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SPECTRAL PROPERTIES FOR THE EQUATION OF

VIBRATING BEAM WITH A SPECTRAL PARAMETER IN

THE BOUNDARY CONDITIONS

VUQAR A. MEKHRABOV

Abstract. In this paper we consider the spectral problem for ordinary
differential equation of fourth order with a spectral parameter in the
boundary conditions. This problem arises when describing the bending
vibrations of a homogeneous rod, in cross-sections of which the longitu-
dinal force acts, the left end of which is rigidly fixed, and the inertial
mass is concentrated on the right end and also at this end a tracking
force acts. We study the location of eigenvalues on the real axis, find
the multiplicities of all eigenvalues, examine the oscillation properties of
eigenfunctions and establish sufficient conditions for the subsystems of
root functions of this problem to form a basis in Lp, 1 < p <∞.

1. Introduction

We consider the following eigenvalue problem:

y(4)(x) − (q(x)y′(x))′ = λy(x), 0 < x < 1, (1.1)

U1(λ, y) ≡ y(0) = 0, U2(λ, y) ≡ y′(0) = 0, (1.2)

U3(λ, y) ≡ y′′(1)− a1λy
′(1) = 0, (1.3)

U4(λ, y) ≡ Ty(1)− a2λy(1) = 0, (1.4)

where λ ∈ C is a spectral parameter, Ty ≡ y′′′− qy′, q(x) is a positive absolutely
continuous function on the interval [0, 1], a1, a2 are real constants such that a1 <
0, a2 > 0.

Problem (1.1)-(1.4) arises when describing the bending vibrations of a homo-
geneous rod, in cross-sections of which the longitudinal force acts, the left end of
which is rigidly fixed, and the inertial mass is concentrated on the right end and
also at this end a tracking force acts (see, for example, [17, p. 152-154]).

The study of the spectral properties of ordinary differential operators with
a spectral parameter in the boundary conditions has a long history. Problems
of this type arise from the specific problems of mechanics and mathematical
physics (see [17, 18, 20, 26, 29, 31-33] and others). For the Sturm-Liouville
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problems with a spectral parameter in the boundary conditions, the spectral
properties, including the basis properties of root functions in various functional
spaces, are well studied (see [3-6, 15, 16, 18-20, 25, 27, 30, 33]). The spectral
properties of the boundary value problems for ordinary differential equations of
fourth order with a spectral parameter in the boundary conditions were studied
in [1, 2, 7-11, 14, 21-24]. The basis properties of systems of eigenfunctions in
Lp(0, 1), 1 < p < ∞ of considered problems were studied in [1, 2, 8-11, 23]. In
these works sufficient conditions were found for subsystems of eigenfunctions to
form a basis in Lp(0, 1), 1 < p <∞.

In [7, 9-11], boundary value problems for ordinary differential equations of
fourth order with a spectral parameter contained in two of boundary conditions
were considered. In [7, 10, 11] the establishment of sufficient conditions for the
systems of eigenfunctions of the problems under consideration after removing
two functions to form a basis in the space Lp(0, 1), 1 < p <∞ was based on the
rough asymptotic formulas for eigenvalues and eigenfunctions, and the oscillation
properties of eigenfunctions and their derivatives. In [9], this was based on finer
asymptotic formulas for eigenvalues and eigenfunctions.

Note that signs of the parameters a1 and a2 play an important role. If a1 > 0
and a2 < 0, then problem (1.1)-(1.4) can be treated as a spectral problem for
a self-adjoint operator in the Hilbert space H = L2(0, 1) ⊕ C2. If a1 > 0 and
a2 > 0, then this problem is equivalent to a spectral problem for the J-self-adjoint
operator in the Pontryagin space Π1 = L2(0, 1)⊕C2 with the corresponding inner
product. If a1 < 0 and a2 > 0, then problem (1.1)-(1.4) is reduced to a spectral
problem for the J-self-adjoint operator in the Pontryagin space Π2 = L2(0, 1)⊕C2.
In the case a1 > 0 and a2 < 0 all eigenvalues of problem (1.1)-(1.4) are positive,
simple, and form an infinitely increasing sequence. In the case a1 > 0 and a2 > 0
problem (1.1)-(1.4) has one negative simple eigenvalue and a sequence of positive
and simple eigenvalues tends to infinity [9]. In the case a1 < 0 and a2 > 0 we
show that this problem has two negative simple eigenvalues and a sequence of
positive and simple eigenvalues tends to infinity.

