
, k ∈

Z, have, with a suitable interpretation, the following oscillation properties: if
k > 0 and k = 0, α ≥ β (except the cases α = β = 0 and α = β = π/2), then(

s(uk)
s(vk)

)
=

(
k − 1 + χ(α− π/2) + χ(π/2− β)

k − 1 + sgnα

)
, (2.6)

and if k < 0 and k = 0, α < β, then(
s(uk)
s(vk)

)
=

(
| k| − 1 + χ(π/2−α) + χ(β − π/2)

| k| − 1 + sgnβ

)
, (2.7)

where s(g) the number of zeros of the function g ∈ C([0, π] ; R) in the interval
(0, π) and

χ (x) =

{
0, if x ≤ 0,
1, if x > 0.

Let E = C
(
[0, π]; R2

)
∩ {w : U(w) = 0} to be the Banach space with the

usual norm ||w|| = max
x∈[0,π]

|u(x)|+ max
x∈[0,π]

|v(x)|. Let S be the subset of E given by

S = {w ∈ E : |u(x) + |v(x)| > 0, ∀x ∈ [0, π]}
with metric inherited from E.
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For each w =

(
u
v

)
∈ S we define θ(w, ·) to be continuous function on [0, π]

satisfying

θ(w, x) = arctan
v(x)

u(x)
, θ(w, 0) = −α.

By virtue of (2.4) and (2.5) we have

θ(wk, 0) = −α, θ(wk, π) = −β + kπ, k ∈ Z. (2.8)

Let Sνk , k ∈ Z, ν ∈ {+ , −}, denote the set of functions w ∈ S satisfying the
following conditions:

(i) θ(w, π) = −β + kπ;
(ii) if k > 0 or k = 0, α ≥ β (except the cases α = β = 0 and α = β = π/2),

then for fixed w, as x increases from 0 to π, the function θ cannot tend to a
multiple of π/2 from above, and as x decreases, the function θ cannot tend to
a multiple of π/2 from below; if k < 0 or k = 0, α < β, then for fixed w, as x
increases, the function θ cannot tend to a multiple of π/2 from below, and as x
decreases, the function θ cannot tend to a multiple of π/2 from above;

(iii) the function νu(x) is positive in a deleted neighborhood of x = 0.

Let S−k = −S+
k and Sk = S−k ∪ S

+
k . By (2.8) it follows Theorem 2.1 and [4,

Theorem 2.1] that wk ∈ Sk, k ∈ Z, i.e. the sets S−k , S
+
k and Sk are nonempty.

Moreover, if w(x) =

(
u(x)
v(x)

)
∈ Sk, k ∈ Z, then the number of zeros of functions

u(x) and v(x) are determined by (2.6) and (2.7) respectively and there functions
have only nodal zeros in (0, π).

From now on ν will denote an element of {+ , −} that is, either ν = + or
ν = −.

It follows from the definition of the sets Sνk , k ∈ Z, ν ∈ {+ , −}, that, there
sets are disjoint and open in E. Furthermore, if w ∈ ∂Sνk , then there exists a
point τ ∈ [0, π] such that |w(τ)| = 0, i.e. u(τ) = v(τ) = 0.
Lemma 2.1. [5, Lemma 2.8] If (λ,w) ∈ R×E is a solution of problem (1.1)-(1.3)
under condition (1.6) and w ∈ ∂Sνk , then w ≡ 0.
Theorem 2.2. [5, Theorem 3.1] Suppose that (1.6) holds. Then for each integer
k and each ν, there exists a continuum of solutions Cνk of problem (1.1)-(1.3) in
(R× Sνk ) ∪ {(λk, 0)} which meets (λk, 0) and ∞ in R× E.

3. Reducing problem (1.1)-(1.3) to an operator equation

As λ = 0 is not an eigenvalue of the linear problem (2.1), the problem (1.1)-
(1.3) can be converted to the equivalent integro-differential equation

w(x) = λ

π∫
0

K(x, t)w(t)dt+

π∫
0

K(x, t)g(t, w(t), λ)dt, (3.1)

where K(x, t) = K(x, t, 0) is the appropriate Green’s matrix (see [19, Ch. 1,
formula (13.8)]).
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Let

Lw(x) =

π∫
0

K(x, t)w(t)dt, (3.2)

G(λ,w(x)) =

π∫
0

K(x, t)g(t, w(t), λ)dt. (3.3)

The Green matrix K(x, t) is continuous in [0, π; 0, π] everywhere except on the
diagonal x = t, where it has a jump K(x, x+0)−K(x, x−0) = B. Then L : E →
E is compact and linear, and all all characteristic values of L are real and simple
(which coincide with the eigenvalues of the linear problem (2.1)). The operator
G can be represented as a composition of a operator L and the superposition
operator g(λ,w)(x)) = g(x,w(x), λ). Since g(x,w, λ) ∈ C

(
[0, π]× R2 × R ; R2

)
,

then the operator g maps R×E to C
(
[0, π]; R2

)
. Hence the operator G : R×E →

E is continuous.
By virtue of (3.1)-(3.3) problem (1.1)-(1.3) can be written in the following

equivalent form

w = λLw +G(λ,w). (3.4)

