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THE DIRICHLET PROBLEM IN A CLASS OF GENERALIZED

WEIGHTED MORREY SPACES

VAGIF S. GULIYEV, MEHRIBAN N. OMAROVA, AND LUBOMIRA SOFTOVA

Abstract. We show continuity in generalized weighted Morrey spaces
Mp,ϕ(w) of sub-linear integral operators generated by some classical in-
tegral operators and commutators. The obtained estimates are used to
study global regularity of the solution of the Dirichlet problem for linear
uniformly elliptic operators with discontinuous data.

1. Introduction

In the present work we study the global regularity of the solutions of a class
of elliptic partial differential equations (PDEs) in generalized weighted Morrey
spaces. Recall that the classical Morrey spaces Lp,λ were introduced in [24] in or-
der to study the local behavior of the solutions of elliptic systems. In [3] Chiarenza
and Frasca show boundedness of the Hardy-Littlewood maximal operator M and
the Calderón-Zygmund operator K

Mf(x) = sup
B(x)

1

|B(x)|

∫
B(x)
|f(y)| dy and Kf(x) =

∫
Rn
k(x− y)f(y) dy

in Lp,λ(Rn), where the supremum is taken over all balls centered in x ∈ Rn. Inte-
gral operators of that kind appear in the representation formulas of the solutions
of various PDEs. Thus the continuity of the Calderón-Zygmund integral in cer-
tain functional space permit to study the regularity of the solutions of boundary
value problems for linear PDEs in the corresponding space.

Moreover, various Morrey spaces are defined in the process of study. Guliyev,
Mizuhara and Nakai [9, 23, 25] introduced generalized Morrey spaces Mp,ϕ (see,
also [10, 11, 27]). Komori and Shirai [21] defined weighted Morrey spaces Lp,κ(w);
Guliyev [14] gave a concept of the generalized weighted Morrey spaces Mp,ϕ(w)
which could be viewed as extension of both Mp,ϕ and Lp,κ(w). In [14], the
boundedness of the classical operators and their commutators in spaces Mp,ϕ(w)
was studied. In this paper we apply these estimates to study the regularity of the
solution of Dirichlet problem for linear elliptic partial differential equation with
discontinuous coefficients. The presented result is a generalization of previous
works [6, 17, 29].
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The paper is organized as follows. We begin introducing some function spaces
that we are going to use. In Sections 4 and 5 we study continuity in the spaces
Mp,ϕ(w) of certain sub-linear integrals and their commutators with bounded mean
oscillation functions. These results permit to obtain continuity of the Calderón-
Zygmund operator and its commutator that is shown in Section 6. In the last
section we give an application of these estimates to the study of linear Dirich-
let problem for elliptic equations. This problem is firstly studied by Chiarenza,
Frasca and Longo. In their pioneer works [4, 5] they prove unique strong solv-
ability of {

Lu ≡ aij(x)Diju = f(x) a.a. x ∈ Ω,

u ∈ W 2
p (Ω) ∩

◦
W 1

p(Ω), p ∈ (1,∞), aij ∈ VMO
(1.1)

extending this way the classical theory of operators with continuous coefficients
to those with discontinuous coefficients. Later their results have been extended

in the Sobolev-Morrey spaces W 2
p,λ(Ω) ∩

◦
W 1

p(Ω), λ ∈ (1, n) (see [7]) and the

generalized Sobolev-Morrey spacesW 2
p,φ(Ω)∩

◦
W 1

p(Ω) (see [29]) with φ as in [25]. In

[17] we have studied the regularity of the solution of (1.1) in generalized Sobolev-
Morrey spaces W 2

p,ϕ(Ω) where the weight function ϕ satisfies a certain supremal
condition as in [11]. We show that Lu ∈ Mp,ϕ(Ω) implies Diju ∈ Mp,ϕ(Ω)
satisfying the estimate

‖D2u‖p,ϕ;Ω ≤ C
(
‖Lu‖p,ϕ;Ω + ‖u‖p,ϕ;Ω

)
.

These studies are extended on divergence form linear elliptic and parabolic equa-
tions in [2, 18].

Throughout this paper we use the following notations and conventions. We let
Ω be a bounded domain. As usual, Diu, Diju and Du = (D1u, . . . ,Dnu) mean
the partial derivatives and the gradient of u. The ball in Rn is denoted by Br(x0)
or more generally by Br and the unit sphere is Sn−1. The complementary of Br
is Bcr and B2r stands for a ball centered in the same point as Br with radius 2r.
For any measurable function f we write fB = 1

|B|
∫
B f(y)dy and

‖f‖Lp(Ω) = ‖f‖p;Ω =
(∫

Ω
|f(x)|p dx

)1/p
, ‖ · ‖p;Rn ≡ ‖ · ‖p .

The letter C is used for various positive constants and may change from one
occurrence to another.

2. Weighted spaces

We start with the definitions of some function spaces that we are going to use.

Definition 2.1. (see [19, 26]) Let a ∈ Lloc
1 (Rn) and aBr = 1

|Br|
∫
Br a(x) dx. Define

γa(R) = sup
r≤R

1

|Br|

∫
Br
|a(y)− aBr | dy ∀ R > 0.

