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ON NEGATIVE EIGENVALUES OF THE SCHRÖDINGER

OPERATOR

ELSHAD H. EYVAZOV AND DAVUD H. ORUJOV

Abstract. In the paper, we consider the Schrödinger operator in an
electric field, depending on the intensity of the magnetic field. Under
certain constraints imposed on the electric potential, we prove its self-
adjointness. It is proved that if the exact lower bound of the electric
field is negative, then with an increase in the intensity of the magnetic
field below the threshold of the essential spectrum, negative eigenvalues
appear. We establish that as the magnetic field intensity increases, the
number of negative eigenvalues of the Schrödinger operator increases.

1. Introduction

From Kato’s magnetic inequality (see, for example, [6, p. 28]), it follows that
under the influence of an external magnetic field, the energy of the system in-
creases. For this reason, a superconducting material in a magnetic field loses
its superconducting quality. We can expect that if the exact lower bound of
the electric potential V (x) is negative, then at sufficiently large values of the
magnetic field strength µ , due to the potential µ2V (x) of the inductive field,
the material will again restore its superconducting quality. This means that the
Euler-Lagrange equation corresponding to the Ginsburg-Landau functional, i.e.,
Schrödinger equation

−∆u(x) + µ2V (x)u(x) = λu(x),

for some negative values of the spectral parameter λ, will have a nontrivial solu-
tion from the space L2(R

n).
The objective of the paper is to give a rigorous mathematical proof of the

above-mentioned heuristic reasoning.
In the space L2(R

n) we introduce the operator H0
µ with the domain D(H0

µ) =
C∞0 (Rn), operating according to the rule

H0
µψ(x) = −∆ψ(x) + µ2V (x)ψ(x),

where ∆ is the Laplace operator; C∞0 (Rn) is the class of infinitely differentiable
complex-valued functions with compact support in Rn; µ the magnetic field
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strength; and V (x) the real function defined in the n -dimensional Euclidean
space Rn.

We impose the following constraints on the function V (x):

a) V (x) ∈ C2(Rn); b) lim
x→∞

V (x) = 0 ; c) inf
x∈Rn

V (x) < 0.

We denote the closure of the operator H0
µ by Hµ and call it the Schrödinger op-

erator. In the work, we establish the self-adjointness of the Schrödinger operator
Hµ (i.e., the essentially self-adjointness of the operator H0

µ), study its spectrum
and prove that as the magnetic field intensity µ increases below the threshold of
the essential spectrum, negative eigenvalues of the operator Hµ appear.

Note that recently there has been great interest in the Schrödinger magnetic
operator (see [1, 2, 3, 5, 6, 7, 11-16]). Many works are dedicated to issues of
self-adjointness (see [1, 6, 11]), to the study of negative eigenvalues (see [2, 4, 5,
8, 10, 14, 15]), which play a key role in various fields of physics and chemistry,
as well as to the study of the essential spectrum of the Schrödinger operator (see
[3, 7]).

2. Self -Adjointness

First, using the self-adjointness criterion (see [13, p. 283, Theorem VIII. 3])
and the Fournais-Helffer method (see [6, p. 7, Theorem 1.2.2]), we prove the
essential self-adjointness of the operator H0

µ.

Theorem 2.1. Let conditions a) and b) be satisfied. Then the operator H0
µ is

essentially self-adjoint on C∞0 (Rn).

Proof. From conditions a) and b) it follows that the operator H0
µ is bounded

below on C∞0 (Rn). Therefore, one can find a positive number t such for any
function ψ(x) from the space C∞0 (Rn) the following inequality will hold true(

H0
µ + tE)ψ(x), ψ(x)

)
≥ ‖ψ(x)‖2 , (2.1)

where E is the identity operator, (·, ·) and ‖·‖ the scalar product and norm,
respectively, in the space L2(R

n).
Let’s show that the domain of the operator H0

µ + tE is everywhere dense in
L2(R

n). Suppose that there exists a function f(x) from L2(R
n) such that(

f,
(
H0
µ + tE

)
ψ(x)

)
= 0, ∀ψ(x) ∈ C∞0 (Rn). (2.2)

It follows from condition (2.2) that, in the sense of generalized functions, a
regular generalized function f(x) satisfies the equation

−∆f(x) + µ2V (x)f(x) + tf(x) = 0. (2.3)

From this equality and condition a) it follows that f(x) ∈ W 2
2,loc(R

n), where

W 2
2,loc(R

n) is the second order local Sobolev space.