The purpose of the present paper is to study the location of eigenvalues on
real axis, the structure of root subspaces and the basis properties of subsystems
of eigenfunctions of problem (1.1)-(1.4), which is traditional in spectral theory.

2. Preliminaries

Along with problem (1.1)-(1.4) we consider the following spectral problem

y(4)(x) − (q(x)y′(x))′ = λy(x), 0 < x < 1,
y(0) = y′(0) = 0,

y′(1) cos γ + y′′(1) sin γ = 0,
T y(1)− a2λy(1) = 0,

(2.1)

where γ ∈ [0, π2 ]. A more general form of the problem (2.1) was considered in [2].
The following theorem is a special case of the central result of [2].

Theorem 2.1. The eigenvalues of the spectral problem (2.1) are real, simple and
form an infinitely increasing sequence λ1(γ), λ2(γ), . . . , λk(γ), . . . . Moreover,
for each γ ∈ (0, π/2) these eigenvalues have the following location on the real
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axis:

λ1(0) < λ1(γ) < λ1 (π/2) < 0 < λ2 (π/2) < λ2(γ) < λ2(0) < . . . . (2.2)

We need the following result which is basic in the sequel.
Theorem 2.2. [9, Theorem 3.1] For each fixed λ ∈ C there exists a nontrivial
solution y(x, λ) of problem (1.1), (1.2), (1.4) which is unique up to a constant
coefficient.
Remark 2.1. Without loss of generality we can assume that the function y(x, λ)
for each fixed x ∈ [0, 1] is as an entire function of λ.

Let Dk = (λk−1(0), λk(0)), k = 1, 2, . . . , where λ0(0) = −∞.
Obviously, the eigenvalues λk(0) and λk(π/2) of the spectral problem (2.1) for

γ = 0 and γ = π/2 are zeros of entire functions y′(1, λ) and y′′(1, λ), respectively.

We see that the function G(λ) = y′′(1,λ)
y′(1,λ) is well defined for λ ∈ D ≡ (C\R) ∪( ∞⋃

k=1

Dk

)
. Moreover, λk(π/2) and λk(0), k ∈ N, are zeros and poles of the

function G(λ), respectively.
Lemma 2.1. The following relations hold:

dG(λ)

dλ
= − 1

y′2(1, λ)


l∫

0

y2(x, λ) dx− a2y
2(1, λ)

 , λ ∈ D. (2.3)

lim
λ→−∞

G(λ) = +∞. (2.4)

The proof of this lemma is similar to that of [7, Lemmas 3.3 and 3.4].

The following result directly follows from Theorems 2.1, 2.2, Remark 2.1 and
Lemma 2.1.
Lemma 2.2. The following relations hold:

(i) G(λ) > 0 for λ ∈ (−∞, λ1(0)) and

lim
λ→λ1(0)−0

G(λ) = +∞;

(ii) G(λ) < 0 for λ ∈ (λ1(0), λ1(π/2)),
G(λ) > 0 for λ ∈ (λ1(π/2), λ2(π/2)),
G(λ) < 0 for λ ∈ (λ2(π/2), λ2(0)) and

lim
λ→λ1(0)+0

G(λ) = lim
λ→λ2(0)−0

G(λ) = −∞;

(iii) G(λ) > 0 for λ ∈ (λk(0), λk+1(π/2)),
G(λ) < 0 for λ ∈ (λk+1(π/2), λk+1(0)) and

lim
λ→λk(0)+0

G(λ) = +∞, lim
λ→λk+1(0)−0

G(λ) = −∞, k = 2, 3, . . . .

Lemma 2.3. [9, Lemma 3.3] The following representation holds:

G(λ) = G(0) +

∞∑
k=1

λ ck
λk(0)(λ− λk(0))

, λ ∈ D, (2.5)
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where ck = res
λ=λk(0)

G(λ), and c1 < 0, ck > 0 for k ≥ 2.

Lemma 2.4. G(λ) is a concave function in the interval (λ1(0), λ2(0)).
Proof. It follows from (2.5) that

d2G(λ)

dλ2
= −2

∞∑
k=1

ck
(λ− λk(0))3

.

Hence from this relation we get

d2G(λ)

dλ2
> 0 for λ ∈ (λ1(0), λ2(0)).

The proof of this lemma is complete.

