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EXISTENCE AND UNIQUENESS OF THE SOLUTIONS TO

IMPULSIVE NONLINEAR INTEGRO-DIFFERENTIAL

EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS

MISIR J. MARDANOV, YAGUB A. SHARIFOV, AND FARAH M. ZEYNALLI

Abstract. In the paper a system of ordinary impulsive integro-differential
equations with nonlocal conditions is studied. At first the boundary
value problem is reduced to the equivalent integral equation. Then,
using the theorem on fixed points, the condition on the existence and
uniqueness of the solution of the boundary value problem is obtained.
Continuous dependence of the solutions on the right hand side of bound-
ary conditions is also set up.

1. Introduction

A lot of problems of physics, engineering, biology and economy are described
by differential and integro-differential equations whose solutions are the functions
with first kind discontinuities at fixed and unfixed moments of time. Such dif-
ferential equations were studied rather well in [6,8,9,12,13,15-17] and they were
called impulsive differential equations. In the above mentioned papers, mainly
the differential equations with local conditions are studied. However, the last
years there is a great interest to impulsive differential and integro-differential
equations with nonlocal boundary conditions, by which a number of practical
processes are described.

Today, there exist a great number of works devoted to ordinary impulsive
differential and integro-differential equations with nonlocal boundary conditions
in which the theorem on the existence of solutions are proved for different types
of nonlocal conditions [3-8,11,13,18-22].

Integral boundary conditions have applications in numerous fields such as mod-
eling and analyzing of many physical systems including blood flow problems,
chemical engineering, thermoelasticity, underground water flow, population dy-
namics and etc. For more details of integral boundary conditions, see [1,13,14]
and references therein.

Note that numerical methods for multipoint and integral boundary problems
for first-order ordinary differential equations were developed in [1,2].
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In the present paper we study a nonlocal boundary value problem for the sys-
tem of impulsive ordinary integro-differential equations whose boundary condi-
tions include pointwise and integral terms. It should be noted that the boundary
value problem under consideration is rather general. In special cases it covers the
Cauchy problem and “pure” integral condition. The existence and uniqueness of
the solution of the boundary value problem and also continuous dependence of
the solution on the right hand side of boundary conditions, is studied.

2. Problem statement

We study existence and uniqueness of the solution of the system of integro-
differential equations

ẋ(t) = f(t, x(t),

t∫
0

g (t, s, x (s)) ds), t ∈ [0, T ] , t 6= ti, i = 1, 2, ..., p, (2.1)

with nonlocal boundary conditions

Ax(0) +

T∫
0

n (t)x (t) dt = B, (2.2)

under the impulse actions

x(t+i )− x(ti) = Ii(x(ti)), i = 1, 2, ..., p, (2.3)

where 0 = t0 < t1 < ... < tp < tp+1 = T, A ∈ Rn×n, n (t) ∈ Rn×n are the given

matrices, and det N 6= 0, N = A +
T∫
0

n (t) dt; f : [0, T ] × Rn → Rn, g : [0, T ] ×

[0, T ]×Rn → Rn, Ii : Rn → Rn are the given functions; ∆x(ti) = x(t+i )−x(t−i ),

where x(t+i ) = lim
h→0+

x(ti + h), x(t−i ) = lim
h→0+

x(ti − h) = x(ti) are the right and

left hand limits of the function x(t) at the point t = ti, respectively.

3. Auxiliary facts

We give some definitions and auxiliary facts that will be used in the sequel. By
C ([0, T ] : Rn) we will denote the Banach space consisting of continuous vector
functions x(t) determined on the interval [0, T ] , with the values in Rn and with
the norm ‖x‖ = max

[0,T ]
|x(t)| , where | · | denotes the norm in Rn.

