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THE SHEAVES REPRESENTATION OF HAUSDORFF

SPECTRA

EUGENY I. SMIRNOV, SERGEY A. TIKHOMIROV, AND ELENA A. ZUBOVA

Abstract. We introduce new concepts of functional analysis: Hausdorff
spectrum and Hausdorff limit or H-limit of Hausdorff spectrum of locally
convex spaces with point of view using sheaves theory. Particular cases
of regular H-limit are projective and inductive limits of separated lo-
cally convex spaces. The class of H-spaces contains Fréchet spaces and
is stable under the operations of forming countable inductive and pro-
jective limits, closed subspaces and factor-spaces. Besides, for H-space
the strengthened variant of the Closed Graph Theorem holds true. The
space of germs of holomorphic functions on connected bounded subset
will be provided with the topology (in general not separated) of uni-
form convergence on the compact subsets and with the locally convex
topology of the H-limit. We also present an essentially new approach to
the study of sheaves based on the notion of Hausdorff spectra associated
with the presheaf.

1. Introduction

The study which was carried out in [12]–[13] of the derivatives of the pro-
jective limit functor acting from the category of countable inverse spectra with
values in the category of locally convex spaces made it possible to resolve univer-
sally homomorphism questions about a given mapping in terms of the exactness
of a certain complex in the abelian category of vector spaces. Later in [17] a
broad generalization of the concepts of direct and inverse spectra of objects of an
additive semiabelian category G was introduced: the concept of a Hausdorff spec-
trum, analogous to the δs-operation in descriptive set theory. This idea is fruitful
even for algebraic topology, general algebra, category theory and the theory of
generalized functions.

On the other hand, the issues related to different types of sheaves, including
bundles, still attracts great interest and primarily in solving problems of algebraic
geometry (about recent progress in this field see papers [1], [5]–[11], [18]–[19]).
And it should be recognized that the concept of the spectrum of a reflexive sheaf
of rank two on P3, introduced in [4] for the field of any characteristic, turned out
to be very useful for such purposes. Such spectrum have a numerical nature.
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We present an essentially new approach to the study of sheaves by means of
non-numerical spectra. This approach based on the notion of Hausdorff spectrum
associated with the presheaf. In Sect. 2 we provide the preliminary background
and introduce the concepts of Hausdorff spectrum and Hausdorff limit or H-limit
of Hausdorff spectrum of locally convex spaces with point of view using sheaves
theory. In Sect. 3 we prove main results of this paper – Theorems 3.1–3.3, which
lay the foundation for the intriguing direction on a joint of functional analysis
and algebraic geometry.

2. Hausdorff Spectrum and Hausdorff Limit

The construction of Hausdorff spectra X = {Xs,F, hs′s} is achieved by suc-
cessive standard extension of a small category of indices Ω. The category H
of Hausdorff spectra turns out to be additive and semiabelian under a suitable
definition of mapping of spectra. In particular, H contains V. P. Palamodov’s
category of countable inverse spectra with values in the category TLC of locally
convex spaces [12].

The H-limit of a Hausdorff spectrum in the category TLC generalizes the
concepts of projective and inductive limits and is defined by the action of the
functor Haus : H −→ TLC. The class of H-spaces is defined by the action of
the functor Haus on the countable Hausdorff spectra over the category of Banach
spaces; the Closed Graph Theorem holds for its objects [16] and it contains the
category of Fréchet spaces and the categories of spaces due to De Wilde [2],
D. A. Rajkov [14] and P. P. Zabrejko – E. I. Smirnov [20].

Further, we recall certain definitions and results which were brought into the
discussion in [14], [15], [17], [20].

Definition 2.1. Let Ω be a small category. By a directed class in the category
we mean a subcategory satisfying the following properties:

(i) no more than one morphism is defined between any two objects;
(ii) for any objects a, b there exists an object c such that a→ c and b→ c.