3. The structure of root subspaces of the boundary value
problem (1.1)-(1.4)

Lemma 3.1. The eigenvalues of the boundary value problem (1.1)-(1.4) are real,
simple and form at most a countable set without a finite limit point.
Proof. It is obvious that the eigenvalues of problem (1.1)-(1.4) are roots of the
equation

y′′(1, λ)− a1λ y
′(1, λ) = 0. (3.1)

Let λ be the nonreal eigenvalue of problem (1.1)-(1.4). Since the coefficients
q(x), a1, a2 are real it follows that λ̄ is also an eigenvalue of this problem and

y(x, λ̄) = y(x, λ).
By virtue of [1, formula (3.6)] for each µ, λ ∈ C we have

−y′′(1, µ) y′(1, λ) + y′′(1, λ) y′(1, µ) =

(µ− λ)

{
1∫
0

y(x, µ)y(x, λ)dx− a2y(1, µ)y(1, λ)

}
.

(3.2)

Putting µ = λ̄ in (3.2) we obtain

− y′′(1, λ) y′(1, λ) + y′′(1, λ) y′(1, λ) =

(λ̄− λ)

{
1∫
0

|y(x, λ)|2dx− a2|y(1, λ)|2
}
.

(3.3)

By virtue of (3.1) from (3.3) we get

− a1 (λ̄− λ) |y′(1, λ)|2 = (λ̄− λ)


1∫

0

|y(x, λ)|2dx− a2|y(1, λ)|2
 ,

which implies that

1∫
0

|y(x, λ)|2dx+ a1 |y′(1, λ)|2 − a2|y(1, λ)|2 = 0, (3.4)

in view of the condition λ̄ 6= λ.
On the other hand multiplying both sides of equation (1.1) by y(x, λ), inte-

grating the resulting equality in the range from 0 to 1, using the formula for
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integration by parts, and by taking into account the boundary conditions (1.2)
and (1.4), we obtain

1∫
0

|y′′(x, λ)|2dx+
1∫
0

q(x)|y′(x, λ)|2dx =

λ

{
1∫
0

|y(x, λ)|2dx+ a1|y′(1, λ)|2 − a2|y(1, λ)|2
}
.

(3.5)

It follows from (3.4) and (3.5) that

1∫
0

|y′′(x, λ)|2dx+

1∫
0

q(x)|y′(x, λ)|2dx = 0,

which is impossible in view of condition (1.2). Hence the eigenvalues of problem
(1.1)-(1.4) are real.

The entire function occurring on the left-hand side in Eq. (3.1) does not vanish
for nonreal λ. Hence, it does not vanish identically. Consequently, its zeros form
at most a countable set without a finite limit point.
Remark 3.1. If λ is an eigenvalue of problem (1.1)-(1.4), then it follows from
(3.1) and (2.2) that y′(1, λ) 6= 0. Consequently, each root of Eq. (3.1) (given its
multiplicity) is also root of the equation

G(λ) = a1λ. (3.6)

To prove the simplicity of eigenvalues of problem (1.1)-(1.4), by virtue of Re-
mark 3.1, it suffices to show that Eq. (3.6) has only simple roots.

If λ = λ̃ is a multiple root of Eq. (3.6), then we have

G(λ̃) = a1λ̃ and G′(λ̃) = a1. (3.7)

Hence it follows from (2.3) that

− 1

y′2(1, λ̃)


l∫

0

y2(x, λ̃) dx− a2y
2(1, λ̃)

 = a1,

which implies that

1∫
0

y2(x, λ̃)dx− a2y
2(1, λ̃) + a1y

′2(1, λ̃) = 0. (3.8)

Since all eigenvalues of problem (1.1)-(1.4) are real it follows from (3.5) and
(3.8) that

1∫
0

y′′2(x, λ̃)dx+

1∫
0

q(x)y′2(x, λ̃)dx = 0.

By (1.2) from the last relation we get y(x, λ̃) ≡ 0 which contradicts the condition

y(x, λ̃) 6≡ 0. The proof of this lemma is complete.
Lemma 3.2. For each k ∈ N, k 6= 2, the eigenvalue problem (1.1)-(1.4) can have
only one eigenvalue in the interval Dk.
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Proof. Let λ̃ ∈ D1 be an eigenvalue of problem (1.1)-(1.4), i.e. G(λ̃) − a1λ̃ = 0.

Since λ̃ < 0 it follows from (3.5) that

1∫
0

y2(x, λ̃) dx− a2y
2(1, λ̃) + a1y

′2(1, λ̃) < 0.