By PC ([0, T ] , Rn) we denote the linear space

PC ([0, T ] , Rn) = {x : [0, T ]→ Rn; x(t) ∈ C ((ti, ti+1] , R
n) ,

i = 0, 1, ..., p; x(t+i ) and x(t−i ), i = 1, 2, ..., p exist and are finite; x(t−i ) = x(ti)}.
Obviously, the linear space PC ([0, T ] ; Rn) is Banach with the norm

‖x‖Pc = max
{
‖x‖C((ti,ti+1])

, i = 0, 1, ..., p
}
.

We determine the solution of the boundary value problem (2.1)-(2.3) in the fol-
lowing way.
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Definition 3.1. The function x(t) ∈ PC ( [0, T ] : Rn) is said to be the solution
of boundary value problem (2.1) - (2.3) if for any t ∈ [0, T ] , t 6= ti, i = 1, 2, ..., p,

ẋ(t) = f(t, x(t),

t∫
0

g (t, s, x (s)) ds)

and for t = ti i = 1, 2, ..., p 0 < t1 < t2 < ... < tp < T

∆x(ti) = x(t+i )− x(ti) = Ii(x(ti)).

In addition, the function x(t) satisfies the boundary condition (2.2).
We introduce the following function:

K(t, τ) =


N−1(A+

∫ t
0 n (τ) dτ), 0 ≤ τ ≤ t,

−N−1
T∫
t

n (τ) dτ, t < τ ≤ T.

Lemma 3.1. Let y ∈ C ([0, T ] ; Rn) ai ∈ Rn i = 1, 2 , ..., p. Then the
differential equation

ẋ(t) = y (t) (3.1)

with impulse actions

x(t+i )− x(ti) = ai, i = 1, 2, ..., p; 0 < t1 < t2 < ... < tp < T, (3.2)

and nonlocal conditions

Ax(0) +

T∫
0

n (t)x (t) dt = B (3.3)

has a unique solution x(t) ∈ PC ( [0, T ] , Rn) and is expressed by the following
formula

x(t) = N−1B +

T∫
0

K(t, τ) y(τ) dτ +
∑

0<ti<t

K(t, ti) ai (3.4)

for t ∈ (ti, ti+1] , i = 0, 1, ... , p.

Proof. Let the function x(t) ∈ PC ( [0, T ] , Rn) be the solution of boundary value
problem (3.1) - (3.3). Then integrating equation (3.1) on the interval t ∈ (0, ti+1),
we get

t∫
0

y(s)ds =

t∫
0

ẋ(s)ds =

=
[
x(t1)− x(0+)

]
+
[
x(t2)− x(t1

+)
]

+ ... +
[
x(t)− x(ti

+)
]

=

= −x(0)−
[
x(t1

+)− x(t1)
]
−
[
x(t2

+)− x(t2)
]
− ...−

−
[
x(ti

+)− x(ti)
]

+ x(t).

Taking condition (3.2) into account in the last equality, we obtain

x(t) = x(0) +

t∫
0

y(s)ds+
∑

0<ti<t

ai. (3.5)
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Now we require that the function x(t) ∈ PC ( [0, T ] , Rn) determined by equal-
ity (3.5) satisfy the boundary condition (3.3)A+

T∫
0

n (t) dt

 x(0) = B −
T∫
0

n (t)

t∫
0

y (s) dsdt−
T∫
0

n (t)
∑

0<ti<t

aidt. (3.6)

As det N 6= 0, from (3.6) we have

x(0) = N−1

B − T∫
0

n (t)

t∫
0

y (s) dsdt−
T∫
0

n (t)
∑

0<ti<t

aidt

 . (3.7)

The value of x(0) determined by equality (3.7), is taken into account in equality
(3.5). Then

x(t) = N−1

B − T∫
0

n (t)

t∫
0

y (s) dsdt−
T∫
0

n (t)
∑

0<ti<t

aidt

+

+

t∫
0

y (s) ds+
∑

0<ti<t

ai. (3.8)