Lemma 3.1. The operator G : R× E → E is satisfies the following condition

G(λ,w) = o(||w||) as ||w|| → ∞, (3.5)

uniformly on bounded λ intervals.
Proof. Let Λ ⊂ R be a bounded interval and fix ε > 0. It follows from (1.4) that
there exists ∆ε > 0 such that

|g(x,w, λ)| < ε|w|, x ∈ [0, π], w ∈ R2, |w| > ∆ε, λ ∈ Λ. (3.6)

Moreover, since g ∈ C
(
[0, π]× R2 × R ; R2

)
it follows that there exists K > 0

such that

|g(x,w, λ)| ≤M, x ∈ [0, π], w ∈ R2, |w| ≤ ∆ε, λ ∈ Λ. (3.7)

Choosing ∆1, ε > ∆ε so large that M
∆1,ε

< ε and choosing w ∈ E so that

||w|| ≥ ∆1, ε. Then, by virtue of (3.6) and (3.7), we have the following estimate:

||G(λ,w)|| =

max
x∈[0,π]

∣∣∣∣ π∫
0

{K11(x, t)g1(t, w(t), λ) +K12(x, t)g2(t, w(t), λ)} dt
∣∣∣∣+

max
x∈[0,π]

∣∣∣∣ π∫
0

{K21(x, t)g1(t, w(t), λ) +K22(x, t)g2(t, w(t), λ)} dt
∣∣∣∣ ≤

c

{ ∫
|w(x)| ≤∆ε

|g(t, w(t), λ)| dt+
∫

|w(x)| >∆ε

|g(t, w(t), λ)|dt

}
≤

cπ {M + ε||w||} ≤ cπ {ε∆1, ε + ε||w||} < 2cπε||w||,

(3.8)
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where Ki,j(x, t), i, j = 1, 2, are components of the Green matrix K(x, t) and

c = max

{
sup

(x,t)∈Π
K11(x, t), sup

(x,t)∈Π
K12(x, t), sup

(x,t)∈Π
K21(x, t), sup

(x,t)∈Π
K22(x, t)

}
,

Π = [0, π; 0, π].

Thus it follows from (3.8) that for any ε > 0 there exists ∆1, ε > 0 such that

||G(λ,w)||
||w||

< 2cπε for any λ ∈ Λ and ||w|| > ∆1, ε,

which implies (3.5). The proof of this lemma is complete.
Let B̄r = {w ∈ E : ||w|| ≤ r}.

Lemma 3.2. The operator

G̃ : (λ,w)→ ||w||2G
(
λ,

w

||w||2

)
is compact.
Proof. Let ε > 0 be fixed. Note that || w

||w||2 || =
1
||w|| ≥ ∆1, ε if ||w|| ≤ 1

∆1, ε
. Then,

by virtue of (3.8), we have

||G̃(λ,w)|| = ||w||2
∥∥∥∥G(λ, w

||w||2

)∥∥∥∥ ≤ 2cπε||w|| for any (λ,w) ∈ Λ× B̄∆1, ε .

Consequently, the set G̃(Λ, B̄∆1, ε) is bounded in E. By (3.1) w̃ = G̃(λ,w) satisfies
the equation

`w̃(x) = λw(x) +G(x,w(x), λ), 0 < x < π.

Solving this equation for w̃′ we get uniform bounds for first derivatives of w̃ in
Λ× B̄∆1, ε . Thus operator G̃ is compact by virtue of Arzelà-Ascoli theorem. The
proof of this lemma is complete.
Remark 3.1. We extend G̃ to w = 0 by setting G̃(λ, 0) = 0. Then G̃ : R×E → E
is continuous.
Remark 3.2. If (λ,w) ∈ R × E is a solution of problem (1.1)-(1.3) under
condition (1.4) and w ∈ ∂Sνk , then it does not follow that w ≡ 0.

4. Asymptotically global bifurcation of problem (1.1)-(1.3)

In this section we consider problem (1.1)-(1.3) under condition (1.4).
Theorem 4.1 For each for each integer k and each ν there exists a continua
Dν
k of solutions of problem (1.1)-(1.3) which meets (λk,∞) and has the following

properties:
(i) there exists a neighborhood Vk of (λk,∞) in R × E such that Vk ∩ Dν

k ⊂
R× Sνk ;

(ii) either Dν
k meets (λ′k,∞) respect to the set R×Sν′k′ for some (k′, ν ′) 6= (k, ν),

or Dν
k meets (λ, 0) for some λ ∈ R, or Dν

k has an unbounded projection on R.
Proof. Recall that the problem (1.1)-(1.3) is equivalent to the problem (3.4).
Since the characteristic values of L are real and simple, it follows from [17, Ch. 4, §
3, Theorem 3.1] that for each k ∈ Z the point (λk,∞) is an asymptotic bifurcation
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point of problem (1.1)-(1.3) and this point corresponds to the continuous branch
Dk of solutions going to infinity.