By Remark 3.1, we can rewrite this relation in the following form

−

1∫
0

y2(x, λ̃) dx− a2y
2(1, λ̃)

y′2(1, λ̃)
− a1 > 0.

Hence it follows from (2.3) that

G′(λ̃)− a1 > 0. (3.9)

Therefore, by virtue of (3.9), Eq. (3.6) has a unique solution λ̃ in D1.
The assertion of this lemma for k = 3, 4, . . . , is proved in a similar way. The

proof of lemma is complete.
Theorem 3.1. There exists an unboundedly increasing sequence {λk}∞k=1 of
eigenvalues of the boundary value problem (1.1)-(1.4) such that

λ1 ∈ (−∞, λ1(0)), λ2 ∈ (λ1(π/2), 0)) ,
λk ∈ (λk−1(π/2), λk−1(0)) , k = 3, 4, . . . .

(3.10)

Proof. By virtue of Lemma 2.4 we have G(λ) > 0 for λ ∈ D1. Moreover, by
following the arguments in Lemma 3.4 of [7] one can justify that

G(λ) =
√

2 4
√
|λ|

(
1 +O

(
1

4
√
|λ|

))
as λ→ −∞. (3.11)

By (3.11) and the condition a1 < 0 it follows from Lemma 3.2 that Eq. (3.6) has
only one solution λ1 in the interval D1.

In view of Lemma 2.3 the function G(λ) is concave in the interval D2. More-
over, by Lemma 2.4 we have G(λ) < 0 for λ ∈ (λ1(0), λ1(π/2)), G(λ) > 0 for
λ ∈ (λ1(π/2), λ2(π/2)), G(λ) < 0 for λ ∈ (λ2(π/2), λ2(0)) and

lim
λ→λ1(0)+0

G(λ) = lim
λ→λ2(0)−0

G(λ) = −∞;

Hence it follows from Lemma 3.1 that Eq. (3.6) has two simple roots λ2 ∈
(λ1(π/2), 0) and λ3 ∈ (λ2(π/2), λ2(0)).

Since the function G(λ) is continuous in Dk, k ∈ N, it follows from assertion
(iii) of Lemma 2.4 that this function takes each value in (−∞,+∞) at some point
in the interval Dk, k = 3, 4, . . . . Then by Lemma 3.2 Eq. (3.6) has only one
simple root λk+1 in each interval Dk, k = 3, 4, . . . . Moreover, since a1 < 0 and
the function G(λ) takes the value 0 in a unique point λk(π/2), k = 3, 4, . . . , it
follows that λk+1 ∈ (λk(π/2)) , λk(0)) for k = 3, 4, . . . . The proof of this theorem
is complete.
Theorem 3.2. One has the asymptotic formulas

4
√
λk = (k − 3/2)π +O (1/k) , (3.12)
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yk(x) = sin(k − 3/2)πx− cos(k − 3/2)πx+ e−(k−3/2)πx +

+ (−1)k+1e−(k−3/2)π(1−x) +O( 1/k),

(3.13)

where relation (3.13) holds uniformly for x ∈ [0, 1].
The proof of this theorem is similar to that of [2, Theorem 5.1] with the use

of Theorem 3.1.

4. Basis properties of subsystems of eigenfunctions of the
boundary value problem (1.1)-(1.4)

The eigenvalue problem (1.1)-(1.4) can be reduced to the eigenvalue problem
for the linear operator L in the Hilbert space H = L2(0, 1) ⊕ C2 with the inner
product

(û, v̂) = ({y,m, n}, {v, s, t}) = (y, v)L2 + a−1
1 ms̄ + a−1

2 nt̄, (4.1)

where

Lŷ = L{y,m, n} = {(Ty(x))′ , y′′(1), T y(1)}
is an operator with the domain

D(L) = {{y (x), m, n} : y ∈W 4
2 (0, 1), (Ty(x))′ ∈ L2(0, 1),

y(0) = y′(0) = 0, m = a1y
′(1), n = a2y(1)}

dense everywhere in H. L is a closed operator in H with compact resolvent. The
eigenvalue problem for the operator L is adequate to problem (1.1)-(1.4), i.e. the
spectra of operator L and problem (1.1)-(1.4) coincide, as do their multiplicities;
between the eigenvectors of operator L and the eigenfunctions of problem (1.1)-
(1.4), there is a one-to-one correspondence

yk(x)↔ {yk(x), mk, nk}, mk = a1y
′
k(1), nk = a2yk (1).