As we have the equalities

T∫
0

n (t)

t∫
0

y (s) dsdt =

T∫
0

T∫
t

n (s) dsy (t) dt,

T∫
0

n (t)
∑

0<ti<t

aidt =
∑

0<ti<T

T∫
ti

n (t) dtai,

then from (3.8) we get

x(t) = N−1B −N−1
T∫
0

T∫
t

n (s) dsf (t) dt−

−N−1
∑

0<ti<t

T∫
ti

n (t) dtai +

t∫
0

y (s) ds+
∑

0<ti<t

ai. (3.9)

Here we perform some simplications. Obviously, the following equalities hold:

t∫
0

y (s) ds−N−1
T∫
0

T∫
t

n (s) dsy (t) dt =

= N−1
t∫

0

A+

τ∫
0

n (s) ds

 y (τ) dτ −N−1
T∫
t

T∫
τ

n (s) dsy (τ) dτ, (3.10)
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∑
0<ti<t

ai −N−1
∑

0<ti<T

T∫
ti

n (t) dtai =

= N−1
∑

0<ti<t

A+

ti∫
0

n (t) dt

 ai −
∑

t<ti+1<T

N−1
T∫
ti

n (t) dtai. (3.11)

Taking into account (3.10) and (3.11) in (3.9), we get formula (3.4). �

Remark. The validity of the following statements follows from formula (3.4):
(i) The constant vector-function x (t) = N−1B is the solution of the differential

equation

ẋ(t) = 0

with non-local conditions

Ax(0) +

T∫
0

n (t)x (t) dt = B.

(ii) The function x(t) =
∫ T
0 K(t, s) y(s) d(s) is the solution of the differential

equation

ẋ(t) = y(t)

with non-local condition

Ax(0) +

T∫
0

n (t)x (t) dt = 0.

Here the matrix of the function K(t, s) is the Green function of the given
problem.

(iii) The piecewise-constant function

x(t) =
∑

0<ti<t

K(t, ti) ak, i = 1, 2, ..., p,

is the solution of the differential equation

ẋ(t) = 0

with impulse actions

x(ti
+)− x(ti) = ai, i = 1, 2, ..., p.

and the boundary condition

Ax(0) +

T∫
0

n (t)x (t) dt = 0.

Lemma 3.2. Assume that f ∈ C ([0, T ]×Rn ×Rn, Rn) and Ii(x) ∈ C(Rn).Then
the function x(t) ∈ PC ( [0, T ] , Rn) is the solution of boundary value problem
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(2.1) - (2.3) if ad only if the function x(t) ∈ PC ( [0, T ] , Rn) is the solution of
the integral equation with impulse actions

x(t) = N−1B +

T∫
0

K(t, s) f(s, x(s),

s∫
0

g (s, τ, x (τ)) dτ) ds+

+
P∑
i=1

K(t, ti) Ii(x(ti)), (3.12)

for t ∈ (ti, ti+1), i = 0, 1, ..., p.

Proof. Let x(t) ∈ PC ( [0, T ] , Rn) be the solution of the boundary value problem.
Then similarly to lemma 1, we can show that the function x(t) ∈ PC ( [0, T ] , Rn)
satisfies the integral equation (3.12).

The inverse is also true. By direct calculations we can be convinced that the
solution of integral equation (3.12) satisfies equation (2.1), boundary condition
(2.3) and also impulse conditions (2.2) as well. �

The lemma is proved.

4. Main results

The first main result of this section is based on the Banach fixed point principle.
The theorem on the existence and uniqueness of the solution of boundary value
problem (2.1) - (2.3) was proved based on this principle.

Theorem 4.1. Assume that the following conditions are fulfilled:
(H1) There exist constants M1 ≥ 0 and M2 ≥ 0 such that

|f(t, x, y)− f(t, x̄, ȳ)| ≤M1 (|x− x̄|+ |y − ȳ|) ,
|g(t, s, x)− g(t, s, y)| ≤M2 |x− y| ,

for any t ∈ [0, T ] and for all (x, y) ∈ R2n and (x̄, ȳ) ∈ R2n;
(H2) There exist constants li ≥ 0, i = 1, 2, ..., p such that

|Ii(x)− Ii(y)| ≤ li |x− y|
for any x, y ∈ Rn.