We say that a ∈ BMO (bounded mean oscillation) if

‖a‖∗ = sup
R>0

γa(R) < +∞.
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The quantity ‖a‖∗ is a norm in BMO modulo constant functions under which
BMO is a Banach space. If

lim
R→0

γa(R) = 0,

then a ∈ VMO (vanishing mean oscillation) and we call γa(R) a VMO-modulus
of a.

For any bounded domain Ω ⊂ Rn we define BMO(Ω) and VMO(Ω) taking
a ∈ L1(Ω) and integrating over Ωr = Ω ∩ Br.

According to [1], having a function a ∈ BMO(Ω) or VMO(Ω) it is possi-
ble to extend it in the whole Rn preserving its BMO-norm or VMO-modulus,
respectively. In the following we use this extension without explicit references.

Lemma 2.1. (John-Nirenberg lemma, [19]) Let a ∈ BMO and p ∈ (1,∞). Then
for any ball B there holds(

1

|B|

∫
B
|a(y)− aB|pdy

) 1
p

≤ C(p)‖a‖∗.

As an immediate consequence of Lemma 2.1 we get the following property.

Corollary 2.1. Let a ∈ BMO, then for all 0 < 2r < t the following inequality
holds ∣∣aBr − aBt∣∣ ≤ C‖a‖∗ ln

t

r
, (2.1)

where the constant is independent of a, t and r.

We call weight a nonnegative locally integrable function w on Rn. Given a
weight w and a measurable set E we denote the w-measure of E by

w(E) =

∫
E
w(x) dx .

Denote by Lp,w(Rn) or Lp,w the weighted Lp spaces. It turns out that the strong
type (p, p) inequality(∫

Rn
(Mf(x))pw(x) dx

)1/p

≤ Cp
(∫

Rn
|f(x)|pw(x) dx

)1/p

holds for all f ∈ Lp,w if and only if the weight function satisfies the Muckenhoupt
Ap-condition

[w]Ap := sup
B

(
1

|B|

∫
B
w(x) dx

)(
1

|B|

∫
B
w(x)

− 1
p−1 dx

)p−1

<∞ . (2.2)

The expression [w]Ap is called characteristic constant of w. The function w is A1

weight if Mw(x) ≤ C1w(x) for almost all x ∈ Rn. The minimal constant C1 for
which the inequality holds is the A1 characteristic constant of w.

We summarize some basic properties of the Ap weights in the following lemma
(see [8, 22] for more details).

Lemma 2.2. (1) Let w ∈ Ap for 1 ≤ p <∞. Then for each B

1 ≤ [w]
1
p

Ap(B) = |B|−1‖w‖1/pL1(B) ‖w
− 1
p ‖Lp′ (B) ≤ [w]

1/p
Ap

. (2.3)
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(2) The function w
− 1
p−1 is in Ap′, where 1

p + 1
p′ = 1, 1 < p < ∞ with charac-

teristic constant

[w
− 1
p−1 ]Ap′ = [w]

1
p−1

Ap
.

(3) The classes Ap are increasing as p increases and

[w]Aq ≤ [w]Ap , 1 ≤ q < p <∞ .

(4) The measure w(x)dx is doubling, precisely, for all λ > 1

w(λB) ≤ λnp[w]Apw(B) .

(5) If w ∈ Ap for some 1 ≤ p ≤ ∞, then there exist C > 0 and δ > 0 such
that for any ball B and a measurable set E ⊂ B,

1

[w]Ap

(
|E|
|B|

)
≤ w(E)

w(B)
≤ C

(
|E|
|B|

)δ
.

(6) For each 1 ≤ p <∞ we have⋃
1≤p<∞

Ap = A∞ and [w]A∞ ≤ [w]Ap .

(7) For each a ∈ BMO, 1 ≤ p <∞ and w ∈ A∞ we have

‖a‖∗ = C sup
B

(
1

w(B)

∫
B
|a(y)− aB|pw(y) dy

) 1
p

. (2.4)

The next result follows from [14, Lemma 4.4].

Lemma 2.3. Let w ∈ Ap with 1 < p <∞ and a ∈ BMO. Then( 1

w1−p′(Br)

∫
Br
|a(y)− aBr |p

′
w(y)1−p′ dy

) 1
p′ ≤ C[w]

1
p

Ap
‖a‖∗, (2.5)

where C is independent of a, w and r.

Definition 2.2. Let ϕ(x, r) be a weight in Ω×R+ → R+ and w ∈ Ap, p ∈ [1,∞).
The generalized weighted Morrey space Mp,ϕ(Ω, w) consists of all functions f ∈
Lp,w(Ω) such that

‖f‖p,ϕ,w;Ω = sup
x∈Ω,r>0

ϕ(x, r)−1

(
w(Br(x))−1

∫
Ωr(x)

|f(y)|pw(y) dy

)1/p

<∞ ,

where Ωr(x) = Ω ∩ Br(x).
Generalized Sobolev-Morrey space W 2

p,ϕ(Ω, w) consists of all functions u ∈
W 2
p.w(Ω) with distributional derivatives Dsu ∈ Mp,ϕ(Ω, w), 0 ≤ |s| ≤ 2 endowed

by the norm

‖u‖W 2
p,ϕ(Ω,w) =

∑
0≤|s|≤2

‖Dsu‖p,ϕ,w;Ω.

