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INVESTIGATION OF THE PERIODICITY AND STABILITY IN

THE NEUTRAL DIFFERENTIAL SYSTEMS BY USING

KRASNOSELSKII’S FIXED POINT THEOREM

ABDERRAHIM GUERFI AND ABDELOUAHEB ARDJOUNI

Abstract. In this paper, we study the periodicity and stability of solu-
tions for a neutral differential system. In the process we use the funda-
mental matrix solution to convert the given differential system into an
equivalent integral system. Then we employ Krasnoselskii’s fixed point
theorem to show the existence and stability of periodic solutions of this
neutral differential system. Our results extend and complement some
earlier publications.

1. Introduction

Delay differential equations have received increasing attention during recent
years since these equations have been proved to be valuable tools in the modeling
of many phenomena in various fields of science and engineering, see the papers
[1]–[17] and the references therein.

Ding and Li [8] discussed the existence and asymptotic stability of periodic
solutions for the following neutral functional differential equation

d

dt
u (t)− q d

dt
u (t− r)

= p (t)− au (t)− aqu (t− r)− bf (u (t)) + bqf (u (t− r)) . (1.1)

By employing Krasnoselskii’s fixed point theorem, the authors obtained the ex-
istence and asymptotic stability results for periodic solutions.

In this paper, we are interested on the existence and asymptotic stability of
periodic solutions of the following neutral differential system

d

dt
u (t)− q d

dt
u (t− r)

= P (t) +A (t)u (t) +A (t) qu (t− r)− bf (u (t)) + bqf (u (t− r)) , (1.2)

where b > 0, |q| < 1, r > 0 and A is nonsingular n × n matrix with continuous
real-valued functions as its elements. The functions P : R→ Rn and f : Rn → Rn
are continuously differentiable.
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In the analysis we use the fundamental matrix solution coupled with Floquet
theory to invert the differential system (1.2) into an integral system. Then, we
employ Krasnoselskii’s fixed point theorem to show the existence and asymptotic
stability of periodic solutions of the system (1.2). The obtained integral system is
the sum of two mappings, one is a compact operator and the other is a contraction.
It is easy to see that (1.2) reduce to (1.1) when n = 1 and A (t) = −a. Then, the
results obtained here extend some results of the work of Ding and Li [8].

2. Existence of periodic solutions

In this section, C1 (R,Rn) and C (R,Rn) denote the set of all continuously
differentiable functions and all continuous functions φ : R→ Rn respectively. For
T > 0, CT = {φ ∈ C (R,Rn) , φ (t+ T ) = φ (t)} is a Banach space with the
supremum norm

‖φ‖0 = sup
t∈R
|φ(t)| = sup

t∈[0,T ]
|φ(t)| ,

where |.| denotes the infinity norm for x ∈ Rn and C1
T = C1 (R,Rn) ∩ CT is a

Banach space with the norm ‖φ‖1 = ‖φ‖0+‖φ′‖0 in a period interval. Also, if A is
an n×n real matrix, then we define the norm of A by |A| = max1≤i≤n

∑n
j=1 |aij |.

For a sufficiently small positive L, (1.2) can be transformed as

d

dt
v (t)− q d

dt
v (t− τ)

= LP1 (t) + LA1 (t) v (t) + LA1 (t) qv (t− τ)− Lbf (v (t)) + Lbqf (v (t− τ)) ,
(2.1)

where v (t) = u (Lt), τ = r
L , P1 (t) = P (Lt) and A1 (t) = A (Lt).

First we make the following definition.

Definition 2.1. If the matrix A1 is periodic of period ω = T
L , then the linear

system

y′ (t) = LA1(t)y (t) , (2.2)

is said to be noncritical with respect to ω if it has no periodic solution of period
ω except the trivial solution y = 0.

Throughout this paper it is assumed that system (2.2) is noncritical. Next we
state some known results [7] about system (2.2). Let K represent the fundamental
matrix of (2.2) with K(0) = I, where I is the n× n identity matrix. Then

(a) detK(t) 6= 0.
(b) There exists a constant matrix B such that K(t + ω) = K(t)eBω, by

Floquet theory.
(c) System (2.2) is noncritical if and only if det(I −K(ω)) 6= 0.