Let’s consider a sequence {Ck(x)}∞k=1 from the space C∞0 (Rn) elements of which
are defined as follows:



ON NEGATIVE EIGENVALUES OF THE SCHRÖDINGER OPERATOR 173

Ck(x) =

 0, if |x| ≥ 2k,
1, if |x| ≤ k, k = 1, 2, ...,

sufficiently smooth, if k ≤ |x| ≤ 2k,

where |x| =
√
x21 + x22 + ...+ x2n.

It is evident that

lim
k→∞

Ck(x) = 1 (pointwise) (2.4)

and

lim
k→∞
OCk(x) = 0 (pointwise) (2.5)

where O =
(

∂
∂x1

, ∂
∂x2

, ..., ∂
∂xn

)
.

Using the Green’s formula, we calculate the integral∫
Rn

[
−∆(C2

k(x)u(x))
]
f(x)dx,

where u(x) ∈ C∞0 (Rn). We then have:∫
Rn

[
−∆(C2

k(x)u(x))
]
f(x)dx = −

n∑
j=1

∫
Rn

∂2(C2
k(x)u(x))

∂x2j
f(x)dx =

= −
n∑
j=1

∫
Rn

∂

∂xj

[
∂(C2

k(x)u(x))

∂x2j
f(x)

]
dx+

n∑
j=1

∫
Rn

∂(C2
k(x)u(x))

∂xj

∂f(x)

∂xj
dx =

=
n∑
j=1

∫
Rn

∂(C2
k(x)u(x))

∂xj

∂f(x)

∂xj
= 2

n∑
j=1

∫
Rn

Ck(x)
∂Ck(x)

∂xj

∂f(x)

∂xj
u(x)dx+

+

n∑
j=1

∫
Rn

C2
k(x)

∂u(x)

∂xj

∂f(x)

∂xj
=

= 2

∫
Rn

Ck(x)
[
∇Ck(x) · ∇f(x)

]
u(x)dx+ 2

∫
Rn

C2
k(x)

[
∇f(x) · ∇u

]
dx. (2.6)

A simple calculation shows that the following formula holds true:∫
Rn

∇Ck(x)f(x) · ∇(Ck(x)u(x))dx =

∫
Rn

(∇Ck(x))2f(x)u(x)dx+

+

∫
Rn

Ck(x)∇Ck(x) ·
[
f(x)∇u(x)− u(x)∇f(x)

]
dx+

+2

∫
Rn

Ck(x)∇Ck(x) · ∇f(x)u(x)dx+

∫
Rn

C2
k(x)∇f(x) · ∇u(x)dx. (2.7)

By adding to each side of equality (2.7) the integral
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∫
Rn

(
µ2V (x) + t

)
C2
k(x)f(x)u(x)dx

and taking into account equalities (2.3) and (2.6), we obtain∫
Rn

∇(Ck(x)f(x)) · ∇(Ck(x)u(x))dx+

∫
Rn

[
µ2V (x) + t

]
C2
k(x)f(x)u(x)dx =

=

∫
Rn

(∇Ck(x))2f(x)u(x)dx+

∫
Rn

Ck(x)∇Ck(x) ·
[
2iIm(f(x)∇u(x))

]
dx. (2.8)

It is evident that f(x) ∈ W 1
2,loc(R

n), as f(x) ∈ W 2
2,loc(R

n). From everywhere

density of C∞0 (Rn) in W 1
2,loc(R

n) it follows that equality (2.8) holds true even

for u(x) = f(x). Substituting the function f(x) into u(x) in equality (2.8), we
obtain ∫

Rn

|∇(f(x)Ck(x)|2 dx+

∫
Rn

[
µ2V (x) + t

]
C2
k(x) |f(x)|2 dx =

=

∫
Rn

(∇Ck(x))2 |f(x)|2 dx+

∫
Rn

Ck(x)∇Ck(x)
[
2iIm(f(x)∇f(x))

]
dx.