The space W 2
p,ϕ(Ω, w) ∩

◦
W 1

p,ϕ(Ω, w) consists of all functions u ∈ W 2
p,w(Ω) ∩

◦
W 1

p,w(Ω) with Dsu ∈ Mp,ϕ(Ω, w), 0 ≤ |s| ≤ 2 and is endowed by the same

norm. Recall that
◦
W 1

p,w(Ω) is the closure of C∞0 (Ω) with respect to the norm in

W 1
p,w(Ω).
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Remark 2.1. The density of the C∞0 functions in the weighted Lebesgue space Lp,w
is proved in [28, Chapter 3, Theorem 3.11].

3. Sub-linear operators generated by singular integrals in Mp,ϕ(w)

Let T be a sub-linear operator such that for any f ∈ L1(Rn) with a compact
support. Suppose that for x /∈ suppf the following inequality holds

|Tf(x)| ≤ C
∫
Rn

|f(y)|
|x− y|n

dy, (3.1)

where C is independent of f.
The following results generalize some estimates obtained in [6, 9, 11, 15, 16].

The proof follows as in [15] making use of the boundedness of the weighted Hardy
operator

H∗ψg(r) :=

∫ ∞
r

g(t)ψ(t) dt, 0 < r <∞ .

Theorem 3.1. ([12, 13]) Suppose that v1, v2, and ψ are weights on R+. Then the
inequality

ess sup
r>0

v2(r)H∗ψg(r) ≤ C ess sup
r>0

v1(r)g(r) (3.2)

holds with some C > 0 for all nonnegative and nondecreasing g on R+ if and
only if

B := ess sup
r>0

v2(r)

∫ ∞
r

ψ(t)

ess sup
t<s<∞

v1(s)
dt <∞ (3.3)

and C = B is the best constant in (3.2).

Theorem 3.2. Let 1 < p <∞, w ∈ Ap and the pair (ϕ1, ϕ2) satisfy

∫ ∞
r

ess inf
t<s<∞

ϕ1(x, s)w(Bs(x))
1
p

w(Bt(x))
1
p

dt

t
≤ C ϕ2(x, r), (3.4)

and T be a sub-linear operator satisfying (3.1). If T is bounded on Lp,w and

‖Tf‖p,w ≤ C[w]
1/p
Ap
‖f‖p,w, then T is bounded from Mp,ϕ1(w) to Mp,ϕ2(w) and

‖Tf‖p,ϕ2,w ≤ C[w]
1
p

Ap
‖f‖p,ϕ1,w (3.5)

with a constant independent of f.

For any a ∈ BMO consider the commutator Taf = aTf −T (af) such that for
any f ∈ L1(Rn) with a compact support and x 6∈ suppf it holds

|Taf(x)| ≤ C
∫
Rn
|a(x)− a(y)| |f(y)|

|x− y|n
dy (3.6)

with a constant independent of f, a, and x. Suppose in addition that Ta is bounded

in Lp,w satisfies the estimate ‖Taf‖p,w ≤ C‖a‖∗[w]
1/p
Ap
‖f‖p,w. Then the following

result holds as in [15] by the use of Theorem 3.1.
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Theorem 3.3. Let p ∈ (1,∞), w ∈ Ap, a ∈ BMO and the pair (ϕ1, ϕ2) satisfy

∫ ∞
r

(
1 + ln

t

r

) ess inf
t<s<∞

ϕ1(x, s)w(Bs(x))
1
p

w(Bt(x))
1
p

dt

t
≤ C ϕ2(x, r) (3.7)

with a constant independent on x and r. Suppose that Ta is bounded in Lp,w and
satisfies (3.6). Then Ta is bounded from Mp,ϕ1(w) to Mp,ϕ2(w) and

‖Taf‖p,ϕ2,w ≤ C[w]
1
p

Ap
‖a‖∗‖f‖p,ϕ1,w . (3.8)

4. Sub-linear operators generated by nonsingular integrals in
Mp,ϕ(w)

Let Rn+ = {x = (x1, . . . , xn) ∈ Rn : xn > 0}. For any x ∈ Rn+ define x̃ =

(x1, . . . , xn−1,−xn). Let T̃ be a sub-linear operator with a nonsingular kernel such
that for any f ∈ L1(Rn+) with a compact support. Suppose that the following
inequality holds

|T̃ f(x)| ≤ C
∫
Rn+

|f(y)|
|x̃− y|n

dy, (4.1)

where C is independent of f .

Lemma 4.1. Let w ∈ Ap, p ∈ (1,∞), the operator T̃ satisfy (4.1) and be bounded

on Lp,w(Rn+) with ‖T̃ f‖p,w ≤ C[w]
1/p
Ap
‖f‖p,w. Let for any fixed x0 ∈ Rn+ and for

any f ∈ Lloc
p,w(Rn+) ∫ ∞

r
w(B+

t (x0))−1/p‖f‖p,w;B+t (x0)

dt

t
<∞ . (4.2)

Then

‖T̃ f‖p,w;B+r (x0) ≤ C[w]
1
p

Ap
w(B+

r (x0))
1
p

∫ ∞
2r

w(B+
t (x0))

− 1
p ‖f‖p,w;B+t (x0)

dt

t
(4.3)

with a constant independent of x0, r, and f .