Since a1 < 0 and a2 > 0, L is a nonself-adjoint operator in H. Then in this
case we define an operator J : H → H as follows:

J{y,m;n} = {y,−m,−n}.

J is unitary and symmetric operator in H. Its spectrum consists of two eigen-
values: − 1 with multiplicity 2 and + 1 with infinite multiplicity. This operator
generates the Pontryagin space Π2 = L2(0, 1)⊕ C2 with inner product [12]

[û, v̂] = (û, v̂)Π2 = ({y,m, n}, {u, s, t})Π2 = (u, v)L2 + a−1
1 ms̄ − a−1

2 nt̄, (4.2)

Theorem 4.1. The operator L is J−self-adjoint in Π2.
Proof. By virtue [16, Theorem 2.2] JL is self-adjoint in H. Then, it follows from
[13, Section 3, Corollary to Theorem 3.2] that operator L is J-self-adjoint in Π2.

Theorem 4.2. Let L∗ be the adjoint operator of L in H. Then L∗ = JLJ .
Moreover, the system of eigenvectors {ŷk}∞k=1, ŷk = {yk,mk, nk}, of L forms a
Riesz basis (after normalization) in H.
Proof. The proof of the first part of this theorem follows from [13, Section 3,
Propostion 50], and the second part from [13, Section 4, Theorem 4.2].
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Since ŷk = {yk,mk, nk}, mk = a1y
′
k(1), nk = a2yk(1), k ∈ N, is an eigenvector

corresponding to the eigenvalue λk of the operator L it follows that

Lŷk = λkŷk, k ∈ N. (4.3)

If {v̂∗k}∞k=1, v̂∗k = {v∗k, s∗k, t∗k}, is the system of eigenvectors of the operator L∗,
then we have

L∗v̂∗k = λkv̂
∗
k, k ∈ N. (4.4)

Lemma 4.1. Elements of the system {v̂k}∞k=1, v̂k = {vk, sk, tk}, which is adjoint
to the system {ŷk}∞k=1, are given by the formula

v̂k = δ−1
k ŷk, k ∈ N, (4.5)

where δk = [ŷk, ŷk], k ∈ N.
Proof. It follows from Theorem 4.2 and relations (4.1)-(4.4) that

v̂∗k = Jŷk, k ∈ N. (4.6)

By virtue of Theorem 4.1 the operator L is J− self-adjoint in the Pontryagin
space Π2. Hence the eigenvectors ŷk and ŷl, k 6= l, of this operator corresponding
to the eigenvalues λk and λl are J-orthogonal in Π2. Then by (4.2) we have

[ŷk, ŷl] = 0. (4.7)

It follows from Lemma 3.1 that for each k ∈ N the eigenvalue λk of the operator
L is simple. Then by virtue of formula (3.6) we get

G′(λk)− a1 6= 0. (4.8)

Hence by (2.3) it follows from (4.8) that

||yk||2L2
+ a1y

′2
k (1)− a2y

2
k(1) 6= 0,

which implies that

[ŷk, ŷk] = ||yk||2L2
+ a1y

′2
k (1)− a2y

2
k(1) 6= 0, (4.9)

in view of (4.2). Thus the formula (4.5) directly follows from relations (4.2),
(4.6), (4.7) and (4.9). The proof of this lemma is complete.

We define numbers ∆r, l, r, l ∈ N, as follows:

∆r, l =

∣∣∣∣ sr sl
tr tl

∣∣∣∣ . (4.10)

Theorem 4.3. Let r and l (r 6= l) be arbitrary fixed natural numbers. If ∆r, l 6= 0,
then the system of eigenfunctions {yk(x)}∞k=1, k 6=r, l of the spectral problem (1.1)-

(1.4) forms a basis in the space Lp(0, 1), 1 < p < ∞, which is an unconditional
basis in the space L2(0, 1); if ∆r, l = 0, then this system is incomplete and non-
minimal in Lp(0, 1), 1 < p <∞.

The proof of Theorem 4.3 for p = 2 is similar to that of [5, Theorem 4.1] with
the use of Theorem 4.2 and relation (4.5), for p ∈ (1,∞) and p 6= 2 is similar to
that of [23, Theorem 5.1] with the use of formulas (3.12), (3.13).