Let F denote the set of solutions of problem (1.1)-(1.3) (or (3.4)). Assume
that (λ,w) ∈ F with ||w|| 6= 0. Setting w̃ = w

||w||2 and dividing (3.4) by ||w||2
yields the equation

w̃ = λLw̃ + G̃(λ, w̃). (4.1)

Since G(λ,w) = o(||w||) as ||w|| → ∞ by (3.5) (see Lemma 2.2) uniformly on
bounded λ intervals, it follows that

G̃(λ, w̃) = o(||w̃||) as ||w̃|| → 0, (4.2)

uniformly on bounded λ intervals.
Note that by virtue of (3.5) and (4.2) the transformation

(λ,w)→ T (λ,w) = (λ, w̃)

turns a ”bifurcation at infinity” problem (3.4) into a ”bifurcation from zero”
problem (4.1).

Let F̃ ⊂ R × E be the set of nontrivial solutions of problem (4.1). It follows

from [23, Theorem 1.3] that for each k ∈ Z there exists a continuum D̃k of F̃
such that (λk, 0) ∈ F̃ and either (i) D̃k meets infinity in R×E, or (ii) D̃k meets
(λs, 0), where s 6= k. But in view of Remark 3.2, the statement of Theorem 2.2
does not hold for problem (4.1). While it follows from the proof of [23, Theorem

2.3] that D̃k is decompose into two subcontinua D̃+
k and D̃−k which meet (λk, 0)

and have the following properties:
(a) there exists a neighborhood Ṽk of (λk, 0) in R×E such that Ṽk∩D̃ν

k ⊂ R×Sνk
for each ν ∈ {+ , −};

(b) either D̃ν
k ∩ D̃ν′

k′ 6= ∅ for some (k′, ν ′) 6= (k, ν), or D̃ν
k meet infinity in R×E.

By construction we have T (F) = F̃ and T (Dk) = D̃k. Let Dν
k is the inverse

image T−1(D̃ν
k) of D̃ν

k under the transformation T . Then we have Dk = D+
k ∪D

−
k

and from the properties (a) and (b) of the sets D̃ν
k , k ∈ Z, ν ∈ {+ , −}, it follows

that Dν
k has by properties (i)-(ii) (the second and third parts of alternative (ii)

correspond to the various ways in which D̃ν
k can be unbounded). The proof of

this theorem is complete.
Remark 4.1. As can be seen from Theorem 4.1 for bifurcation from infinity,
unlike the Theorem 2.2 for bifurcation from zero, it need not be the case that

Dν
k ⊂ (R× Sνk ) ∪ {(λk,∞)}.

It should be noted that if conditions (1.4) and (1.6) both hold then we can
strengthen Theorems 2.2 and 4.1 in the following way.
Theorem 4.2 If conditions (1.4) and (1.6) both hold, then for each integer k
and each ν we have Dν

k ⊂ (R× Sνk ) ∪ {(λk,∞)}, and alternative (i) of Theorem
4.1 cannot hold. Moreover, if Dν

k meets (λ, 0) for some λ ∈ R, then λ = λk.
Similarly, if Cνk meets (λ,∞) for some λ ∈ R, then λ = λk.
Proof. If condition (1.6) holds, then it follows from Lemma 2.1 that F ∩ (R ×
∂Sνk ) = ∅. Consequently, the sets F ∩ (R × Sνk ) and F\(R × Sνk ) are mutually
separated in R×E (see, for example, [31]). Thus by virtue of [31, Corollary 26.6]
any component of the set F must be a subset of F ∩ (R × Sνk ) or F\(R × Sνk ).
Since Dν

k\{(λk,∞)} is a component of F which intersect R× Sνk , it follows that
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this component must be a subset of R×Sνk , i.e. Dν
k ⊂ (R×Sνk )∪{(λk,∞)}. This

shows that alternative (i) of Theorem 4.1 cannot be satisfied.
Now let Dν

k meets (λ, 0) for some λ ∈ R. Then there exists a sequence

{(λk,n, wk,n)}∞n=1 ⊂ Dν
k such that λk,n → λ̂ and ||wk,n|| → 0 as n → ∞. Set-

ting ŵk,n =
wk,n

||wk,n|| and dividing the equality

wk,n = λk,nLwk,n +G(λk,n, wk,n)

by ||wk,n|| we have

ŵk,n = λk,nLŵk,n +
G(λk,n, wk,n)

||wk,n||
. (4.3)

Since the condition (1.6) holds it follows from [1, formula (2.23)] that G also
satisfies the following condition

G(λ,w) = o (||w||) as ||w|| → 0, (4.4)

uniformly on bounded λ intervals. Due to the compactness of the operator L and
relation (4.4), we can assume that ŵk,n → ŵ in E as n→∞. Then, taking into
account (4.4) and passing to the limit (as n→∞) in (4.3), we obtain

ŵ = λ̂Lŵ.

Since ||ŵ|| = 1 and ŵ ∈ Sνk = Sνk ∪ ∂Sνk it follows from Lemma 2.1 that ŵ ∈ Sνk .

Then by virtue of Theorem 2.1 we have λ̂ = λk.
It is similarly proved that, if Cνk meets (λ,∞) for some λ ∈ R, then λ = λk.

The proof of this theorem is complete.
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