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A HIGHER ORDER COMPACT SCHEME FOR THE

NONLINEAR ADVECTION DIFFUSION PROCESSES

MURAT SARI, SUFII H. MUSSA, AND HUSEYIN TUNC

Abstract. This paper presents a highly accurate finite difference based
scheme through the Padé approximation in analyzing the behaviour of
the nonlinear advection-diffusion processes governed by the unsteady
Burgers equation. It has then been proved that the present method
is unconditionally stable based on the von Neumann stability analysis.
The proposed approach has been shown to be capable of solving the
model equation effectively. Two challenging examples have been taken
to illustrate the physical behaviour of the model in detail. The computed
results have been seen to be highly accurate and be oscillation free even
if advection dominated cases are considered.

1. Introduction

The numerical simulation of nonlinear partial differential equations is of great
importance scientifically in various topics for so many decades, especially in the
fluid mechanics and heat transfer [1]. As differential equations generally describe
behavior of events that occur in space and time, many physical problems are
represented by partial differential equations that mostly can only be solved nu-
merically [2]. One of the most frequent and popular partial differential equations
in applied mathematics is the Burgers equation. Many analytical and numeri-
cal methods for the analysis of the Burgers equation have been encountered in
literature [4–10]. In this work we pay our attention to accurately capture the
behaviour of nonlinear advection-diffusion processes represented by the Burgers
equation

∂u

∂t
+ u

∂u

∂x
= v

∂2u

∂x2
, x ∈ (a, b) , t ∈ (0, T ] (1.1)

with initial condition

u(x, 0) = f(x), x ∈ (a, b)

and boundary conditions

u(a, t) = 0, and u(b, t) = 0
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where v > 0 is the kinematic viscosity constant of the fluid. Bateman [3] illus-
trated the steady state solution of (1.1) and for some time later, modeling of
turbulence were described using this equation by Burgers [7]. Separately, Hopf
[8] and Cole [9] explored a transformation technique by which equation (1.1) can
be converted into linear heat conduction equation that can be easily solved.

Many numerical methods for solving the Burgers equation have been inten-
sively produced for so many years. In doing that, several approximation schemes
like finite difference methods (FDM), finite element methods (FEM) have been
studied in details. To obtain numerical solution of equation (1.1), Gulsu [10] used
restrictive Padé approximation of classical implicit finite difference schemes. Xie
et al [11] solved the Burgers equation by reproducing kernel function using the
Hopf-Cole transformation. Hassanien et al [12] introduced a fourth-order finite
difference method for solving the Burgers equation with the use of local approx-
imation with two-level three-point finite difference methods of order four. Gulsu
and Ozis [13] developed a restrictive Taylor approximation scheme for the clas-
sical explicit finite difference method to solve the Burgers equation numerically.
Zhang and Wang [14] applied two approaches, a predictor-corrector procedure
known as MacCormack method in time derivative and fourth-order compact fi-
nite difference scheme in space derivative to compute the solutions of the model
equation (1.1). Kutluay et al [15] illustrated explicit finite difference techniques
to capture numerical behaviour of the model equation.

A fourth order compact finite difference scheme was proposed by Liao [16]
using the Padé reconstruction of difference operators. Sari and Gurarslan [17]
presented a sixth-order compact finite difference scheme for the spatial deriva-
tive and strong stability third preserving Runge-Kutta (SSPRK3) method for the
time integration. Dogan [18] solved the Burgers equation by the Galerkin FEM
in space and the Crank-Nicolson approach in time. Aksan [19] applied a variant
of quadratic B-spline FEM to solve the equation. Zhu and Wang [20] solved the
equation with the use of the cubic B-spline quasi-interpolation in space and a
low order forward difference in time. A modified local discontinuous Galerkin
method was introduced by Rong-Pei et al [21] to analyse behaviour of the Burg-
ers equation with less amount of oscillations. Sari and Tunc [22] described an
optimization approach in analyzing the Burgers equation based on a quadratic
B-spline FEM and α-family of the time approximation.