Definition 2.2. LetA be some category and s denotes the object of categoryA (if
Q ∈ Ω and a, b ∈ Q we will denote the corresponding morphisms of category Ω by

a
Q−→ b). We shall call the category B with objects S, where S is a subcategory of

A, a standard extension of the category A if the following conditions are satisfied:
1. A is a complete subcategory of B;
2. Morphism ωSS′ : S′ → S of the category B is defined by the collection of

morphisms ωss′ : s′ −→ s, (s′
ωss′−→ s) of the category A such that

(a) for every s′ ∈ S′ there exists s ∈ S such that s′
ωss′−→ s;

(b) if s′
ωss′−→ s, p′

ωpp′−→ p, s
ωSps−→ p, then there exists a morphism s′

ωS
′

ps−→ p′ and
the following diagram is commutative:

s
T // p

ωTT ′

OO

s′

ωss′

OO

T ′ // p′.

ωpp′

OO (2.1)
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Definition 2.3. We will establish the successive standard extensions of categories

Ω(s) ⊂ B(T ) ⊂ Σ(F )→ Σ0(F ) ⊂ D(F ),

where T ⊂ Ω denotes directed classes of objects s ∈ Ω, coinsides as object of
category B ; F , F ∈ B denotes filter bases of sets T ∈ B , considered as objects
of category Σ, and F ,F ⊂ Σ denotes directed classes of objects F ∈ Σ of the
dual category Σ0, considered as objects of category D . We shall say that such
classes F are admissible for Ω.

Let us put |F | = ∪T∈FT , |F| = ∪F∈FT , so that |F | ⊂ Ω and |F| ⊂ Ω. The
most characteristic constructions connected with Hausdorff spectra use in the
role of the small category Ω = OrdI, where I is a partially ordered set of indices,
considered as category.

A diagram explaining the nature of the indexing is given below:

Definition 2.4. Let G be some category. We shall call a covariant functor HF :
Ω→ G a Hausdorff spectrum functor if Ω = |F| for some admissible class F ∈ D.
If F = |F| then HF is a functor of the direct spectrum, while if F = |F| (that
is, F consists of a single element |F | = |F|) then HF is a functor of the inverse
spectrum. If HF is an admissible class for Ω and the functor hF :

|F| → G : s 7→ Xs, (s
′ ωss′−→ s) 7→ (Xs → Xs′), (F

′ ωFF ′−→ F ) 7→ ((Xs)s∈|F | → (Xs′)s′∈|F ′|)

is injective on objects and morphisms (in the set-theoretic sense), then there
exists a directed class

((Xs)s∈|F |, qFF ′)F,F ′ ∈ F

of classes (Xs, hs′s)s,s′∈|F | (F ∈ F) which are directed in the dual category G0
and which satisfy the following conditions:

1. Xs
hs′s−→ Xs′ is determined and fixed if and only if the morphism s′

ωss′−→ s is
determined and then hs′s : Xs −→ Xs′ is the only morphism.
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2. The diagram

Xs

hs′s
��

hs′′s // Xs′′

hs′s′′||
Xs′

(2.2)

is commutative for all s′′
ωs′s′′−→ s′

ωss′−→ s.
3. If (Xs)s∈|F |

qF ′F−→ (Xs′)s′∈|F ′|, then for each Xs′ (s′ ∈ |F ′|) there exists a
unique morphism hs′s : Xs → Xs′ (s ∈ |F |). The collection of morphisms hs′s
(s′ ∈ |F ′|) defines the morphism qF ′F so that we will write qF ′F = (hs′s)F ′F .
Each set F ∈ F is a filter base of subsets T ⊂ |F | and moreover for each T ∈ F
the class (Xs, hs′s)T is directed in the category G0.

We will call a class (Xs, hs′s)s,s′∈|F | satisfying conditions (1)–(3) a Hausdorff
spectrum over the category G and we will denote it by {Xs,F, hs′s}.

The direct and inverse spectra of a family of objects are particular cases of
Hausdorff spectra – it suffices to put F = |F|, hs′s = qF ′F in the direct case and
F = {|F|}, hs′s : Xs → Xs′ (s′ → s), qF ′F = i|F | = i|F| in the inverse case.