For brevity, we introduce the notation σr, l = a1a2δ
−1
r δ−1

l y′r(1)y′l(1). Then, by
Remark 3.1 and relation (4.8) it follows from (4.9) that σr, l 6= 0 and

∆r, l = δ−1
r δ−1

l

∣∣∣∣ mr ml

nr nl

∣∣∣∣ = σr, l

{
yr(1)

y′r(1)
− yl(1)

y′l(1)

}
. (4.11)
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Then by (4.11) we have

∆r, l = σr, l ∆̃r, l, (4.12)

where

∆̃r, l =

{
yr(1)

y′r(1)
− yl(1)

y′l(1)

}
.

It follows from the proof of [5, Theorem 4.1] that the system

{uk(x)}∞k=1, k 6=r, l , uk(x) =
{
vk(x)−∆−1

r, l {∆k, lvr(x) + ∆r, kvl(x)}
}
,

is adjoint to the system {yk(x)}∞k=1, k 6=r, l.

Remark 4.1. By virtue of Theorem 4.3 and the relation (4.12) the fulfillment of

the condition ∆̃r, l 6= 0 is necessary and sufficient for the system {yk(x)}∞k=1, k ner, l

to form a basis in the space Lp(0, 1), 1 < p < ∞.
Remark 4.2. It should be noted that, using the asymptotic formulas (3.12)

and (3.13), it is impossible to find a condition under which the relation ∆̃r, l 6=
0 is satisfied. Therefore, in order to establish the conditions under which the
system of eigenfunctions {yk(x)}∞k=1, k 6=r, l of problem (1.1)-(1.4) forms a basis in

Lp(0, 1), 1 < p < ∞, we need to obtain the asymptotic formula for the relation
yk(1)
y′k(1)

up to the term with 1
k2

.

Since all the eigenvalues of problem (1.1)-(1.4) are positive, except the first
two eigenvalues, in equation (1.1) we set λ = ρ4 with ρ > 0. As is known (see
[28, Ch. II, § 4.5 Theorem 1 and § 4.6 formula (27)-(29)]), equation (1.1) has four
linearly independent solutions zk(x) = zk(x, ρ), k = 1, 2, 3, 4, regular in ρ (for
sufficiently large ρ > 0) and satisfying the relations

z
(s)
k (x, ρ) = (ρωk)

seρωkx

{
1 +

q0(x)

4ρωk
+O

(
1

ρ2

)}
, k = 1, 4, k = 0, 3, (4.13)

where q0(x) =
x∫
0

q(t)dt, ωk, k = 1, 2, 3, 4, are the distinct 4th roots of unity. We

can assume that ω1 = −ω4 = −1, ω2 = −ω3 = −i.
By virtue of (1.2)-(1.4) we get

U1(zk, ρ) = zk(0, ρ), U2(zk, ρ) = z′k(0, ρ),
U3(zk, ρ) = z′′k(1, ρ)− a1z

′
k(1, ρ)

U4(zk, ρ) = z′′′k (1, ρ)− q(1)z′k(1, ρ)− a2ρ
4zk(1, ρ).

(4.14)

It is obvious that the eigenfunction y(x) = y(x, ρ) corresponding to the eigen-
value λ = ρ4 of problem (1.2)-(1.4) can be represented in the form

y(x, ρ) =

∣∣∣∣∣∣∣∣
U1(z1, ρ) U1(z2, ρ) U1(y3, ρ) U1(z4, ρ)
z1(x) z2(x) z3(x) z4(x)

U3(z1, ρ) U3(z2, ρ) U3(z3, ρ) U3(z4, ρ)
U4(z1, ρ) U4(z2, ρ) U4(z3, ρ) U4(z4, ρ)

∣∣∣∣∣∣∣∣ , (4.15)

which implies that

y′(x, ρ) =

∣∣∣∣∣∣∣∣
U1(z1, ρ) U1(z2, ρ) U1(y3, ρ) U1(z4, ρ)
z′1(x) z′2(x) z′3(x) z′4(x)
U3(z1, ρ) U3(z2, ρ) U3(z3, ρ) U3(z4, ρ)
U4(z1, ρ) U4(z2, ρ) U4(z3, ρ) U4(z4, ρ)

∣∣∣∣∣∣∣∣ . (4.16)
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By following the arguments in [9, Theorem 5.4] and using (4.13)-(4.16), one
can justify the following asymptotic formulas

y(1) = − 4a1iρ
8eρ
(

1 +
q0

4ρ

)(
1 +O

(
ρ−2
))
,

y′(1) = − 4a2iρ
7eρ
(

1 +
q0

4ρ

) {
1 − 1

a2ρ
+O

(
ρ−2
)}

.

where q0 =
1∫
0

q(x)dx. Hence it follows from the last relations that

yk(1)

y′k(1)
=
a1

a2
ρk

(
1 +

1

a2ρk
+O

(
1

ρ2
k

))
, (4.17)

where ρk = 4
√
λk.