To effectively capture the response of the nonlinear advection–diffusion pro-
cesses, a new form of a high–order compact difference has been presented. We
have combined fourth order central difference formulation and Padé approxima-
tion of the second order difference operator in discretization of spatial derivative
operator. Fourth order form of the second order difference operator is constructed
for the boundary points using the Padé approximation. Fourth order forward and
backward difference formulae have been applied to handle the Neumann bound-
ary conditions come out after the Hopf-Cole transformation. Thus a completely
fourth order scheme has been produced in dealing with the model equation. The
approach here makes the method of solution to the model equation entirely dif-
ferent approach what Liao [16] proposed. The scheme has then been tested for
stability conditions under the von Neumann stability analysis and thus it has
been shown to be unconditionally stable.
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2. Method of Solution

Lets us consider the Burgers equation and apply the Hopf-Cole transformation
[8, 9]

u(x, t) = −2v
wx(x, t)

w(x, t)
. (2.1)

With the use of transformation (2.1), the Burgers equation is converted to the
following diffusion equation

∂w

∂t
= v

∂2w

∂x2
, x ∈ (a, b) , t ∈ (0, T ] . (2.2)

In a similar manner, the initial condition is to be also converted to the form of

w(x, 0) = exp(

{
−
∫ x

0

f(s)

2v
ds

}
(2.3)

and the given Dirichlet boundary conditions changed to the following homoge-
neous Neumann boundary conditions

wx(a, t) = 0 and wx(b, t) = 0. (2.4)

Using the Taylor series expansion of w(x, t), the Crank-Nicolson scheme leads to

wn+1 − wn

dt
=

v

24(∆x)2

(
δ4wn+1

i + δ4wn
i

)
(2.5)

where dt = T/N and ∆x = (b−a)/m = h are the temporal and spatial increments
respectively. In Equation (2.5), δ4wi is the fourth-order central finite difference
operator given by δ4wi = −wi−2 + 16wi−1 − 30wi + 16wi+1 − wi+2.
Equation (2.5) is used to obtain a discrete system of linear equations for all
i = 2, · · · ,m− 2 that can also be rewritten as

(1− rδ4)wn+1
i = (1 + rδ4)wn

i , i = 2, 3, . . . ,m− 2 (2.6)

where r = (vdt)/24h2. Boundary elements, i = 1 and i = m−1, were not included
in the algorithm, so to incorporate all interior points, the second-order central
finite difference operator defined by δ2

xwi = wi+1 − 2wi +wi−1 is implemented to
Equation (2.5). Since this is only of a second order accuracy, and to make full
use of fourth-order approximation, we prefer to use the Padê approximation [10]
of the operator δ2

x defined as

δ2
x =

δ2
x

1 + 1
12δ

2
x

. (2.7)

(2.7) takes the place of the second order central difference operator and the whole
approximation scheme for the boundary elements has been changed to the fourth
order [16] which is given as follows

(1− rδ4)wn+1
i = (1 + rδ4)wn

i , i = 2, 3, . . . ,m− 2 (2.8)

(1 +
1

12
δ2
x − sδ2

x)wn+1
i = (1 +

1

12
δ2
x + sδ2

x)wn
i , i = 1,m− 1 (2.9)
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where s = vdt/2h2. Since we have homogeneous Neumann boundary conditions
(2.4), the first-order derivative is discretized using the fourth-order forward and
backward schemes. After imposing the boundary conditions, the expressions
(2.6), (2.8) and (2.9) can be stated as follows,

Awn+1
i = Bwn

i (2.10)

where A and B are square matrices of (m − 1) × (m − 1). Then system (2.10)
can be solved by any appropriate linear solver to get the approximate values of
w(x, t). The initial approximation vector w0 can be obtained from initial condi-
tion (2.3).
In attempting to solve the Burgers equation (1.1), the solution u(x, t) now de-
pends on two other functions w(x, t) and wx(x, t) after the transformation. Solu-
tion for wx(x, t) will be obtained through the fourth-order approximation scheme
by applying the second-order central finite difference operator to the first deriva-
tive ∆x on w(xi, t) defined as ∆xwi = wi+1−wi−1. To make use of the same order

of accuracy, the Padê approximation has been used by replacing ∆x with
∆x

1 + 1
6δ

2
x

to achieve a fourth-order scheme. Thus a linear system has been obtained to get
approximate results for wx(xi, t) for all i = 1, 2, 3, . . . ,m− 1, as follows(

1 +
1

6
δ2
x

)
wx(xi, t) =

∆x

2h
w(xi, t). (2.11)

Constructed solution of w(x, t) and the solution of wx(x, t) in (2.11) lead to the
evaluation of the term u(x, t).