Hence we have∫
Rn

|∇(f(x)Ck(x))|2 dx+

∫
Rn

[
µ2V (x) + t

]
C2
k(x) |f(x)|2 dx =

=

∫
Rn

(∇Ck(x))2 |f(x)|2 dx. (2.9)

From inequality (2.1) we obtain:

‖Ck(x)f(x)‖2 ≤
((
H0
µ + tE

)
Ck(x)f(x), Ck(x)f(x)

)
=

=

∫
Rn

|∇(f(x)Ck(x))|2 dx+

∫
Rn

[
µ2V (x) + t

]
C2
k(x) |f(x)|2 dx. (2.10)

Using equality (2.9), inequality (2.10) can be rewritten as follows:

‖Ck(x)f(x)‖2 ≤
∫
Rn

(∇Ck(x))2 |f(x)|2 dx. (2.11)

From the properties (2.4) and (2.5) of the sequence {Ck(x)}∞k=1 and inequality
(2.11) we obtain:

‖f(x)‖2 = lim
k→∞

‖Ck(x)f(x)‖2 ≤ lim
k→∞

‖Ck(x)f(x)‖2 ≤

≤ lim
k→∞

∫
Rn

(∇Ck(x))2 |f(x)|2 dx = 0.

Hence we have that f(x) = 0 almost everywhere in Rn. Therefore, the operator
H0
µ + tE is an essentially self-adjoint operator. It follows that the operator H0

µ
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is essentially self-adjoint on C∞0 (Rn), as tE is the bounded self-adjoint operator.
This completes the proof of the theorem. �

From theorem II .4 of [9] we get that the following lemma is true

Lemma 2.1. If conditions a) and b) are satisfied, then the essential spectrum of
the Schrödinger operator Hµ coincides with the positive half-axis, i.e.,

σess(Hµ) = [0,+∞).

3. Proof of the main result

Now we show that as the magnetic field strength µ increases below the thresh-
old of the essential spectrum, i.e., below zero, the eigenvalues of the operator Hµ

appear.

Theorem 3.1. Let the function V (x) satisfy conditions a)-c). Then, for suffi-
ciently large µ, the Schrödinger operator Hµ has at least one negative eigenvalue.

Proof. It is known that (see [6, p. 9]) the ground state of the operator Hµ is
defined as follows:

inf σ(Hµ) = inf
u(x)∈W 1

2 (R
n)\{0}

∫
Rn

{
|∇u(x)|2 + µ2V (x) |u(x)|2

}
dx∫

Rn
|u(x)|2 dx

. (3.1)

Note that the quantity (3.1) is important in classical quantum mechanics (see
[16]), since it is the lowest energy that a particle can reach in Rn, interacting
with the force field generated by the potential µ2V (x) (and which will ultimately
be achieved due to radiation of energy).

To prove the theorem, it suffices to prove that there exists a function ϕµ(x)
from W 1

2 (Rn)\{0} such that∫
Rn

{
|∇ϕµ(x)|2 + µ2V (x) |ϕµ(x)|2

}
dx∫

Rn
|ϕµ(x)|2 dx

< 0. (3.2)

To prove inequality (3.2), we follow the path indicated in Example 1.3.2 of [6].
Let the function V (x) reach its minimum at the point

x(0) =
(
x
(0)
1 , x

(0)
2 , ..., x

(0)
n

)
, i.e.

inf
x∈Rn

V (x) = min
x∈Rn

V (x) = V (x(0)).

Consider the function
ϕµ(x) = eµ|x−x

(0)|2 .

Let us prove that

lim
µ→+∞

∫
Rn

{
|∇ϕµ(x)|2 + µ2V (x) |ϕµ(x)|2

}
dx∫

Rn
|ϕµ(x)|2 dx

= V (x(0)). (3.3)
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Passing to the polar coordinate system, we obtain:

∫
Rn

|ϕµ(x)|2 dx =

∫
Rn

e2µ|x−x
(0)|2dx = σn

+∞∫
Rn

e2µr
2
rn−1dr =

σnAn

(2µ)
n
2

, (3.4)

where σn is the area of (n− 1) -dimensional unit sphere,

An =

+∞∫
0

es
2
sn−1ds.