Theorem 4.4. One has the following assertions:
(i) there exists k0 ∈ N such that for any r, l > k0 (r > l) the system of eigen-

functions {yk(x)}∞k=1, k 6=r, l of problem (1.1)-(1.4) forms a basis in Lp(0, 1), 1 <

p <∞, which is an unconditional basis in L2(0, 1);
(ii) for each fixed l ∈ N there exists kl ∈ N such that for any r > kl the

system of eigenfunctions {yk(x)}∞k=1, k 6=r, l of problem (1.1)-(1.4) forms a basis in

Lp(0, 1), 1 < p <∞, which is an unconditional basis in L2(0, 1).
Proof. It follows from (4.17) and (3.12) that there exists a natural number k0

such that for any r, l > k0, r > l, we have

∆̃r,l = yr(1)
y′r(1) −

yl(1)
y′l(1)

= a1
a2
ρr

(
1 + 1

a2ρr
+O

(
1
ρ2r

))
−

a1
a2
ρl

(
1 + 1

a2ρl
+O

(
1
ρ2l

))
= a1

a2

(
ρr − ρl +O

(
1
r

)
+O

(
1
l

))
=

a1
a2

{
(r − 3/2)π − (l − 3/2)π +O

(
1
r

)
+O

(
1
l

)}
>

a1
a2

(
(r − l)π − M

r −
M
l

)
> 0,

(4.18)

where M > 0 is some constant. Then the statement (i) of this theorem follows
from the last relation in view of Remark 4.1.

By (4.18) we have

∆r,l =
a1

a2

(
ρr − ρl +O

(
1

ρr

)
+O

(
1

ρl

))
.

Hence it follows from (3.12) that for each l ∈ N there exists a sufficiently large
kl ∈ N such that

ρkl − ρl +O

(
1

ρr

)
+O

(
1

ρl

)
> 0.

Then it follows that for any r > kl the relation ∆r,l > 0 holds. Hence, by
Remark 4.1, for each fixed l ∈ N and any r > kl the system of eigenfunctions
{yk(x)}∞k=1, k 6=r, l of problem (1.1)-(1.4) forms a basis in Lp(0, 1), 1 < p < ∞,

which is an unconditional basis in L2(0, 1). The proof of this theorem is complete.



SPECTRAL PROPERTIES FOR THE EQUATION OF VIBRATING BEAM . . . 329

References

[1] Z.S. Aliyev, Basis properties of a fourth order differential operator with spectral
parameter in the boundary condition, Cent. Eur. J. Math. 8 (2010), no. 2, 378-388.

[2] Z.S. Aliyev, Basis properties in Lp of systems of root functions of a spectral problem
with spectral parameter in a boundary condition, Diff. Equ. 47 (2011), no. 6, 766-777.

[3] Z.S. Aliyev, On basis properties of root functions of a boundary value problem
containing a spectral parameter in the boundary conditions, Doklady Math. 87 (2013),
no. 2, 137-139.

[4] Z.S. Aliyev, F.I. Allahverdi-zada, Some spectral properties of the boundary value
problem with spectral parameter in the boundary conditions, Proc. Inst. Math.
Mech.,Nat. Acad. Scien. Azerbaijan 40 (2014), no. 2, 52-64.

[5] Z.S. Aliyev, A.A. Dunyamaliyeva, Defect basis property of a system of root functions
of a Sturm-Liouville problem with spectral parameter in the boundary conditions, Diff.
Equ. 51 (2015), no. 10, 1249-1266.

[6] Z.S. Aliyev, A.A. Dunyamaliyeva, Ya.T. Mehraliyev, Basis properties in Lp of root
functions of Sturm-Liouville problem with spectral parameter-dependent boundary con-
ditions, Mediterr. J. Math. 14 (2017), no. 3, 1-23.

[7] Z.S. Aliyev, S.B. Guliyeva, Properties of natural frequencies and harmonic bending
vibrations of a rod at one end of which is concentrated inertial load, J. Differential
Equations 263 (2017), no. 9, 5830-5845.

[8] Z.S. Aliyev, N.B. Kerimov, Spectral properties of the differential operators of the
fourth-order with eigenvalue parameter dependent boundary condition, Int. J. Math.
Math. Sci. 2012 (2012), Article ID 456517, 28 p.