3. Stability Analysis

Now we will see how well errors are being handled by this approximation
scheme as the computation proceeds. We analyse the stability of the obtained
matrix equation (2.10) by considering the present compact finite difference for-
mulation for the nonlinear Burgers equation. Consider the von Neumann theory
with the Fourier growth factor defined by

wn
s = ŵneisk∆x (3.1)

where k and ∆x are mode number and the spatial increment, respectively. We
aim to determine how much wn+1 grows under the consideration of of wn

s by
using (2.10). For typical value of r, equation (2.8) can be expressed as follows

rwn+1
i+2 − 16rwn+1

i+1 + (1 + 30r)wn+1
i − 16rwn+1

i−1 + rwn+1
i+2 =

−rwn
i−2 + 16rwn

i−1 + (1− 30r)wn
i + 16rwn

i+1 − rwn
i+2 (3.2)

Substitution of (3.1) into (3.2) and applying Euler expansion for the exponential
term give rise to

ŵn

ŵn+1
=

1− 30r − 2r cos 2k∆x+ 32r cos k∆x

1 + 30r + 2r cos 2k∆x− 32r cos k∆x
= β. (3.3)
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The stability condition is hold by ‖β‖ ≤ 1. Using considerable values of ∆x
and r, 0 ≤ cos k∆x ≤ 1 and 0 ≤ cos 2k∆x ≤ 1 hold. Thus it is concluded that
‖β‖ ≤ 1 and the present algorithm is unconditionally stable.

4. Numerical Illustrations

Numerical solutions of the Burgers equation (1.1) for two test problems are
considered in this section to display the accuracy and performance of the present
method along the specified domain. The computed results are presented for
comparison with exacts solution and the literature [15, 17],[23]–[31]. All results
have been computed using the presently produced codes in MATLAB 2019a.
Problem 1 [22]: Let us consider the model equation (1.1) with initial condition

u(x, 0) = sinπx, 0 ≤ x ≤ 1

and the boundary conditions

u(0, t) = u(1, t) = 0, t ≥ 0.

Exact solution of Problem 1 was given by Cole [9] in a Fourier series form

u(x, t) = 2πv

∑∞
n=1 anexp(−n2π2vt)nsin(nπx)

a0 +
∑∞

n=1 anexp(−n2π2vt)ncos(nπx)
(4.1)

where the coefficients a0 and an of (4.1) can be calculated as

a0 =

∫ 1

0
exp{−(2πv)−1[1− cos(πx)]}dx

an =

∫ 1

0
exp{−(2πv)−1[1− cos(πx)]}cos(nπx)dx, n = 1, 2, 3, . . . .

The produced results for the current problem are exhibited in Tables 1–5 for var-
ious selections of the kinematic viscosity constant as v = 1, 0.1, 0.01 and 0.004.
The derived method for various values of the parameters h, dt, v at different levels
of time t have been analysed and compared with the literature [15, 17],[23]–[29].
The computed results revealed that the present method offer far more accurate
results comparison to the literature. This paper produce that have sharp gradi-
ents for the advection-dominated cases, v << 1, of the Burgers equation. The
literature has shown that many numerical methods produce unwanted oscillations
in dealing with such type of problems. However, as can be realized in Figures
1–2, the present method can overcome the advection dominated problem without
any significant oscillatory results. Evaluation of the absolute errors has been dis-
played in Figures 3 and 4 and they have demonstrated that the derived scheme
converges accurately to the exact solution. One more important advantage of the
current method is that, to produce these results there is no restriction on time
and space increments as proved in the stability analysis.
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Table 1. Comparison of the computed results with the literature
and exact solution for Problem 1 with v = 1 , h = 0.0125, dt =
0.00001 and t = 0.1

x Present Explicit[15] Exact-Explicit[15] Exact
0.1 0.109538 0.10952 0.10955 0.109538
0.2 0.209792 0.20975 0.20981 0.209792
0.3 0.291896 0.29184 0.29192 0.291896
0.4 0.347923 0.34786 0.34795 0.347923
0.5 0.371577 0.37151 0.37161 0.371577
0.6 0.359045 0.35898 0.35907 0.359045
0.7 0.309905 0.30985 0.30993 0.309905
0.8 0.227817 0.22778 0.22783 0.227817
0.9 0.120686 0.12067 0.12070 0.120686