If

L = S

(
M1T

(
1 +

M2T

2

)
+

P∑
k=1

lk

)
< 1, (4.1)

the boundary value problem (2.1) – (2.3) has a unique solution.
Here the number S is determined by the equality

S = max
0≤t,s≤T

‖K(t, s)‖ .

Proof. For the proof we use the Banach fixed point principle.
Let us define the operator F : PC ([0, T ] ; Rn) → PC ([0, T ] × Rn) from the

relation

(Fx) (t) = N−1B +

T∫
0

K(t, s) f(s, x(s),

s∫
0

g (s, τ, x (τ)) dτ) ds+
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+

P∑
k=1

K (t, tk) Ik (x (tk)) (4.2)

for t ∈ (ti, ti+1), i = 0, 1, 2, ..., p.
Obviously, the fixed points of the operator F are the solutions of boundary

value problem (2.1) - (2.3). By means of the compressive operators principle we
show that the operator F determined by equality (4.2) has a unique fixed point.

Let x, y ∈ PC ([0, T ] ; Rn) be any fixed elements. Then for any t ∈ (ti, ti+1]
we have

|F (x)(t)− F (y)(t)| ≤

≤
T∫
0

|K(t, s)|·

∣∣∣∣∣∣f(s, x(s),

s∫
0

g (s, τ, x (τ)) dτ)− f(s, y(s),

s∫
0

g (s, τ, y (τ)) dτ)

∣∣∣∣∣∣ ds+
+

P∑
k=1

|K(ti, tk)| · |Ik(x(tk))− Ik(y(tk))| .

Using conditions (H1), (H2), from the last inequality we obtain

|F (x)(t)− F (y)(t)| ≤

≤ SM1

T∫
0

|x (t)− y (t)|+

∣∣∣∣∣∣
t∫

0

g (t, s, x (s)) ds−
∫ t

0
g (t, s, y (s)) ds

∣∣∣∣∣∣
 dt+

+S
P∑
k=1

lk |x(tk))− y(tk)| ≤

≤ SM1

{
T ‖x− y‖+M2

T 2

2
‖x− y‖

}
+ S

P∑
k=1

lk |x(tk))− y(tk)| .

We can rewrite this inequality in the form

|F (x)(t)− F (y)(t)| ≤

[
S

(
M1T

(
1 +

M2T

2

)
+

P∑
k=1

lk

)]
× ‖x− y‖PC

Thus,
‖F (x)(t)− F (y)(t)‖ ≤ L ‖x− y‖PC .

Here, taking into account condition (4.1) we obtain that the operator F is
compressive. According to the fixed point principle, we can conclude that the
operator F has a unique fixed point. This is equivalent to the fact that nonlocal
boundary value problem (2.1) - (2.3) has a unique solution. �

The theorem is proved.
The second result of the section is devoted to establishing the existence of

solutions of boundary value problem (2.1) - (2.3) that is based on Schaefer’s fixed
point.

Theorem 4.2. Suppose that the following conditions are fulfilled:
(H3) The function f : [0, T ]×Rn ×Rn → Rn is continuous and there exists a

constant N1 > 0 such that
|f(t, x, y)| ≤ N1
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for all t ∈ [0, T ] and (x, y) ∈ R2n;
(H4) The functions Ik : Rn → Rn are continuous and there exists a constant

N2 > 0 such that
max

k∈{1,2,...,P}
|Ik(x)| ≤ N2.

Then boundary value problem (2.1)-(2.3) has at least one solution on [0, T ].