Lemma 2.1. If the matrix LA1 is periodic of period ω and h ∈ Cω, then the
linear system

x′ (t) = LA1(t)x (t) + h (t) , (2.3)

has a unique ω-periodic solution

x(t) = K(t)
(
K−1(ω)− I

)−1 ∫ t+ω

t
K−1(s)h (s) ds.
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Proof. Since K(t)K−1(t) = I, it follows that

0 =
d

dt

(
K(t)K−1(t)

)
=

d

dt
(K(t))K−1(t) +K(t)

d

dt

(
K−1(t)

)
= (LA1 (t)K(t))K−1(t) +K(t)

d

dt

(
K−1(t)

)
= LA1 (t) +K(t)

d

dt

(
K−1(t)

)
.

This implies
d

dt

(
K−1(t)

)
= −K−1(t)LA1 (t) . (2.4)

If x is a solution of (2.3) with x(0) = x0, then

d

dt

[
K−1(t)x (t)

]
=

d

dt

(
K−1(t)

)
x (t) +K−1(t)

d

dt
x (t)

= −K−1(t)LA1 (t)x (t) +K−1(t) [LA1 (t)x (t) + h (t)]

= K−1(t)h (t) ,

by (2.4). An integration of the above equation from 0 to t yields

x(t) = K(t)x (0) +K(t)

∫ t

0
K−1(s)h (s) ds. (2.5)

Since x(ω) = x0 = x(0), we get

x (0) = (I −K(ω))−1
∫ ω

0
K(ω)K−1(s)h (s) ds. (2.6)

A substitution of (2.6) into (2.5) yields

x(t) = K(t) (I −K(ω))−1
∫ ω

0
K(ω)K−1(s)h (s) ds

+K(t)

∫ t

0
K−1(s)h (s) ds. (2.7)

Since

(I −K(ω))−1 =
(
K(ω)

(
K−1(ω)− I

))−1
=
(
K−1(ω)− I

)−1
K−1(ω),

(2.7) becomes

x(t) = K(t)
(
K−1(ω)− I

)−1 ∫ ω

0
K−1(s)h (s) ds+K(t)

∫ t

0
K−1(s)h (s) ds

= K(t)
(
K−1(ω)− I

)−1{∫ ω

0
K−1(s)h (s) ds

+K−1(ω)

∫ t

0
K−1(s)h (s) ds−

∫ t

0
K−1(s)h (s) ds

}
.

= K(t)
(
K−1(ω)− I

)−1{∫ ω

t
K−1(s)h (s) ds

+K−1(ω)

∫ t

0
K−1(s)h (s) ds

}
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By letting s = µ− ω, the above expression implies

x(t) = K(t)
(
K−1(ω)− I

)−1{∫ ω

t
K−1(s)h (s) ds

+K−1(ω)

∫ t+ω

ω
K−1(µ− ω)h (µ− ω) dµ

}
. (2.8)

By (b) we have K(t− ω) = K(t)e−Bωand K(ω) = eBω. Hence,

K−1(ω)K−1(µ− ω) = K−1(µ).

Consequently, (2.8) becomes

x(t) = K(t)
(
K−1(ω)− I

)−1{∫ ω

t
K−1(s)h (s) ds

+

∫ t+ω

ω
K−1(s)h (s) ds

}
.

�

Theorem 2.1 (Krasnoselskii’s fixed point theorem [18]). Let M be a closed con-
vex nonempty subset of a Banach space (S, ‖.‖). Suppose that A and B map M
into S such that

(i) Ax+ By ∈M, ∀x, y ∈M,
(ii) A is continuous and AM is contained in a compact set,
(iii) B is a contraction with constant α < 1.

Then there is a z ∈M with z = Az + Bz.

By applying Lemma 2.1 and Theorem 2.1, we obtain in this section the exis-
tence of periodic solutions of (1.2).

Theorem 2.2. Suppose that f ∈ C1 (Rn) and P1, A1 ∈ C1
ω. If there exists a

constant H > 0 such that

sup
|u|≤H

|f (u)|

H
<

1

(1 + (1 + L ‖A1‖) cω)Lb
, (2.9)

and that

|q| <
1− (1 + (1 + L ‖A1‖) cω)Lb

sup
|u|≤H

|f(u)|

H

1 + 2 ‖A1‖ (1 + (1 + L ‖A1‖) cω)L+ (1 + (1 + L ‖A1‖) cω)Lb
sup
|u|≤H

|f(u)|

H

,

(2.10)
and

‖P1‖0 ≤
(1− |q|)H

(1 + (1 + L ‖A1‖) cω)L
− 2 ‖A1‖ |q|H − b (1 + |q|) sup

|u|≤H
|f (u)| , (2.11)

where ‖A1‖ = sup
t∈[0,ω]

|A1 (t)| and

c = sup
t∈[0,ω]

( sup
t≤s≤t+ω

|[K(s)(K−1(ω)− I)K−1(t)]−1|).