Under a suitable definition of spectral mapping (see the structure of the cate-
gory D(F)) the set of Hausdorff spectra over G forms a category which we denote
by Spect G. If X = {Xs,F, hs′s}, Y = {Yp,F1, hp′p} are objects from Spect G,
then we shall say that two Hausdorff spectrum mappings ωYX : X → Y and
ω′YX : X→ Y are equivalent if for any F ∈ F there exists F ∗ ∈ F1 such that the
diagram

Xs

ω′
p′s
��

ωps // Yp

hp∗p
��

Yp′
p∗p′ // Yp∗

(2.3)

is commutative for any p∗ ∈ |F ∗|.
Now let us consider a new category H(G) whose objects are the objects of the

category Spect G, but the set HomH(X,Y) is formed by the equivalence classes
of mappings ωYX : X→ Y. We shall denote such classes by ||ωYX||.

For any objects X,Y,Z ∈ H the law of composition defines a bilinear mapping

HomH(X,Y)×HomH(Y,Z) −→ HomH(X,Z).

(HomH(X,Y) is an abelian group).

Definition 2.5. Let X = {Xs,F, hs′s} be a Hausdorff spectrum over the category
G. We will call an object Z of the category G a categorical H-limit of the
Hausdorff spectrum X over G if for any objects A,B ∈ G and mappings of
spectra

A
a−→ X

b−→ B

there exists a unique sequence in G

A
a−→ Z

b−→ B



60 EUGENY I. SMIRNOV, SERGEY A. TIKHOMIROV, AND ELENA A. ZUBOVA

such that the diagram

A

α
��

a // X

b
��

Z
β // B

(2.4)

is commutative in the category Spect G.

The concepts of projective and inductive limits over the category G are special
cases of categoricalH-limits. For example, let X be an inverse spectrum of objects
from G. Then the previous diagram holds and moreover any object Xs from X
can be taken for B ∈ G with the identity morphism bs : Xs −→ Xs forming the
spectral mapping bs : X −→ Xs (s ∈ |F|). Thus the diagram

A

α
��

a // X

b
��

Z
β // X

(2.5)

is commutative, where b = (bs), β = (βs), βs : Z −→ Xs (s ∈ F) and b is the
identity morphism of the category G. Therefore the diagram

A

α
��

a

  
Z

β // X

(2.6)

is commutative for any object A ∈ G.
The categorical H-limit of a Hausdorff spectrum (the functor Hom) exists in

any semiabelian category G with direct sums and products (for example, the
category of vector spaces L, the category TLG of topological vector groups, the
category TLC of locally convex spaces).

Let Ω be a countable set and X = Xs,F, hs′s a regular Hausdorff spectrum in
the category TLC; such a spectrum is said to be countable. A continuous linear
image in the category TLC of an H-limit of Banach spaces Xs (s ∈ |F|) is called
an H-space. The class of H-spaces contains the Fréchet spaces and is stable
with respect to the operations of passage to countable inductive and projective
limits, closed subspaces and factor spaces. Moreover, a strengthened variant of
the Closed Graph Theorem holds for H -spaces. The class of H-spaces is the
broadest of all the analogous classes known at this time, namely those of Rajkov,
De Wilde, Hakamura, Zabrejko-Smirnov. A countable separated regular H -limit
of a Hausdorff spectrum of H-spaces in the category TLC is an H-space [2].

3. Hausdorff Spectra and Sheaves

Let {SU , ρUV } be a presheaf of abelian groups over a topological space D, Ω a
nonempty partially ordered set and F an admissible class for Ω (we may assume

without loss of generality that Ω = |F|). Let us denote by Ĥ(S) a covariant
functor from Ord Ω to OrdU , where U is a base of open sets in D, and by Ȟ(S)
a contravariant functor from OrdU to the category of abelian groups so that an
abelian group SU is defined for each U ∈ U and a homomorphism ρUV : SU → SV
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is defined for each pair U ⊂ V . Then H = Ȟ(S)◦Ĥ(S) is a contravariant functor
of the Hausdorff spectrum X (S) = {SUs ,F, ρUs′Us}.