Proof. Consider the decomposition f = f1 + f2 with f1 = fχ2B+r (x0) and

f2 = fχ(2B+r (x0))c . Because of the boundedness of T̃ in Lp,w(Rn+) we have as in

[17]

‖T̃ f1‖p,w;B+r (x0) ≤ C[w]
1
p

Ap
‖f‖p,w;2B+r (x0) .

Since for any x̃ ∈ B+
r (x0) and y ∈ (2B+

r (x0))c it holds

1

2
|x0 − y| ≤ |x̃− y| ≤

3

2
|x0 − y| (4.4)

we get as in [17]

|T̃ f2(x)| ≤ C
∫ ∞

2r

(∫
B+t (x0)

|f(y)|dy

)
dt

tn+1
.
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Using the Hölder inequality and (2.3) we get

|T̃ f2(x)| ≤ C
∫ ∞

2r
‖f‖p,w;B+t (x0) ‖w

−1/p‖p′;B+t (x0)

dt

tn+1

≤ C[w]
1/p
Ap

∫ ∞
2r

w(B+
t (x0))−1/p‖f‖p,w;B+t (x0)

dt

t
.

(4.5)

Direct calculations give

‖T̃ f2‖p,w;B+r (x0) ≤ C[w]
1/p
Ap

w(B+
r (x0))1/p

∫ ∞
2r

‖f‖p,w;B+t (x0)

w(B+
t (x0))1/p

dt

t
(4.6)

for all f ∈ Lp,w(Rn+) satisfying (4.2). Thus,

‖T̃ f‖p,w;B+r (x0) ≤ ‖T̃ f1‖p,w;B+r (x0) + ‖T̃ f2‖p,w;B+r (x0)

≤ C[w]
1/p
Ap
‖f‖p,w;2B+r (x0) (4.7)

+ C[w]
1/p
Ap
w(B+

r (x0))1/p

∫ ∞
2r

‖f‖p,w;B+t (x0)

w(B+
t (x0))1/p

dt

t
.

On the other hand, by (2.3)

‖f‖p,w;2B+r (x0) ≤ C|B
+
r (x0)|‖f‖p,w;2B+r (x0)

∫ ∞
2r

dt

tn+1

≤ C|B+
r (x0)|

∫ ∞
2r
‖f‖p,w;B+t (x0)

dt

tn+1

≤ C[w]
− 1
p

Ap
w(B+

r (x0))1/p

∫ ∞
2r
‖f‖p,w;B+t (x0) ‖w

−1/p‖p′;B+t (x0)

dt

tn+1

≤ C[w]
− 1
p

Ap
w(B+

r (x0))1/p

∫ ∞
2r

[w]
1
p

Ap
w(B+

t (x0))−1/p‖f‖p,w;B+t (x0)

dt

t

≤ w(B+
r (x0))1/p

∫ ∞
2r

w(B+
t (x0))−1/p‖f‖p,w;B+t (x0)

dt

t
(4.8)

which unified with (4.7) gives (4.3).

Theorem 4.1. Let w ∈ Ap, p ∈ (1,∞), the pair (ϕ1, ϕ2) satisfy (3.4) and T̃
be bounded in Lp,w(Rn+). Then it is bounded from Mp,ϕ1(Rn+, w) in Mp,ϕ2(Rn+, w)
and

‖T̃ f‖p,ϕ2,w;Rn+ ≤ C[w]
1
p

Ap
‖f‖p,ϕ1,w;Rn+ (4.9)

with a constant independent of f.

Proof. By Lemma 4.1 we have

‖T̃ f‖p,ϕ2,w;Rn+ ≤ C[w]
1
p

Ap
sup

x∈Rn+, r>0
ϕ2(x, r)−1

∫ ∞
r

w(B+
t (x))−1/p‖f‖p,w;B+t (x)

dt

t
.

Applying the Theorem 3.1 with

v1(r) = ϕ1(x, r)−1w(B+
r (x))−1/p, v2(r) = ϕ2(x, r)−1,

ψ(r) = w(B+
r (x))−1/p r−1, g(r) = ‖f‖p,w;B+r (x)
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to the above integral, we get as in [17]

‖T̃ f‖p,ϕ2,w;Rn+ ≤ C[w]
1
p

Ap
sup

x∈Rn+,r>0
ϕ1(x, r)−1w(B+

r (x))−1/p ‖f‖p,w;B+r (x)

= C[w]
1
p

Ap
‖f‖p,ϕ1,w;Rn+ .

5. Commutators of sub-linear operators generated by
nonsingular integrals in Mp,ϕ(w)

For any a ∈ BMO consider the commutator T̃af = aT̃ f−T̃ (af) where T̃ is the
nonsingular operator satisfying (4.1) and f ∈ L1(Rn+) with a compact support.
Suppose that for x /∈ suppf

|T̃af(x)| ≤ C
∫
Rn+
|a(x)− a(y)| |f(y)|

|x̃− y|n
dy, (5.1)

where C is independent of f, a, and x. To estimate the commutator we shall
employ the same idea which we used in the proof of Lemma 4.1 (see [17] for
details) and the properties of the Muckenhoupt weight.