Proof. Show that under the above conditions, the operator F (x)(t) determined
by equality (4.2) has fixed points. This will be done after certain steps. �

Step 1. Under the conditions of the theorem, the operator F is continuous in
PC ([0, T ] ;Rn) . Let {xn} be a functional sequence in space PC ([0, T ] ;Rn) and
xn → x, x ∈ PC ([0, T ] ;Rn). Then for any t ∈ [ti, ti+1] , and i = 0, 1, ..., p

|F (xn)(t)− F (x)(t)| ≤
T∫
0

|K(t, s)| ×

×

∣∣∣∣∣∣f(s, xn(s),

s∫
0

g (s, τ, xn (τ)) dτ)− f(s, x(s),

s∫
0

g (s, τ, x (τ)) dτ)

∣∣∣∣∣∣ ds+
+

P∑
k=1

|K(t, tk)| · |Ik(xn(tk))− Ik(x(tk))| .

Here taking into account conditions (H3), (H4), we have:

|F (xn)(t)− F (x)(t)| ≤

≤ ST max
s∈[0,T ]

∣∣∣∣∣∣f(s, xn(s),

s∫
0

g (s, τ, xn (τ)) dτ)− f(s, x(s),

s∫
0

g (s, τ, x (τ)) dτ)

∣∣∣∣∣∣ +

+S
P∑
k=1

|Ik(xn(tk))− Ik(x(tk))| .

Since the functions f, g and Ik, k = 1, 2, ..., p, are continuous, we have

‖F (xn)(t)− F (x)(t)‖PC → 0

as n→∞.
Step 2. The mapping F is bounded in space PC ([0, T ] ;Rn). This is equiv-

alent to the fact that we should show that for any η > 0 there exists l > 0 such
that for any

x ∈ Bη = {x ∈ PC ([0, T ] ;Rn) : ‖x‖ ≤ η}
there is

‖F (x(·))‖ ≤ l.
Applying the triangle inequality and using the assumptions (H3) and (H4), for

t ∈ (ti, ti+1], we get
|F (x)(t)| ≤

≤
T∫
0

|K(t, s)| ·

∣∣∣∣∣∣f(s, x(s),

s∫
0

g (s, τ, x (τ)) dτ)

∣∣∣∣∣∣ ds+
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+

P∑
i=1

|K(t, ti)| · |Ii(x(ti))|+
∥∥N−1B∥∥ .

Thus,

|F (x)(t)| ≤
∥∥N−1B∥∥+ S [TN1 + pN2] = l.

Step 3. The operator F maps the bounded set into equicontinuous subset of
the space PC ([0, T ] , Rn). Let τ1, τ2 ∈ (ti, ti+1] and τ1 < τ2. Bη be a bounded
set in step 2 and let x ∈ Bη. Then we have:

F (x)(τ2)− F (x)(τ1) =

= N−1
τ2∫
0

A+

s∫
0

n (τ) dτ

 f(s, x(s),

s∫
0

g (s, τ, x (τ)) dτ) ds−

−N−1
T∫

τ2

T∫
s

n (τ) dτf(s, x(s),

s∫
0

g (s, τ, x (τ)) dτ)ds−

−N−1
τ1∫
0

A+

s∫
0

n (τ) dτ

 f(s, x(s),

s∫
0

g (s, τ, x (τ)) dτ) ds+

+N−1
T∫

τ1

T∫
s

n (τ) dτf(s, x(s),

s∫
0

g (s, τ, x (τ)) dτ) ds

= N−1
τ2∫
τ1

A+

s∫
0

n (τ) dτ

 f(s, x(s),

s∫
0

g (s, τ, x (τ)) dτ) ds+

+N−1
τ2∫
τ1

T∫
s

n (τ) dτf(s, x(s),

s∫
0

g (s, τ, x (τ)) dτ )ds =

=

τ2∫
τ1

f(s, x(s),

s∫
0

g (s, τ, x (τ)) dτ )ds.