Definition 3.1. We will call functor H the Hausdorff spectrum associated with
the presheaf {SU , ρUV }.

Let X be the H-limit of the Hausdorff spectrum X (S) in the category of abelian
groups and let

A =
⋂
F∈F

⋃
s∈|F |

Us .

Theorem 3.1. Let S be the sheaf of germs of holomorphic functions on an
open set D ⊂ Cn, associated with the presheaf {SU , ρUV }, and let X (S) =
{SUs ,F, ρUs′Us} be the associated true Hausdorff spectrum. Then the H-limit
of the Hausdorff spectrum X (S) is isomorphic to the vector space of sections
Γ(A,S) of the sheaf S over the set A.

Proof. By the conditions relating to {SU , ρUV }, we may put SU = Γ(U,S) (U ∈
U). Further, let

X =
←−
lim
−→F

ρUs′UsΓ(Us,S) ,

so that
X =

⋃
F∈F

⋂
T∈F

ψ(V T
F ) .

If x ∈ X, there exists F ∈ F such that x ∈ ψ(V T
F ) (T ∈ F ), that is to say, there

exists a selection
ξ(T ) = (fTs )s∈|F |

such that ψ(fTs ) = x for each T ∈ F . For any U ∈ Uz (z ∈ D) the homomorphism
ρzU : Γ(U,S)→ Sz generates for f ∈ Γ(U,S) the set of points

ρU (f) =
⋃
z∈U

ρzU (f) ⊂ S ,

therefore let us put

ρTx =
⋃
s∈T

ρUs(f
T
s ) ;

it is clear that ρTx generates the section fT on the open set UT =
⋃
s∈T Us, since

the correspondence

z ∈ UT
fT7−→ ρTx ∩ Sz ⊂ S

is single-valued and continuous. Moreover, if ρUV : ρV (g) 7→ ρU (f), then ρU (f) ⊂
ρV (g), so let us put

ρξx =
⋃

F ∗�F

⋃
s∗∈|F ∗|,s∈T

ρUs∗Us(ρUs(f
T
s )) ,

where necessarily

ρUs∗Us(ρUs(f
T
s )) = ρUs∗Us(ρUs(f

T ′
s )) (T, T ′ ∈ F ) .

Let us put

Uρx =
⋂
ξ

U
ρξx
, where U

ρξx
⊂

⋃
s∈|F |

Us ;
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in this connection we have in particular,

ρUs(f
T
s ) ∩ ρUs(fT

′
s ) ⊃ ρUs∗Us(ρUs(f

T
s )) .

It is also clear that for each ξ the correspondence

z ∈ U
ρξx
7→ ρξx ∩ Sz

is single-valued and continuous. Although, in general, it is not guaranteed that
Uρx 6= ∅, we will show nevertheless that Uρx ⊃ A under the conditions of the
Theorem, specifically because the H-limit of the Hausdorff spectrum X (S) is
true. Let the selection ξ(T ) = (fTs )s∈|F | (T ∈ F ) generating the element x ∈ X
be fixed. Then because the Hausdorff spectrum X (S) is true we may assume that
fT1s = fT2s (s ∈ T1 ∩ T2) and, consequently, there exists ξ = (fs)s∈|F | ∈

⋂
T∈F V

T
F

such that
x ∈ ψ((fs)|F |) and fs′ = ρUs′Us(fs) (s, s′ ∈ |F |) .

It is clear that ρξx =
⋃
s∈|F | ρUs′Us(fs). Now let z ∈ A. Then z ∈ U

ρξx
for any ξ(F )

(F ∈ F) and, moreover,

ρξx(z) = ρξx ∩ Sz = ρzUs(fs) for z ∈ Us (s ∈ |F |) .