Lemma 5.1. Let w ∈ Ap, p ∈ (1,∞), a ∈ BMO and T̃a be a bounded oper-

ator such that ‖T̃af‖p,w;Rn+ ≤ C[w]
1/p
Ap
‖a‖∗ ‖f‖p,w;Rn+ . Suppose that for all f ∈

Lloc
p,w(Rn+), x0 ∈ Rn+ and r > 0 applies the next condition∫ ∞

r

(
1 + ln

t

r

) ‖f‖p,w;B+t (x0)

w(B+
t (x0))1/p

dt

t
<∞ . (5.2)

Then

‖T̃af‖p,w;B+r (x0) ≤ C[w]
1
p

Ap
‖a‖∗w(B+

r (x0))1/p

∫ ∞
2r

(
1 + ln

t

r

) ‖f‖p,w;B+t (x0)

w(B+
t (x0))1/p

dt

t
.

(5.3)

Proof. The decomposition f = fχ2B+r (x0) + fχ(2B+r (x0))c = f1 + f2 gives

‖T̃af‖p,w;B+r (x0) ≤ ‖T̃af1‖p,w;B+r (x0) + ‖T̃af2‖p,w;B+r (x0).

From the boundedness of T̃a in Lp,w(Rn+) it follows

‖T̃af1‖p,w;B+r (x0) ≤ C[w]
1/p
Ap
‖a‖∗ ‖f‖p,w;2B+r (x0).

On the other hand, because of (4.4) we can write

‖T̃af2‖p,w;B+r (x0)

≤ C

(∫
B+r (x0)

(∫
(2B+r (x0))c

|a(y)− aB+r (x0)||f(y)|
|x0 − y|n

dy

)p
w(x) dx

)1/p

+ C

(∫
B+r (x0)

(∫
(2B+r (x0))c

|a(x)− aB+r (x0)||f(y)|
|x0 − y|n

dy

)p
w(x) dx

)1/p

= I1 + I2.
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Where, as in [17], we have

I1 ≤ Cw(B+
r (x0))

1
p

∫ ∞
2r

∫
B+t (x0)

|a(y)− aB+r (x0)||f(y)| dy dt

tn+1
.

Applying Hölder’s inequality, Lemma 2.1, (2.1) and (2.5), we get

I1 ≤ Cw(B+
r (x0))

1
p

∫ ∞
2r

∫
B+t (x0)

|a(y)− aB+t (x0)||f(y)| dy dt

tn+1

+ Cw(B+
r (x0))

1
p

∫ ∞
2r

∫
B+t (x0)

|aB+t (x0) − aB+r (x0)||f(y)| dy dt

tn+1

≤ C w(B+
r (x0))

1
p

∫ ∞
2r

(∫
B+t (x0)

|a(y)− aB+t (x0)|
p′w(y)1−p′ dy

) 1
p′

× ‖f‖p,w;B+t (x0)

dt

tn+1

+ C[w]
1
p

Ap
w(B+

r (x0))
1
p ‖a‖∗

∫ ∞
2r

ln
t

r
‖f‖p,w;Bt(x0)w(Bt(x0))

− 1
p
dt

t

≤ C[w]
1
p

Ap
w(B+

r (x0))
1
p ‖a‖∗

∫ ∞
2r
‖f‖p,w;B+t (x0)w(B+

t (x0))
− 1
p
dt

tn+1

+ C[w]
1
p

Ap
w(B+

r (x0))
1
p ‖a‖∗

∫ ∞
2r

ln
t

r
‖f‖p,w;B+t (x0)w(B+

t (x0))
− 1
p
dt

t

≤ C[w]
1
p

Ap
w(B+

r (x0))
1
p ‖a‖∗

∫ ∞
2r

(
1 + ln

t

r

)
‖f‖p,w;B+t (x0)w(B+

t (x0))
− 1
p
dt

t
.

By (2.1) and (4.5) we get

I2 ≤ C[w]
1
p

Ap
‖a‖∗w(B+

r (x0))
1
p

∫ ∞
2r

w(B+
t (x0))

− 1
p ‖f‖p,w;B+t (x0)

dt

t
.

Summing up I1 and I2 we get that

‖T̃af2‖p,w;B+r (x0) ≤ C[w]
1
p

Ap
‖a‖∗w(B+

r (x0))
1
p

∫ ∞
2r

(
1 + ln

t

r

)‖f‖p,w;B+t (x0)

w(B+
t (x0))

1
p

dt

t
.

(5.4)
Finally,

‖T̃af‖p,w;B+r (x0) ≤ C[w]
1
p

Ap
‖a‖∗

(
‖f‖p,w;2B+r (x0)

+ w(B+
r (x0))

1
p

∫ ∞
2r

(
1 + ln

t

r

)‖f‖p,w;B+t (x0)

w(B+
t (x0))

1
p

dt

t

)
,

and the statement follows by (4.8).

Theorem 5.1. Let w ∈ Ap, p ∈ (1,∞), a ∈ BMO and the pair (ϕ1, ϕ2) satisfy

∫ ∞
r

(
1 + ln

t

r

) ess inf
t<s<∞

ϕ1(x, s)w(B+
s (x))

1
p

w(B+
t (x))

1
p

dt

t
≤ C ϕ2(x, r) . (5.5)
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Suppose T̃a is a sub-linear operator satisfying (5.1) and bounded on Lp,w(Rn+).