Table 2. Comparison of the computed results with the literature
and exact solution for Problem 1 with v = 0.1 , h = 0.1, dt = 0.01
at t = 2.3

x Present CFEM[25] GFEM[25] Exact
0.1 0.0221392 0.0221378 0.0221389 0.0221396
0.2 0.0427948 0.0427917 0.0427942 0.0427956
0.3 0.0604301 0.0604248 0.0604292 0.0604313
0.4 0.0734417 0.0734337 0.0734405 0.0734431
0.5 0.0802294 0.0802187 0.0802280 0.0802310
0.6 0.0793973 0.0793843 0.0793957 0.0793988
0.7 0.0701054 0.0700918 0.0701039 0.0701068
0.8 0.0525187 0.0525071 0.0525175 0.0525198
0.9 0.0281735 0.0281666 0.0281728 0.0281740

Table 3. Comparison of the computed results with the literature
and exact solution at various times for Problem 1 with v = 0.1,
h = 0.0125 and dt = 0.0001

x t Present Ref [27] Ref [15] Exact

0.25

0.4 0.308894 0.30415 0.31215 0.30889
0.6 0.240739 0.23629 0.24360 0.24074
0.8 0.195675 0.19150 0.19815 0.19568
1.0 0.162564 0.15861 0.16473 0.16256

0.50

0.4 0.569632 0.56711 0.57293 0.56963
0.6 0.447205 0.44360 0.45088 0.44721
0.8 0.359236 0.35486 0.36286 0.35924
1.0 0.291916 0.28710 0.29532 0.29192

0.75

0.4 0.625437 0.61874 0.63038 0.62544
0.6 0.487214 0.47855 0.49268 0.48721
0.8 0.373921 0.36467 0.37912 0.37392
1.0 0.291916 0.27860 0.29204 0.28747
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Table 4. Comparison of the computed results with the literature
and exact solution at various time for Problem 1 with v = 0.01
and h = 0.01

x t
dt = 0.004 dt = 0.001

Exact
Present CFEM[25] GFEM[25] Ref[26] Ref[17]

0.10
0.5 0.1211461 0.1211626 0.1211416 0.12079 0.12114 0.1211435
2.0 0.0429641 0.0429683 0.0429634 0.04300 0.04295 0.0429637
4.0 0.0231043 0.0231057 0.0231041 0.02324 0.02310 0.0231042

0.30
0.5 0.3602728 0.3602699 0.3602668 0.36113 0.36027 0.3602710
2.0 0.1288405 0.1288446 0.1288389 0.12887 0.12882 0.1288398
4.0 0.0693085 0.0693104 0.0693080 0.06935 0.06930 0.0693082

0.50
0.5 0.5886785 0.5886937 0.5886975 0.59559 0.58870 0.5886957
2.0 0.2145588 0.2145611 0.2145565 0.21468 0.21455 0.2145580
4.0 0.1154950 0.1154973 0.1154943 0.11550 0.11549 0.1154947

0.70
0.5 0.7933729 0.7935009 0.7935022 0.81257 0.79354 0.7934934
2.0 0.2999979 0.2999991 0.2999958 0.30075 0.29999 0.2999977
4.0 0.1612150 0.1612261 0.1612140 0.16125 0.16121 0.1612146

0.90
0.5 0.9378161 0.9382118 0.9381339 0.97184 0.93822 0.9381057
2.0 0.3732779 0.3734554 0.3732749 0.37452 0.37328 0.3732776
4.0 0.1660592 0.1659905 0.1660577 0.16515 0.16605 0.1660587

Table 5. Comparison of the computed results with the literature
and exact solution at various times for Problem 1 with v = 0.004
and h = 0.01

x t
dt = 0.0125 dt = 0.001

Exact
Present CFEM[25] GFEM[25] Ref[29]

0.25

1 0.18891 0.18889 0.18893 0.18891 0.18889
5 0.04697 0.04698 0.04698 0.04698 0.04697
10 0.02421 0.02422 0.02422 0.02422 0.02421
15 0.01631 0.01632 0.01632 0.01632 0.01631

0.50

1 0.37567 0.37594 0.37603 0.37598 0.37596
5 0.09393 0.09394 0.09395 0.09394 0.09393
10 0.04843 0.04844 0.04844 0.04843 0.04843
15 0.03259 0.03260 0.03260 0.03259 0.03259