Let us show that ρξx(z) = ρξ
′
x (z) for any ξ, ξ′. In fact, let ξ = (fs)|F |, ξ

′ = (f ′s′)|F ′|
and x = ψ(ξ), x′ = ψ(ξ′). Since ξ ∼ ξ′, there exists F ∗ ∈ F, where F ∗ � F ′ and
F ∗ � F ′, such that for each T ∗ ∈ F ∗ we can find T ∈ F and T ′ ∈ F ′ such that

ωTT ∗ : T ∗ → T , ωT ′T ∗ : T ∗ → T ′ and ρUs∗Us(fs) = ρUs∗Us′ (f
′
s′) ,

where s∗ ∈ T ∗. However, z ∈
⋃
s∗∈|F ∗| Us∗ , and so it remains to choose s∗0 ∈ |F ∗|,

such that

z ∈ Us∗0 and ρzUs(fs) = ρzUs′ (f
′
s′) (s∗ → s, s∗ → s′) .

Thus z ∈ Uρx . Furthermore, let us put x(z) = ρξx(z)|A, so that x(z) is a section
of S on A, x(z) ∈ Γ(A,S). In this way we have constructed a morphism H :
X → Γ(A,S). Given fA = H(x), fA = H(y), let us prove that x = y. In fact, at
each point z ∈ A there exists an open ball B(z, ε) of the local homeomorphism
π : S → D at the point fA(z). Let us put U =

⋃
z∈AB(z, ε/2) and determine the

section fz ∈ Γ(B(z, ε/2),S) passing through the point s = fA(z) ∈ S such that

fz|A = fA|B(z,ε/2)

(we note that ε = ε(z)). Let

Bij = B(zi, εi/2) ∩B(zj , εj/2) , Bij ∩A 6= ∅ , z0 ∈ Bij ∩A
for some zi, zj ∈ A. Then fzi(z0) = fzj (z0), and, consequently, there is an open
ball B0 ⊂ B(z0, ε0/2) of the local homeomorphism at the point s0 = fzi(z0)
such that B0 ⊂ Bij and fzi |B0 = fzj |B0 . However, because of the isomorphism
Γ(Bij ,S)→ SBij the holomorphic functions fzi and fzj coincide on the connected
open set Bij [3]. The last observation means that fzi |Bij = fzj |Bij . Now suppose
that

Bij ∩A = ∅ , but B′ij(εi, εj) ∩A 6= ∅ , z′ ∈ B′ij ∩A .
Clearly, we will obtain by similar reasoning f ′zi |B′ij = f ′zj |B′ij . But we have

f ′zi |B(zi,εi/2) = fzi and f ′zj |B(zj ,εj/2) = fzj , so that fzi |Bij = fzj |Bij (in the case
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where Bij 6= ∅). Now there remains the third possibility for Bij 6= ∅, namely when
B′ij ∩A = ∅. In this case the sections fzi , fzj on Bij do not necessarily coincide,

therefore let us put M =
⋃
Bij , where the bar denotes closure in Cn and the

union is taken over all Bij of this third type. It is clear that M ∩A = ∅, since in
the contrary case for z∗ ∈M ∩A there would exist B∗ij of the third type such that

z∗ ∈ B∗ij
′, which is impossible by construction. Let us put U(fA) = U\M , so that

U(fA) ⊃ A and U(fA) is an open subset of Cn. Then there exists f ∈ Γ(U(fA),S)
such that f |A = fA and, moreover,

f |U(fA)∩B(z,ε/2) = fz|U(fA)∩B(z,ε/2) (z ∈ A) ;

also the section on U(fA) of f with the property f |A = fA is uniquely determined
(nevertheless, φA, the corresponding holomorphic function on A, is extended
holomorphically to U(fA) in a manner which, in general, is not unique).