Then T̃a is bounded from Mp,ϕ1(Rn+, w) to Mp,ϕ2(Rn+, w) and

‖T̃af‖p,ϕ2,w;Rn+ ≤ C[w]
1/p
Ap
‖a‖∗ ‖f‖p,ϕ1,w;Rn+ (5.6)

with a constant independent of f and a.

The statement of the theorem follows from Lemma 5.1 and Theorem 3.1 in the
same manner as in the proof of Theorem 4.1.

6. Calderón-Zygmund operators in Mp,ϕ(w)

In the present section we deal with Calderón-Zygmund type integrals and their
commutators with BMO functions. We start with the definition of the corre-
sponding kernel.

Definition 6.1. A measurable function K(x, ξ) : Rn × Rn \ {0} → R is called a
variable Calderón-Zygmund kernel if:

i) K(x, ·) is a Calderón-Zygmund kernel for almost all x ∈ Rn :
ia) K(x, ·) ∈ C∞(Rn \ {0}),
ib) K(x, µξ) = µ−nK(x, ξ) ∀µ > 0,
ic)

∫
Sn−1 K(x, ξ)dσξ = 0

∫
Sn−1 |K(x, ξ)|dσξ < +∞,

ii) max
|β|≤2n

∥∥∥Dβ
ξK
∥∥∥
∞;Rn×Sn−1

= M <∞.

The singular integrals

Kf(x) :=P.V.

∫
Rn
K(x, x− y)f(y) dy,

C[a, f ](x) :=P.V.

∫
Rn
K(x, x− y)[a(x)− a(y)]f(y) dy

=aKf(x)− K(af)(x)

are bounded in Lp,w (see [16] for more references) and satisfy (3.1) and (5.1).
Hence the following results hold as a simple application of the estimates from § 3
and § 4 (see [17] for details).

Theorem 6.1. Let w ∈ Ap, p ∈ (1,∞) and ϕ be weight such that for all x ∈ Rn
and r > 0 ∫ ∞

r

(
1 + ln

t

r

) ess inf
t<s<∞

ϕ(x, s)w(Bs(x))
1
p

w(Bt(x))
1
p

dt

t
≤ C ϕ(x, r). (6.1)

Then for any f ∈Mp,ϕ(Rn, w) and a ∈ BMO there exist constants depending on
n, p, ϕ, w, and the kernel such that

‖Kf‖p,ϕ,w ≤ C[w]
1
p

Ap
‖f‖p,ϕ,w , ‖C[a, f ]‖p,ϕ,w ≤ C[w]

1
p

Ap
‖a‖∗‖f‖p,ϕ,w . (6.2)

The assertion follows by (4.9) and (5.6).
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Corollary 6.1. Let Ω ⊂ Rn, ∂Ω ∈ C1,1, K : Ω × Rn \ {0} → R be as in Defini-
tion 6.1, a ∈ BMO(Ω) and f ∈Mp,ϕ(Ω, w) with p, ϕ, and w as in Theorem 6.1.
Then

‖Kf‖p,ϕ,w;Ω ≤ C[w]
1
p

Ap
‖f‖p,ϕ,w;Ω , ‖C[a, f ]‖p,ϕ,w;Ω ≤ C[w]

1
p

Ap
‖a‖∗‖f‖p,ϕ,w;Ω

(6.3)
with C = C(n, p, ϕ, [w]Ap , |Ω|,K).

Corollary 6.2. (see [4, 17]) Let p, ϕ, and w be as in Theorem 6.1 and a ∈ VMO
with a VMO-modulus γa. Then for any ε > 0 there exists a positive number ρ0 =
ρ0(ε, γa) such that for any ball Br with a radius r ∈ (0, ρ0) and all f ∈Mp,ϕ(Br, w)

‖C[a, f ]‖p,ϕ,w;Br ≤ Cε‖f‖p,ϕ,w;Br (6.4)

with C independent of ε, f, and r.

For any x, y ∈ Rn+ define the generalized reflection T (x; y)

T (x; y) = x− 2xn
an(y)

ann(y)
T (x) = T (x;x) : Rn+ → Rn− , (6.5)

where an is the last row of the matrix a = {aij}ni,j=1 and Rn− = {x = (x1, . . . , xn) ∈
Rn : xn < 0}. Then there exist positive constants C1, C2 depending on n and Λ,
such that

C1|x̃− y| ≤ |T (x)− y| ≤ C2|x̃− y| ∀ x, y ∈ Rn+. (6.6)

Then the nonsingular integrals

K̃f(x) :=

∫
Rn+
K(x, T (x)− y)f(y) dy (6.7)

C̃[a, f ](x) :=

∫
Rn+
K(x, T (x)− y)[a(x)− a(y)]f(y) dy

are sub-linear and according to the results in Sections 4 and 5 we have.

Theorem 6.2. Let a ∈ BMO(Rn+), w ∈ Ap, p ∈ (1,∞) and ϕ be a measurable

function satisfying (6.1). Then K̃f and C̃[a, f ] are continuous in Mp,ϕ(Rn+, w)
and for all f ∈Mp,ϕ(Rn+, w) holds

‖K̃f‖p,ϕ,w;Rn+ ≤ C[w]
1
p

Ap
‖f‖p,ϕ,w;Rn+ ‖C̃[a, f ]‖p,ϕ,w;Rn+ ≤ C[w]

1
p

Ap
‖a‖∗ ‖f‖p,ϕ,w;Rn+

(6.8)
with a constant dependent on known quantities only.