0.75

1 0.55884 0.55880 0.55892 0.55883 0.55881
5 0.14089 0.14089 0.14090 0.14089 0.14089
10 0.07220 0.07221 0.07221 0.07221 0.07220
15 0.04677 0.04678 0.04678 0.04678 0.04677
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Figure 1. Solutions for various physical cases of Problem 1 with
t = 1, dt = 0.01 and h = 0.0025
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Figure 2. Advection dominated results of Problem 1 with h =
0.0015, dt = 0.001 and v = 0.001
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Figure 3. Absolute errors produced with v = 0.1, dt = 0.001,
t = 0.1 and h = 0.01 for Problem 1
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Figure 4. Absolute errors produced with v = 0.01, dt = 0.001,
t = 0.1 and h = 0.01 for Problem 1
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Problem 2 [22]: Let us consider the Burgers equation (1.1) with the initial con-
dition

u(x, 0) = 4x(1− x), 0 ≤ x ≤ 1

and homogeneous boundary conditions,

u(0, t) = u(1, t) = 0, t ≥ 0

The coefficients of the Fourier series solution (4.1) of this problem are

a0 =

∫ 1

0
exp{−x2(3v)−1[3− 2x]}dx

an = 2

∫ 1

0
exp{−x2(3v)−1[3− 2x]}cos(nπx)dx, n = 1, 2, 3, . . .

In this problem, the numerical results have also been displayed and compared for
the various parameters. The accuracy of the present method has been examined
by comparing with literature [15, 17, 25, 26, 27, 30, 31] at v = 1, 0.1, 0.01 and v =
0.004. The numerical solutions revealed that our method offer highly significant
accuracy comparison to the literature even less number of elements are considered
as seen in Tables 6–9

Note that less elements are considered in both space and time for the present
numerical algorithm than the rival methods. Advection-dominated cases of Prob-
lem 2 are illustrated in Figures 6 and 5. The current algorithm has high ability
to produce physically accepted results as seen in the figures. Error distribution
through the given domain has been shown in Figures 7 and 8 for the kinematic
viscosity constant values of v = 0.1 and v = 0.01. Then for the same parameters
values of m, dt and t the numerical results have shown to give better approxi-
mation to the exact solution with v of 0.1 compared to slightly less kinematic
viscosity constants.

Table 6. Comparison of the computed results with the literature
and exact solution at different times for Problem 2 with v = 1 and
h = 0.01

x t
dt = 0.0002 dt = 0.0001

Exacth = 0.01 h = 0.0125 h = 0.25

Present CFEM[25] GFEM[25] Ref[15] Ref[30]

0.25

0.05 0.4262854 0.4262723 0.4262854 0.42629 0.4262864 0.4262856
0.10 0.2614797 0.2614633 0.2614797 0.26149 0.2614801 0.2614798
0.15 0.1614775 0.1614605 0.1614775 0.16148 0.1614777 0.1614776
0.25 0.0610875 0.0610757 0.0610875 0.06109 0.0610875 0.0610875

0.50

0.05 0.6280837 0.6280605 0.6280837 0.62809 0.6280846 0.6280837
0.10 0.3834223 0.3833919 0.3834223 0.38343 0.3834228 0.3834224
0.15 0.2340552 0.2340271 0.2340552 0.23406 0.2340554 0.2340553
0.25 0.0872326 0.0872150 0.0872326 0.08724 0.0872327 0.0872327

0.75

0.05 0.4652527 0.4652268 0.4652526 0.46526 0.4652528 0.4652526
0.10 0.2815726 0.2815447 0.2815726 0.28158 0.2815727 0.2815726
0.15 0.1697382 0.1697150 0.1697382 0.16974 0.1697383 0.1697382
0.25 0.0622898 0.0622768 0.0622898 0.06229 0.0622898 0.0622898
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Table 7. Comparison of the computed results with the literature
and exact solution at various times for Problem 2 with v = 0.1
and h = 0.0125

x t
dt = 0.001 dt = 0.0001

Exact
Present CFEM[25] GFEM[25] Ref[31] Ref[27]

0.25

0.4 0.3175230 0.3175299 0.3175226 0.32091 0.31749 0.3175229
0.6 0.2461385 0.2461491 0.2461383 0.24910 0.24612 0.2461385
0.8 0.1995553 0.1995677 0.1995552 0.20211 0.19954 0.1995553
1.0 0.1655987 0.1656106 0.1655986 0.16782 0.16559 0.1655986
3.0 0.0277587 0.0277529 0.0277587 0.02828 0.02776 0.0277587

0.50

0.4 0.5845376 0.5845555 0.5845372 0.58788 0.58448 0.5845373
0.6 0.4579766 0.4579982 0.4579763 0.46174 0.45793 0.4579764
0.8 0.3673983 0.3674150 0.3673981 0.37111 0.36736 0.3673982
1.0 0.2983432 0.2983514 0.2983430 0.30183 0.29831 0.2983431
3.0 0.0410650 0.0410543 0.0410650 0.04185 0.04106 0.0410650