Now if ψ(ξ) = x, ψ(η) = y, it follows from the fact that the family of open
sets {

⋃
s∈|F | Us}F∈F is fundamental for A that there exists F ∗ ∈ F such that

U(fA) ⊃
⋃
F ∗ Us∗ , and moreover by construction

ρξx|⋃F∗ Us∗ = ρηy|⋃F∗ Us∗ .
The last assertion means that ξ ∼ η and, consequently, x = y. Moreover, the fact
that {

⋃
F Us}F∈F is fundamental for A and the constructions carried out above

allow us to conclude that H : X → Γ(A,S) is an isomorphism. �

The absence of sufficiency restrictions on |F| in Theorem 3.1 allows us to
apply it to any nonempty A ⊂ Cn: it is enough to take F = |F| and Us (s ∈
F) a fundamental system of open sets containing A (in general, of uncountable
cardinality). The investigation of topological properties of H-limits in this case
produces substantial difficulties, therefore the investigation of Γ(A,S) with no
more than countable |F| is of interest. It is clear that, for example, any closed
bounded set A ⊂ Cn will be of this type, and the space of sections Γ(A,S) is the
inductive limit of the sequence of spaces Γ(Us,S) (s ∈ |F|). Furthermore, the
corresponding Hausdorff spectrum {Γ(Us,S),F, ρUs′Us} will be true in this case.
In general, the Hausdorff spectrum X (S) will be true if all open sets Us (s ∈ |F|)
are connected. We recall that each space Γ(Us,S) can be given the separated
locally convex topology of uniform convergence on the compact subsets of Us
(s ∈ |F|), under which it is a Fréchet space; we will denote this topology by τs.

Theorem 3.2. Let X (S) = {Γ(Us,S),F, ρUs′Us} be a true countable Hausdorff
spectrum and suppose that A =

⋂
F

⋃
F Us has a countable fundamental system of

compact sets, is connected and
◦
A 6= ∅. Then the H-limit

X =
←−
lim
−→F

ρUs′UsΓ(Us,S)

is a separated H-space in the topology τ∗ and is continuously embedded in OA
(OA is the algebra of holomorphic functions on A).

Proof. First of all, by Theorem 3.1 we have the isomorphism H : X → Γ(A,S) ;

because of the connectedness of A and the fact that
◦
A 6= ∅ each holomorphic

function on A, φ ∈ OA, is generated by some holomorphic function on the open
set U(φ) ; moreover, any two holomorphic functions φ1 ∈ OU and φ2 ∈ OV
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(U ⊃ A, V ⊃ A) which coincide on A must coincide on a connected component of
the intersection U∩V (see [3]), which also implies the isomorphism Γ(A,S) ≡ OA.
Since A has a countable fundamental system of compact subsets

Kn (n = 1, 2, . . . ) , K1 ⊂ K2 ⊂ . . . ,

on putting

||φ||n = max
z∈Kn

|φ(z)| (φ ∈ OA) ,

we obtain a seminorm on OA (or on Γ(A,S), which is permissible according to
the construction). Furthermore, on putting

p(φ) =
∞∑
n=1

2−n
||φ||n

1 + ||φ||n
(φ ∈ OA)

for example, we obtain a quasinorm on OA under which OA becomes a separated
locally convex space with a countable base of neighbourhoods of zero, therefore
metrizable, but in general not complete; we will denote this space by (OA, p).

We now show that on OA the locally convex topology τ∗ of the H-limit of
the Hausdorff spectrum X (S) is not weaker than p. In fact, let W = {φ ∈
OA : ||φ||N < ε} be some neighbourhood of zero in (OA, p) and let F ∈ F. Let
us choose s0 ∈ |F | such that Us0 ⊃ KN – this choice turns out to be possible
because of the compactness of KN and the condition A ⊂

⋃
F Us ; also we can

find a compact set K0
m ⊂ Us0 such that K0

m ⊃ KN – here the choice is possible
because of the availability of a fundamental system {K0

n}∞n=1 in Us0 . Now it is
clear that

H ◦ ψ(MF ) ⊂W ,

where

ξ = (fs)F , M
F = {ξ ∈ V s0

F : sup
z∈K0

m

|fs0(z)| < ε} , H ◦ ψ(ξ) = φ , fs0 |A = φ .

