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SOME PROPERTIES OF THE SPECTRUM OF THE DIRAC

OPERATOR WITH A SPECTRAL PARAMETER IN THE

BOUNDARY CONDITION

ABID G. FERZULLAZADEH AND IBRAHIM M. NABIEV

Abstract. In this paper, we consider the Dirac operator subject to non-
separated boundary conditions of which one contains the spectral param-
eter. The representations of some entire functions are given, the reality
eigenvalues and the absence of associated vector functions to the vector
eigenfunctions are proved, an asymptotic formula for the eigenvalues of
the Dirac operator are obtained.

1. Introduction

The one-dimensional stationary Dirac system (related to the behavior of a
relativistic electron in an electrostatic field) has the following canonical form:

BY ′ (x) +Q (x) Y (x) = λY (x) , (1.1)

where λ is the spectral parameter, B =

(
0 1
−1 0

)
, Q(x) =

(
p(x) q(x)
q(x) −p(x)

)
,

Y (x) =

(
y1(x)
y2(x)

)
.

Suppose that the elements p(x) and q(x) matrices Q(x) in (1.1) are real func-
tions belonging to the space W 1

2 [0, π] . By W 1
2 [0, π] we denote the space con-

sisting of absolutely continuous functions defined on a segment [0, π], which have
a derivative, summable with a square on [0, π]. Consider a boundary problem
generated on a segment [0, π] by the Dirac equation (1.1) and the boundary con-
ditions of the form

(αλ+ β) y1 (0) + y2 (0) + ωy1 (π) = 0 ,
−ωy1 (0) + γy1 (π) + y2 (π) = 0,

(1.2)

where α, β, γ are real numbers, ω is a complex number, and αω 6= 0. The
boundary-value problem (1.1), (1.2) will be denoted by D.

At present, many questions of direct and inverse problems for Dirac operators
in the case of separated and non-separated boundary conditions are well studied.
Thus, direct problems for such operators were studied in [5, 9, 11, 12, 21], and
questions on the recovery of operators — in [1, 2, 3, 4, 6, 7, 8, 10, 13, 14, 15, 17, 18,
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19, 20, 23] and other works. In particular, in papers [3, 4, 6, 7, 8, 13, 14, 15, 23] a
number of important results were obtained in the theory of inverse problems for
systems of differential equations under separated boundary conditions. [1, 2, 10,
17, 18, 19, 20] are devoted to the study of inverse spectral problems for equation
(1.1) with various types of nonseparated boundary conditions, including periodic,
antiperiodic, and quasiperiodic [10, 17, 19, 20] boundary conditions.

In this paper, we consider the Dirac operator subject to non-separated bound-
ary conditions of which one contains the spectral parameter. The representations
of some entire functions are given, the reality eigenvalues and the absence of as-
sociated vector functions to the vector eigenfunctions are proved, an asymptotic
formula for the eigenvalues of the boundary value problem D are obtained.

2. Some spectral properties of the boundary value problem

Denote by C(x, λ) =

(
c1(x, λ)
c2(x, λ)

)
and S(x, λ) =

(
s1(x, λ)
s2(x, λ)

)
are solutions

of equation (1.1) satisfying the initial conditions

C(0, λ) =

(
1
0

)
, S(0, λ) =

(
0
1

)
. (2.1)

Lemma 2.1. The following representations hold:

c1 (π, λ) = cosλπ + ψ1 (λ) , c2 (π, λ) = sinλπ + ψ2 (λ) ,

s1 (π, λ) = − sinλπ +A1
cosλπ

λ
+B1

sinλπ

λ
+
ψ3 (λ)

λ
,

s2 (π, λ) = cosλπ +A2
sinλπ

λ
+B2

cosλπ

λ
+
ψ4 (λ)

λ
,

where

A1 = A+Q1, A2 = A+Q2, B1 = −p (0) + p (π)

2
, B2 =

p (0)− p (π)

2
,

A =
1

2

∫ π

0

[
p2 (x) + q2 (x)

]
dx,Q1 =

q (π)− q (0)

2
, Q2 = −q (0) + q (π)

2
,

ψj (λ) =

∫ π

−π
ψ̃j (t) eiλtdt, ψ̃j (t) ∈ L2 [−π, π] , j = 1, 4.

The proof of the lemma follows from [16, p. 66].

Definition 2.1. A complex number λ0 is called an eigenvalue of boundary value
problem D if equation (1.1) with λ = λ0 has a nontrivial solution Y0 (x) satisfying
the boundary conditions (1.2); in this case the vector function Y0 (x) is called the
vector eigenfunction of problem D corresponding to the eigenvalue λ0. The set
of eigenvalues is called the spectrum of D. The vector functions

Y1 (x) =

(
y1,1 (x)
y2,1 (x)

)
, Y2 (x) =

(
y1,2 (x)
y2,2 (x)

)
, ..., Yr (x) =

(
y1,r (x)
y2,r (x)

)
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are called as the associated vector functions to the vector eigenfunction Y0 (x) =(
y1,0 (x)
y2,0 (x)

)
, if they are absolutely continuous, they satisfy the differential equa-

tions
BY ′j (x) +Q (x)Yj (x)− Yj−1 (x) = λ0Yj (x) (2.2)

and boundary conditions

(αλ+ β) y1,j (0) + y2,j (0) + ωy1,j (π) + αy1,j−1 (0) = 0,

−ωy1,j (0) + γy1,j (π) + y2,j (π) = 0,
(2.3)

j = 1, 2, 3, ..., r.