[9] Z.S. Aliyev, N.B. Kerimov, V.A. Mekhrabov, On the convergence of expansions in
eigenfunctions of a certain boundary value problem with a spectral parameter in the
boundary conditions, I, II, Diff. Equ., to appear.

[10] Z.S. Aliyev Z.S., F.M. Namazov, Spectral properties of a fourth-order eigenvalue
problem with spectral parameter in the boundary conditions, Elect. J. Diff. Equ. 2017
(2017), no. 307, 1-11.

[11] Z.S. Aliyev, F.M. Namazov, On the spectral problem arising in the mathematical
model of bending vibrations of a homogeneous rod, Complex Anal. Oper. Theory, to
appear, doi.org/10.1007/s11785-019-00924-z.

[12] T.Ya. Azizov, I.S. Iokhvidov, Linear operators in spaces with an indefinite metric,
John Wiley, Chichester, UK, 1989

[13] T.Ya. Azizov, I.S. Iokhvidov, Linear operators in Hilbert spaces with G-metric,
Uspekhi Mat. Nauk 26 (1971), no. 4, 43-92 (in Russian).

[14] J. Ben Amara, A.A. Vladimirov, On oscillation of eigenfunctions of a fourth-order
problem with spectral parameters in the boundary conditions, J. Math. Sci. 150 (2008),
no. 5, 2317-2325.

[15] P.A. Binding, P.J. Browne, K. Seddici, Sturm-Liouville problems with eigenparame-
ter dependent boundary conditions, Proc. Edinburgh Math. Soc. 37 (1994), no. 1, 57-72.

[16] P.A. Binding, P.J. Browne, Application of two parameter eigencurves to Sturm-
Liouville problems with eigenparameter dependent boundary conditions, Proc. Roy.
Soc. Edinburgh, Sect. A: Math. 125 (1995), no. 6, 1205-1218.

[17] B.B. Bolotin, Vibrations in technique: Handbook in 6 volumes, The vibrations of
linear systems, I, Engineering Industry, Moscow, 1978 (in Russian).

[18] C.T. Fulton, Two-point boundary value problems with eigenvalue parameter con-
tained in the boundary conditions, Proc. Roy. Soc. Edinburgh, Sect. A: Math. 77 (1977),
no. 3-4, 293-308.



330 VUQAR A. MEKHRABOV

[19] N.Yu. Kapustin, E.I. Moiseev, On the basis property in the space Lp of systems of
eigenfunctions corresponding to two problems with spectral parameter in the boundary
condition, Diff. Equ. 36 (2000), no. 10, 1357-1360.

[20] N.Yu. Kapustin, On a spectral problem arising in a mathematical model of torsional
vibrations of a rod with pulleys at the ends, Diff. Equ. 41 (2005), no. 10, 1490-1492.

[21] N.B. Kerimov, Z.S. Aliyev, On oscillation properties of the eigenfunctions of a fourth
order differential operator, Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 25
(2005), no. 4, 63-76.

[22] N.B. Kerimov, Z.S. Aliyev, The oscillation properties of the boundary value problem
with spectral parameter in the boundary condition, Trans. Acad. Sci. Azerb. Ser. Phys.-
Tech. 25 (2005), no. 7, 61-68.

[23] N.B. Kerimov, Z.S. Aliyev, On the basis property of the system of eigenfunctions of
a spectral problem with spectral parameter in the boundary condition, Diff. Equ. 43
(2007), no. 7, 905-915.

[24] N.B. Kerimov, Z.S. Aliyev, Agayev E.A. On the oscillation of eigenfunctions of a
fourth-order spectral problem, Doklady Math. 85 (2012), no. 3, 355-357.

[25] N.B. Kerimov, R.G. Poladov, Basis properties of the system of eigenfunctions in the
Sturm-Liouville problem with a spectral parameter in the boundary conditions, Doklady
Math. 85 (2012), no. 1, 8-13.

[26] A.N. Krylov, On some differential equations of mathematical physics having appli-
cations to technical problems, GITTL, Moscow-Leningrad, 1950 (in Russian).

[27] E.I. Moiseev, N.Yu. Kapustin, On the singularities of the root space of one spectral
problem with a spectral parameter in the boundary condition, Doklady Math. 66 (2002),
no. 1, 14-18.

[28] M.A. Naimark, Linear differential operators, Ungar, New York, 1967.
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