Since ψ(MF ) is itself a neighbourhood of zero in the MVG X(F ) and F ∈ F was
chosen arbitrarily, we have that

H(co
⋃
F

ψ(MF )) ⊂W

and is a neighbourhood of zero in the topology τ∗. This also shows that τ∗ ≥
p. �

The conditions of Theorem 3.1 are satisfied, for example, by A = ∆(0, r), the
compact polydisk in Cn, or by any domain D ⊂ Cn. It is not difficult to see
that if A is a connected set and A =

⋂
F

⋃
F Us, where F is an admissible class

for Ω, then without loss of generality we may assume that the Us (s ∈ |F|) are
connected open sets in Cn. In fact, let each Us have nonempty intersection with
A, which is natural and can always be arranged by the method of transformation

of indices (s ∈ |F|). Let us denote by Ũs the open connected component of Us
which contains Us ∩ A (s ∈ |F|). Now it is clear that A =

⋂
F

⋃
F Ũs for the

admissible class F in Ω and moreover, if {
⋃
F Us}F were a fundamental system of
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neighbourhoods for A, then {
⋃
F Ũs}F would be the same. Now let us consider

the question: For what classes of sets A ⊂ Cn do we have a representation

A =
⋂
F∈F

⋃
s∈F

Us ,

where F is an admissible class for Ω (a countable set)?
Let A be any nonempty bounded connected subset of Cn and B = B(z0, r) an

open ball such that A ⊂ B. For the s-set B\A we have the representation

B\A =
⋃
B̂∈K

⋂
t∈B̂

Lt ,

where the Lt are open subsets of B(z0, r) (t ∈ |K|, |K| a countable set) and K
is some family of subsets B̂ ⊂ Ω ; moreover, for each B̂ ∈ K the intersections
{
⋂
B̂
Lt}K form a fundamental system of compact subsets of B\A. Since Cn is a

finite-dimensional space, we will obtain the representation

B\A =
⋃
B̂∈K

⋂
t∈B̂

Lt ,

where the Lt ⊂ B(z0, r + ε) are compact sets (t ∈ |K|). Now

A = B\
⋃
K

⋂
B̂

Lt =
⋂
K

(B\
⋂
B̂

Lt) =
⋂
K

⋃
B̂

(B\Lt) ,

and Gt = B\Lt is an open set in Cn (t ∈ |K|). We will show that {
⋃
B̂
G̃t}K form a

fundamental system of open connected neighbourhoods of A. In fact, if W ⊃ A,
W ⊂ B is an open set, then without loss of generality we may assume that
W ⊂ B(z0, r−δ) for some δ > 0, so that P = (B(z0, r−δ)∪∂B)\W is a compact
subset of B(z0, r). Therefore there exists a compact subset

⋂
B̂0
Lt =

⋂
B̂0
Lt such

that P ⊂
⋂
B̂0
Lt and, consequently,

B\P ⊃
⋃
B̂0

(B\Lt) or W ∪ {z : r − δ < |z − z0| < r} ⊃
⋃
B̂0

Gt ⊃
⋃
B̂0

G̃t .

However, because of the connectedness of G̃t and the ordering of B̂0 ∈ K we

obtain the inclusion W ⊃
⋃
B̂0
G̃t, which was to be established.

Thus we obtain the following

Theorem 3.3. Every connected bounded subset A ⊂ Cn has a representation

A =
⋂
F∈F

⋃
s∈F

Us (3.1)

where F is an admissible class for the countable set Ω and the Us are connected
open subsets (domains) in Cn.

In particular, for such a set A the Hausdorff spectrum

X (S) = {Γ(Us,S),F, ρUs′Us}
is true (it suffices to apply the uniqueness Theorem for holomorphic functions).
In the representation (3.1) it is natural to require that if Us∩Us′ 6= ∅ (s, s′ ∈ |F|)
then it is a connected set.
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In what follows the space OA of germs of holomorphic functions on A will be
provided with the topology p (in general not separated) of uniform convergence
on the compact subsets of A and with the locally convex topology of the H-limit.
As has already been noted above (Theorem 3.1), for a connected bounded subset
A ⊂ Cn we have the linear isomorphism

X ≡ Γ(A,S) ≡ OA .
We also note that if the set A has an interior point then OA coincides with the
space of holomorphic functions on A (up to isomorphism).
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