Theorem 2.1. When α < 0 the eigenvalues of the problem D are real.

Proof. Let λ be an eigenvalue of the boundary value problem D, and let Y (x) =(
y1(x)
y2(x)

)
be the corresponding vector eigenfunction. Multiply the equality (1.1)

by
(
y1 (x), y2 (x)

)
on the left,

BY ′ (x) +Q (x)Y (x) = λ̄Y (x)

by (y1 (x) , y2 (x)) and subtract one product from the other. As a result, we get(
λ− λ̄

) [
|y1(x)|2 + |y2(x)|2

]
=

d

dx

[
y1(x) y2(x)− y1(x) y2(x)

]
.

Integrating this equality from zero to π, we find

2 i Imλ

∫ π

0

[
|y1(x)|2 + |y2(x)|2

]
dx =

= y1(π) y2(π)− y1(π) y2(π)− y1(0) y2(0) + y1(0) y2(0). (2.4)

It follows from the boundary conditions (1.2) that

y2 (0) = −ωy1 (π) − (αλ+ β) y1 (0) ,
y2 (π) = ωy1 (0)− γy1 (π) .

Let’s consider these at the equality (2.4):

2 i Imλ

∫ π

0

[
|y1(x)|2 + |y2(x)|2

]
dx =

= y1(π) [ωy1 (0)− γy1 (π)]− y1(π)
[
ωy1(0)− γy1 (π)

]
+

+y1(0) [ωy1 (π) + (αλ+ β) y1 (0)]− y1(0)
[
ωy1 (π) +

(
αλ̄+ β

)
y1 (0)

]
=

= 2 iα |y1(0)|2 Imλ.

Consequently,

Imλ

{∫ π

0

[
|y1 (x)|2 + |y2 (x)|2

]
dx− α |y1(0)|2

}
= 0.

Since α < 0, the expression in braces is distinct from zero. Therefore, Imλ = 0.
Theorem 2.1 is proved. �

Theorem 2.2. If α < 0, then the vector eigenfunctions of the boundary value
problem D have no associated vector functions.
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Proof. Let‘s assume the opposite. Suppose that, the boundary value problem D

has an vector eigenfunction of Y1 (x) =

(
y1,1 (x)
y2,1 (x)

)
associated to the Y0 (x) =(

y1,0 (x)
y2,0 (x)

)
vector eigenfunction, corresponding to the eigenvalue λ0. Then, by

virtue of (1.1), (2.2), the following equalities hold:

BY ′0 (x) +Q (x)Y0 (x) = λ0Y0 (x), (2.5)

BY ′1 (x) +Q (x)Y1 (x)− Y0 (x) = λ0Y1 (x) . (2.6)

Multiply the equality (2.5) by (y1,1 (x) , y2,1 (x)) − from the left and equality

(2.6) by
(
y1,0 (x), y2,0 (x)

)
and subtract them side by side, we will get

|y1,0 (x)|2 + |y2,0 (x)|2 =
d

dx

[
y2,1(x)y1,0 (x)− y1,1(x)y2,0(x)

]
.

Integrating this equality from zero to π for x, we obtain

π∫
0

[
|y1,0(x)|2 + |y2,0(x)|2

]
dx =

= y2,1 (π) y1,0(π)− y1,1(π)y2,0(π)− y2,1 (0) y1,0(0) + y1,1(0)y2,0(0). (2.7)

According to the boundary conditions (1.2) and (2.3), we have

y2,0 (0) = −ωy1,0 (π)− (αλ+ β) y1,0 (0) ,
y2,0 (π) = ωy1,0 (0)− γy1,0 (π) ,

y2,1 (0) = − (αλ+ β) y1,1 (0)− ωy1,1 (π)− αy1,0 (0) ,
y2,1 (π) = ωy1,1 (0)− γy1,1 (π) .

By substituting these expressions into (2.7), we find

π∫
0

[
|y1,0 (x)|2 + |y2,0 (x)|2

]
dx =

= y1,0 (π) [ωy1,1 (0)− γy1,1 (π)]− y1,1 (π)
[
ωy1,0 (0)− γy1,0 (π)

]
+

+y1,0 (0) [(αλ+ β) y1,1 (0) + ωy1,1 (π) + αy1,0 (0)]−

−y1,1 (0)
[
ωy1,0 (π) + (αλ+ β) y1,0 (0)

]
= α |y1,0 (0)|2 .

Hence
π∫

0

[
|y1,0 (x)|2 + |y2,0 (x)|2

]
dx− α |y1,0 (0)|2 = 0.