Corollary 6.3. (see [4, 17]) Let p, ϕ and w be as in Theorem 6.2 and a ∈ VMO
with a VMO-modulus γa. Then for any ε > 0 there exists a positive number
ρ0 = ρ0(ε, γa) such that for any ball B+

r with a radius r ∈ (0, ρ0) and all f ∈
Mp,ϕ(B+

r , w)

‖C[a, f ]‖p,ϕ,w;B+r ≤ Cε‖f‖p,ϕ,w;B+r , (6.9)

where C is independent of ε, f and r.
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7. The Dirichlet problem

Let Ω ⊂ Rn, n ≥ 3 be a bounded C1,1-domain. We consider the problem{
Lu = aij(x)Diju+ bi(x)Diu+ c(x)u = f(x) a.a. x ∈ Ω,

u ∈ W 2
p,ϕ(Ω, w) ∩

◦
W 1

p(Ω, w), p ∈ (1,∞)
(7.1)

subject to the following conditions:

H1) Strong ellipticity: there exists a constant Λ > 0, such that{
Λ−1|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2 a.a. x ∈ Ω, ∀ ξ ∈ Rn

aij(x) = aji(x) 1 ≤ i, j ≤ n.
(7.2)

Let a = {aij}, then a ∈ L∞(Ω) and ‖a‖ =
∑n

ij=1 ‖aij‖∞;Ω by (7.2).

H2) Regularity of the data: a ∈ VMO(Ω) with VMO-modulus γa :=
∑
γaij ,

bi, c ∈ L∞(Ω), and f ∈ Mp,ϕ(Ω, w) with w ∈ Ap, 1 < p < ∞ and
ϕ : Ω× R+ → R+ measurable.

Let L = aij(x)Dij , then Lu = f(x)− bi(x)Diu(x)− c(x)u. As it is well known
(see [4, 17] and the references therein) for any x ∈ suppu, a ball Br ⊂ Ω′ and a
function v ∈ C∞0 (Br) we have the representation

Dijv(x) = P.V.

∫
Br

Γij(x, x− y)
[
Lv(y) +

(
ahk(x)− ahk(y)

)
Dhkv(y)

]
dy

+ Lv(x)

∫
Sn−1

Γj(x, y)yidσy (7.3)

= KijLv(x) + Cij [a
hk, Dhkv](x) + Lv(x)

∫
Sn−1

Γj(x; y)yidσy.

According to Remark 2.1 the formula (7.3) holds for v ∈W 2
p,w(Br). Here Γij(x, ξ) =

Dξ1DξjΓ(x, ξ) and Γij are variable Calderón-Zygmund kernels as in Definition 6.1.
Then the operators Kij and Cij are singular integrals as K and C. In view of the
results obtained in Section 6 we get for r small enough

‖D2v‖p,ϕ,w;Br ≤ C
(
ε‖D2v‖p,ϕ,w;Br + ‖Lv‖p,ϕ,w;Br

)
.

Taking r such that Cε < 1 we can move the norm of D2v on the left-hand side
and write

‖D2v‖p,ϕ,w;Br ≤ C‖Lv‖p,ϕ,w;Br . (7.4)

Take a cut-off function η(x) ∈ C∞0 (Br)

η(x) =

{
1 x ∈ Bθr
0 x 6∈ Bθ′r

such that θ′ = θ(3 − θ)/2 > θ for θ ∈ (0, 1) and |Dsη| ≤ C[θ(1 − θ)r]−s for
s = 0, 1, 2. Apply (7.4) to v(x) = η(x)u(x) ∈W 2

p,w(Br) we get

‖D2u‖p,ϕ,w;Bθr ≤ ‖D
2v‖p,ϕ,w;Bθ′r ≤ C‖Lv‖p,ϕ,w;Bθ′r

≤ C
(
‖Lu‖p,ϕ,w;Bθ′r +

‖Du‖p,ϕ,w;Bθ′r
θ(1− θ)r

+
‖u‖p,ϕ,w;Bθ′r
[θ(1− θ)r]2

)
.
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Since 1 < 1
θ(1−θ)r for r < 4 and

‖Lu‖p,ϕ,w;Bθ′r ≤ C
(
‖Lu‖p,ϕ,w;Bθ′r + ‖Du‖p,ϕ;w,Bθ′r + ‖u‖p,ϕ;w,Bθ′r

)
(7.5)

we can write

‖D2u‖p,ϕ,w;Bθr ≤ C
(
‖Lu‖p,ϕ,w;Bθ′r +

‖Du‖p,ϕ,w;Bθ′r
θ(1− θ)r

+
‖u‖p,ϕ,w;Bθ′r
[θ(1− θ)r]2

)
.

Now consider the weighted semi-norm

Θs = sup
0<θ<1

[
θ(1− θ)r

]s‖Dsu‖p,ϕ,w;Bθr s = 0, 1, 2.

Because of the choice of θ′ we have θ(1 − θ) ≤ 2θ′(1 − θ′). Thus, after standard
transformations and taking the supremum with respect to θ ∈ (0, 1) we get

Θ2 ≤ C
(
r2‖Lu‖p,ϕ,w;Bθ′r + Θ1 + Θ0

)
. (7.6)

Lemma 7.1 (Interpolation inequality). There exists a constant C independent
of r such that

Θ1 ≤ εΘ2 +
C

ε
Θ0 for any ε ∈ (0, 2).