Hence

|F (x)(τ1)− F (x)(τ2)| ≤
τ2∫
τ1

∣∣∣∣∣∣f(s, x(s),

s∫
0

g (s, τ, x (τ)) dτ)

∣∣∣∣∣∣ ds
As τ1 → τ2, the right hand side of the preceding inequality tends to zero. Taking
into account that the mapping F is continuous and equivalently continuous, we
conclude that the mapping

F : PC ([0, T ] , Rn)→ PC ([0, T ] , Rn)

is completely continuous.
Step 4. Show that the set

∆ = {x ∈ PC ([0, T ] , Rn) : x = λF (x)},
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for some 0 < λ < 1 is bounded. Let for some 0 < λ < 1 the equality x = λ (Fx)
be fulfilled. Then for any t ∈ (ti, ti+1] , i = 0, 1, ..., p, we have

x(t) =

= λ

N−1B +

T∫
0

K(t, s)f(s, x(s),

s∫
0

g (s, τ, x (τ)) dτ)ds+

P∑
k=1

K(ti, tk)In (x(tk))

 .
Hence, taking into account assumptions (H3) and (H4) (as in step 2) for any

t ∈ [0, T ] we have

|F (x)(t)| ≤ [N1T + pN2] S +
∥∥N−1B∥∥ .

Consequently, we have

‖x‖PC ≤
∥∥N−1B∥∥+ [N1T + pN3]S = R.

This shows that the set ∆ is bounded. So, all the conditions of Schauffer’s fixed
point theorem are fulfilled. Hence it follows that the operator F has fixed points
that are the solutions of boundary value problem (2.1)-(2.3).

The theorem is proved.
Now we show continuous dependence of solutions of problem (2.1)-(2.3) on the

right hand side of (2.2).
Theorem 4.3. Let conditions (H1), (H2) be fulfilled, and L < 1.Then for any

B1, B2 ∈ Rnand for appropriate solutions x1, x2 of the following boundary value
problems

ẋj(t) = f(t, xj(t),

t∫
0

g (t, s, xj (s)) ds), t ∈ [0, T ] , t 6= ti, i = 1, 2, ..., p, (4.3)

Axj(0) +

T∫
0

n (t)xj (t) dt = Bj , (4.4)

xj(t
+
i )− xj(ti) = Ii(xj(ti)), i = 1, 2, ..., p, j = 1, 2, (4.5)

the estimation

‖x1 (t)− x2 (t)‖ ≤ (1− L)−1
∥∥N−1∥∥ ‖B1 −B2‖ .

is fulfilled.

Proof. Let B1, B2 ∈ Rn be any points, and x1, x2be appropriate solutions of
problem (4.3)-(4.5). Then we have:

x1(t)− x2 (t) = N−1 [B1 −B2] +

+

T∫
0

K(t, s)

f(s, x1(s),

s∫
0

g (s, τ, x1 (τ)) dτ)− f(s, x2(s),

s∫
0

g (s, τ, x2 (τ)) dτ)

 ds+
+

P∑
k=1

K(t, tk) [Ik(x1(tk))− Ik(x2(tk))] . (4.6)

Now, using conditions (H1) and (H2), from (4.6) we get

|x1 (t)− x2 (t)| ≤
∥∥N−1 [B1 −B2]

∥∥+
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+SM1

T∫
0

|x1 (τ)− x2 (τ)|+M2

τ∫
0

|x1 (s)x2 (s) ds|

 dτ+

+S

p∑
i=1

li |x1 (tk)− x2 (tk)| .

Hence

‖x1 (t)− x2 (t)‖ ≤
∥∥N−1∥∥ ‖B1 −B2‖+

+S

(
M1T

(
1 +

M2T

2

)
+

p∑
k=1

lk

)
‖x1 (t)− x2 (t)‖ .

As L < 1, from the last inequality it follows that

‖x1 (t)− x2 (t)‖ ≤ (1− L)−1
∥∥N−1∥∥ ‖B1 −B2‖ .

�

The theorem is proved.
Note that the scheme suggested in the paper can be successfully used in more

complicated boundary value problems with impulse action. For example, for a
boundary value problem when (2.2) contains two-point or multipoint and integral
terms.
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