This contradicts the fact that the left side of this relation is positive according
to the inequality α < 0. Theorem 2.2 is proved. �
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3. Asymptotics of eigenvalues

Theorem 3.1. The boundary value problem D has a countable set of eigenvalues
γk (k = ±0, ±1, ±2, ...) . These eigenvalues satisfy the asymptotic formula

γk = k + a+
A

πk
+

+
4 (−1)k bReω + αq (π) (γ2 − 1)− αb2q (0)− 2αγp(π)− 2b2 − 2 |ω|2

2παb2k
+
ξk
k
, (3.1)

as |k| → ∞, where a = 1
πarcctgγ , b =

√
1 + γ2, {ξk} ∈ l2.

Proof. The general solution of the equation (1.1) has a form

y(x, λ) = M1S (x, λ) +M2C (x, λ) ,

where M1, M2 are arbitrary constants. Considering the boundary conditions
(1.2), the initial conditions (2.1) and taking into account the identity

c1 (x, λ) [s2(x, λ) + γ s1(x, λ)]− s1 (x, λ) [c2 (x, λ) + γ c1 (x, λ)] = 1

it is easy to verify that the characteristic function of the boundary value problem
D will be

d (λ) = 2Reω − ϕ (λ) + |ω|2 s1 (π, λ) + (αλ+ β) θ (λ) , (3.2)

where

ϕ (λ) = c2 (π, λ) + γ c1 (π, λ) , θ (λ) = s2 (π, λ) + γ s1 (π, λ) .

The zeros of the function d (λ) are the eigenvalues of the problem D.
Using the representations in the lemma 2.1, we transform the characteristic

function (3.2) to the form

d(λ) = 2Reω + αλ (cosλπ − γ sinλπ) + (αγA1 + αB2 + β − γ) cosλπ+

+
(
αA2 + αγB1 − 1− |ω|2 − βγ

)
sinλπ + ψ5 (λ) ,

(3.3)

where ψ5 (λ) =
∫ π
−π ψ̃5 (t) eiλtdt, ψ̃5 (t) ∈ L2 [−π, π].

Let denote the contour bounded a square

Kn =

{
λ : |Reλ− a| ≤ n+

1

2
, |Imλ| ≤ n+

1

2

}
by Γn. According to the relation (3.3), we have

d (λ) = F (λ) +G (λ) ,

where
F (λ) = αλ (cosλπ − γ sinλπ) ,

G(λ) = 2Reω + (αγA1 + αB2 + β − γ) cosλπ+

+
(
αA2 + αγB1 − 1− |ω|2 − βγ

)
sinλπ + ψ5 (λ) .

By the standart method (see, for example, [16, p. 43]), it can be shown that
for sufficiently large n on Γn, the inequality |F (λ)| > |G (λ)| holds. Then, by
Rouche’s therom [22, p. 263], the square of Kn contains the same number of
zeros of the functions of d (λ) and F (λ), i.e. 2n + 2. Denote these zeros in
non-decreasing order of their modules by

γ−n, γ−n+1, . . . , γ−1, γ−0, γ+0, γ1, . . ., γn−1, γn.
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Hence, the problem D has a counting number of eigenvalue.
Applying Rouché’s theorem, it is easy to verify that the zeros of function (3.3)

when k → ±∞ obey the asymptotic formula

γk = k + a+ εk, (3.4)

where εk = O
(
k−1

)
. Let’s precise the asymptotic of number εk. We will obtain

the following equalities if we use from the separation of the functions sinx and
cosx for this.

cos γkπ = (−1)k cos (a+ εk)π =
(−1)k γ√

1 + γ2
− (−1)k√

1 + γ2
εkπ +O

(
1

k2

)
,

sin γkπ = (−1)k sin (a+ εk)π = (−1)k
(

1√
1 + γ2

+
γ√

1 + γ2
εkπ

)
+O

(
1

k2

)
.

Then, we obtain,
2Reω

γk
=

2Reω

k
+ o

(
1

k2

)
,

cos γkπ

γk
= (−1)k

γ√
1 + γ2

· 1

k
+ o

(
1

k2

)
,

sin γkπ

γk
=

(−1)k√
1 + γ2

· 1

k
+ o

(
1

k2

)
,

ψ5 (γk)

γk
=
τk
k
, {τk} ∈ l2.

By plugging this expression into the equation d(λ) = 0, we obtain the asymptotic
formula

2Reω

k
+ α

(
(−1)2 γ√

1 + γ2
− (−1)k√

1 + γ2
εkπ − γ

(
(−1)k√
1 + γ2

+
(−1)kγ√

1 + γ2
εkπ

))
+

+ (αγA1 + αB2 − γ + β) · (−1)k γ

k
√

1 + γ2
+

+
(
αA2 − 1− |ω|2 + αγB1 − βγ

)
· (−1)k

k
√

1 + γ2
+
ηk
k

= 0, {ηk} ∈ l2.

Then,

εk =
4 (−1)k bReω + αq (π) (γ2 − 1)− αb2q (0)− 2αγp(π)− 2b2 − 2 |ω|2

2παb2k
+
ξk
k
,

Taking into account this formula in expression (3.4), we obtain the desired formula
(3.1). Theorem 3.1 is proved. �
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