Proof. For functions u ∈W 2
p,w(Br), p ∈ (1,∞) and w ∈ Ap we dispose with the

following interpolation inequality proved in [20]

‖Du‖p,w;Br ≤ C
(
‖u‖p,w;Br + ‖u‖1/2p,w;Br‖D

2u‖1/2p,w;Br

)
.

Then for any ε > 0 we have

‖Du‖p,w;Br ≤ C
((

1 +
1

2ε

)
‖u‖p,w;Br +

ε

2
‖D2u‖p,w;Br

)
.

Choosing ε small enough, taking δ = Cε
2 , dividing all terms of ϕ(x, r)w(Br)1/p

and taking the supremum over Br we get the desired interpolation inequality in
Mp,ϕ(w)

‖Du‖p,ϕ,w;Br ≤ δ‖D2u‖p,ϕ,w;Br +
C

δ
‖u‖p,ϕ,w;Br . (7.7)

We can always find some θ0 ∈ (0, 1) such that

Θ1 ≤ 2[θ0(1− θ0)r]‖Du‖p,ϕ,w;Bθ0r

≤ 2[θ0(1− θ0)r]

(
δ‖D2u‖p,ϕ,w;Bθ0r +

C

δ
‖u‖p,ϕ,w;Bθ0r

)
.

The assertion follows choosing δ = ε
2 [θ0(1− θ0)r] < θ0r for any ε ∈ (0, 2).

Interpolating Θ1 in (7.6) and taking θ = 1/2 as in [17] we get the Caccioppoli-
type estimate

‖D2u‖p,ϕ,w;Br/2 ≤ C
(
‖Lu‖p,ϕ,w;Br +

1

r2
‖u‖p,ϕ,w;Br

)
.

Further, proceeding as in [17] and using (7.5) and (7.7) we get the following
interior a priori estimate.
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Theorem 7.1 (Interior estimate). Let u ∈ W 2,loc
p,w (Ω) and L be a linear elliptic

operator verifying H1 and H2 such that Lu ∈M loc
p,ϕ(Ω, w) with p ∈ (1,∞), w ∈ Ap

and ϕ satisfying (6.1). Then Diju ∈ Lp,ϕ(Ω′, w) for any Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω and

‖D2u‖p,ϕ,w;Ω′ ≤ C
(
‖u‖p,ϕ,w;Ω′′ + ‖Lu‖p,ϕ,w;Ω′′

)
, (7.8)

where the constant depends on known quantities and dist (Ω′, ∂Ω′′).

Let x0 = (x′, 0) and denote by Cγ the space of functions u ∈ C∞0 (Br(x0)) with

u = 0 for xn ≤ 0. The space W 2,γ
p,w(Br(x0)) is the closure of Cγ with respect to

the norm of W 2
p,w. Then for any v ∈ W 2,γ

p,w(B+
r (x0)) the following representation

formula holds (see [5])

Dijv(x) =KijLv(x) + Cij [a
hkDhkv](x)

+Lv(x)

∫
Sn−1

Γj(x, y)yidσy + Iij(x) ∀ i, j = 1, . . . , n,

where we have set

Iij(x) = K̃ijLv(x) + C̃ij [a
hk, Dhkv](x), ∀ i, j = 1, . . . , n− 1,

Iin(x) = Ini(x) = K̃il(DnT (x))lLv(x) + Cil[a
hk, Dhkv](DnT (x))l

∀ i = 1, . . . , n− 1,

Inn(x) = K̃ls(DnT (x))l(DnT (x))sLv(x)

+ C̃ls[a
hk, Dhkv(x)](DnT (x))l(DnT (x))s,

where

DnT (x) =
(
(DnT (x))1, . . . , (DnT (x))n

)
= T (en, x).

Applying the estimates (6.8) and (6.9), taking into account the VMO proper-
ties of the coefficients aij ’s, it is possible to choose r0 small and applying the
interpolation inequality (7.7)

‖Dijv‖p,ϕ;w,B+r ≤ C(‖Lv‖p,ϕ;w,B+r + ‖u‖p,ϕ;w,B+r ) (7.9)

for all r < r0 (see [17] for details). By local flattering of the boundary, covering
with semi-balls, taking a partition of unity subordinated to that covering and
applying of estimate (7.9) we get a boundary a priori estimate that unified with
(7.8) gives the following theorem.

Theorem 7.2 (Main result). Let u ∈ W 2
p,ϕ(Ω, w) ∩

◦
W 1

p(Ω, w) be a solution of
(7.1) under the conditions H1 and H2. Then for any w ∈ Ap, p ∈ (1,∞) and ϕ
satisfying (6.1) the following estimate holds

‖D2u‖p,ϕ,w;Ω ≤ C
(
‖u‖p,ϕ,w;Ω + ‖f‖p,ϕ,w;Ω

)
and the constant C depends on known quantities only.

Let us note that the solution of (7.1) exists according to Remark 2.1. The
proof follows as in [4, 5] using (7.5) and the interpolation inequality in weighted
Lebesgue spaces [20].
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