0.75

0.4 0.6456160 0.6455490 0.6456160 0.65054 0.64547 0.6456155
0.6 0.5026761 0.5025960 0.5026760 0.50825 0.50255 0.5026758
0.8 0.3853358 0.3852565 0.3853356 0.39068 0.38523 0.3853355
1.0 0.2958569 0.2957873 0.2958567 0.30057 0.29578 0.2958567
3.0 0.0304396 0.0304300 0.0304396 0.03106 0.03044 0.0304396

Table 8. Comparison of the computed results with the literature
and exact solution at different times for Problem 2 with v = 0.01
and h = 0.01

x t
dt = 0.002 dt = 0.001

Exact
Present CFEM[25] GFEM[25] Ref[26] Ref[17]

0.10
0.5 0.128467 0.128486 0.128462 0.12808 0.12846 0.128462
2.0 0.043814 0.043819 0.043814 0.04388 0.04379 0.043814
4.0 0.023345 0.023347 0.023345 0.02351 0.02334 0.023345

0.30
0.5 0.378489 0.378492 0.378488 0.37956 0.37849 0.378489
2.0 0.131346 0.131351 0,131345 0.13129 0.13131 0.131345
4.0 0.070027 0.070030 0.070027 0.07009 0.07002 0.070027

0.50
0.5 0.609905 0.609886 0.609886 0.61768 0.60991 0.609886
2.0 0.218589 0.218593 0.218588 0.21873 0.21858 0.218588
4.0 0.116682 0.116685 0.116682 0.11671 0.11667 0.116682

0.70
0.5 0.809878 0.809785 0.809784 0.83022 0.80986 0.809782
2.0 0.305349 0.305352 0.305348 0.30614 0.30534 0.305348
4.0 0.162878 0.162890 0.162878 0.16293 0.16287 0.162878

0.90
0.5 0.946085 0.946090 0.946019 0.98068 0.94615 0.946014
2.0 0.380282 0.380461 0.380273 0.38163 0.38027 0.380274
4.0 0.168578 0.168511 0.168577 0.16766 0.16857 0.168577
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Table 9. Comparison of the computed results with the literature
and exact solution at various times for Problem 2 with v = 0.004
and h = 0.01

x t
dt = 0.01 dt = 0.001

Exact
Present CFEM[25] GFEM[25] Ref[29]

0.25

1 0.19640 0.19639 0.19638 0.19636 0.19641
5 0.04744 0.04744 0.04744 0.04744 0.04744
10 0.02434 0.02434 0.02434 0.02434 0.02434
15 0.01637 0.01637 0.01637 0.01637 0.01637

0.50

1 0.38835 0.38847 0.38847 0.38842 0.38846
5 0.09486 0.09486 0.09486 0.09491 0.09493
10 0.04868 0.04869 0.04868 0.04868 0.04869
15 0.03270 0.03271 0.03271 0.03270 0.03270

0.75

1 0.57209 0.57318 0.57319 0.57312 0.57315
5 0.14225 0.14225 0.14224 0.14224 0.14225
10 0.07258 0.07259 0.07258 0.07258 0.07257
15 0.04696 0.04697 0.04696 0.04696 0.04695
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Figure 5. Solutions for various physical cases of Problem 2 with
t = 0.8, dt = 0.008 and h = 0.0025
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Figure 6. Advection dominated results of Problem 2 with h =
0.0015, dt = 0.001 and v = 0.001
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Figure 7. Absolute errors produced with v = 0.1, dt = 0.001,
t = 0.1 and h = 0.01 for Problem 2
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Figure 8. Absolute errors produced with v = 0.01, dt = 0.001,
t = 0.1 and h = 0.01 for Problem 2

5. Conclusions

In this paper, to capture the behaviour of the nonlinear advection–diffusion
process, a fourth-order finite difference scheme has been presented. In the pro-
cess of producing a compact scheme, the Padé approximation has been applied
to maintain the fourth-order accuracy in space. Numerical treatments revealed
that the currently developed scheme is of oscillation free for advection dominated
problems. The present approach has been shown to be unconditionally stable
based on the von Neumann stability analysis. The current compact scheme has
proven to yield precise and more accurate results in comparison with the litera-
ture.
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