In order to calculate the integral∫
Rn

|∇ϕµ(x)|2 dx

we find the partial derivatives
∂ϕµ(x)
∂xi

, i = 1, 2, ..., n.
We have :

∂ϕµ(x)

∂xi
=

∂

∂xi

(
e2µ|x−x

(0)|2
)

= −2µe−µ|x−x
(0)|2

(
xi − x(0)i

)
, i = 1, 2, ..., n.

From here we obtain

|∇ϕµ(x)|2 dx = 4µ2e−2µ|x−x
(0)|2 |x− x(0)|2dx. (3.5)

Using (3.5) we have:∫
Rn

|∇ϕµ(x)|2 dx =

∫
Rn

4µ2|x− x(0)|2e−2µ|x−x(0)|2dx =

= 4µ2
∫
Rn

e2µ|t|
2 |t|2dt = 4µ2σn

+∞∫
0

e−2µr
2
rn+1dr =

σnBn

(2µ)
n−2
2

, (3.6)

where

Bn =

+∞∫
0

es
2
sn+1ds.

From (3.4) and (3.6) we obtain∫
Rn

{
|∇ϕµ(x)|2 + µ2V (x) |ϕµ(x)|2

}
dx∫

Rn
|ϕµ(x)|2 dx

=

=

σnBn

(2µ)
n−2
2

+ µ2
∫
Rn
V (x)e2µ|x−x

(0)|2dx

σnAn
(2µ)

n
2

. (3.7)

Using the Taylor formula for the function V (x) at the minimum point x(0) with
a remainder in the Lagrange form, we have:
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∫
Rn

V (x)e2µ|x−x
(0)|2dx =

∫
Rn

V (x(0))e2µ|x−x
(0)|2dx+

+
1

2

n∑
i,j=1

∫
Rn

e2µ|x−x
(0)|2 ∂

2V (ξ(x), x(0))

∂xi∂xj

(
xi − x(0)i

)(
xj − x(0)j

)
dx. (3.8)

From the boundedness of the function ∂2V (ξ(x),x(0))
∂xi∂xj

in Rn, it follows that there

exists a continuous and bounded function M(x) in Rn such that the following
equality is true:

1

2

n∑
i,j=1

∂2V (ξ(x), x(0))

∂xi∂xj

(
xi − x(0)i

)(
xj − x(0)j

)
= M(x)|x− x(0)|2. (3.9)

From (3.4),(3.7),(3.8) and (3.9) we obtain∫
Rn

{
|∇ϕµ(x)|2 + µ2V (x) |ϕµ(x)|2

}
dx∫

Rn
|ϕµ(x)|2 dx

=

=

σnBn

(2µ)
n−2
2

+ µ2V (x(0)) σnAn
(2µ)

n
2

+ µ2
∫
Rn
e2µ|x−x

(0)|2M(x)|x− x(0)|2dx

σnAn
(2µ)

n
2

. (3.10)

From the boundedness and continuity of the function M(x) in Rn, it follows
that there exists a positive number M0 such that

∫
Rn

e2µ|x−x
(0)|2M(x)|x− x(0)|2dx = M0

∫
Rn

e2µ|x−x
(0)|2 |x− x(0)|2dx. (3.11)

As ∫
Rn

e2µ|x−x
(0)|2 |x− x(0)|2dx =

σnBn

(2µ)
n+2
2

,

then from (3.10) and (3.11) we obtain

∫
Rn

{
|∇ϕµ(x)|2 + µ2V (x) |ϕµ(x)|2

}
dx∫

Rn
|ϕµ(x)|2 dx

= µ2
2Bn
µ +AnV (x(0)) + M0Bn

2µ

An
. (3.12)

It follows from (3.12) that

lim
µ→∞

1

µ2


∫
Rn

{
|∇ϕµ(x)|2 + µ2V (x) |ϕµ(x)|2

}
dx∫

Rn
|ϕµ(x)|2 dx

 = V (x(0)). (3.13)
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As V (x(0)) < 0 then it follows from (3.13) that for sufficiently large µ the
following inequality holds true:∫

Rn

{
|∇ϕµ(x)|2 + µ2V (x) |ϕµ(x)|2

}
dx∫

Rn
|ϕµ(x)|2 dx

< 0.

�

This completes the proof of the theorem.
Corollary 3.1.From this theorem and from the minimax principle (see [6] or

[10]), it follows that as the magnetic field strength µ increases, the number of
negative eigenvalues of the operator Hµ increases.
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