Then (1.2) has a T -periodic solution.
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Proof. According to the condition (2.11), we get

(1 + (1 + L ‖A1‖) cω)L ‖P1‖0 + [1 + (1 + (1 + L ‖A1‖) cω) 2L ‖A1‖] |q|H
+ (1 + (1 + L ‖A1‖) cω)Lb (1 + |q|) sup

|u|≤H
|f (u)|

≤ (1 + (1 + L ‖A1‖) cω)L

×

{
(1− |q|)H

(1 + (1 + L ‖A1‖) cω)L
− 2 ‖A1‖ |q|H − b (1 + |q|) sup

|u|≤H
|f (u)|

}
+ [1 + (1 + (1 + L ‖A1‖) cω) 2L ‖A1‖] |q|H
+ (1 + (1 + L ‖A1‖) cω)Lb (1 + |q|) sup

|u|≤H
|f (u)|

= H. (2.12)

We need to prove that (2.1) has a ω-periodic solution. Let

S =
{
φ ∈ C1 (R,Rn) , ‖φ‖1 = ‖φ‖0 +

∥∥φ′∥∥
0
< +∞

}
,

and

M =
{
φ ∈ C1

ω, ‖φ‖1 ≤ H
}
,

then M is a bounded closed convex set of the Banach space S.
Consider the system

d

dt
v (t) = LA1 (t) v (t) + LP1 (t) + LA1 (t) qv (t− τ)

− Lbf (v (t)) + Lbqf (v (t− τ)) + q
d

dt
v (t− τ) .

According to Lemma 2.1, this equation has a unique ω-periodic solution

v (t) = K(t)
(
K−1(ω)− I

)−1 ∫ t+ω

t
K−1(s) [LP1 (s) + LA1 (s) qv (s− τ)

−Lbf (v (s)) + Lbqf (v (s− τ)) + q
∂

∂s
v (s− τ)

]
ds,

Performing an integration by part and the fact that v (t+ ω − τ) = v (t− τ), we
obtain

K(t)
(
K−1(ω)− I

)−1 ∫ t+ω

t
K−1(s)q

∂

∂s
v (s− τ) ds

= K(t)
(
K−1(ω)− I

)−1 {[
K−1(t+ ω)−K−1(t)

]
qv (t− τ)

−
∫ t+ω

t

∂

∂s

[
K−1(s)

]
qv (s− τ) ds

}
(2.13)

Noting that K−1(t+ ω) = e−BωK−1(t), we have

K−1(t+ ω)−K−1(t) = e−BωK−1(t)−K−1(t) =
(
K−1(ω)− I

)
K−1(t). (2.14)

Since
d

dt
K−1(t) = −K−1(t)LA1 (t) , (2.15)



PERIODICITY AND STABILITY IN NEUTRAL DIFFERENTIAL SYSTEMS, . . . 215

then, a substitution of (2.14) and (2.15) into (2.13) yields

K(t)
(
K−1(ω)− I

)−1 ∫ t+ω

t
K−1(s)q

∂

∂s
v (s− τ) ds

= qv (t− τ) +K(t)
(
K−1(ω)− I

)−1 ∫ t+ω

t
K−1(s)LA1 (s) qv (s− τ) ds.

Therefore

v (t) = qv (t− τ) +K(t)
(
K−1(ω)− I

)−1 ∫ t+ω

t
K−1(s) [LP1 (s)

+2LA1 (s) qv (s− τ)− Lbf (v (s)) + Lbqf (v (s− τ))] ds.

Define the operators A and B by

(Aϕ) (t) = K(t)
(
K−1(ω)− I

)−1 ∫ t+ω

t
K−1(s) [LP1 (s)

+2LA1 (s) qϕ (s− τ)− Lbf (ϕ (s)) + Lbqf (ϕ (s− τ))] ds,

and

(Bϕ) (t) = qϕ (t− τ) .

In order to prove (2.1) has a ω-periodic solution, we shall make sure that A and
B satisfy the conditions of Theorem 2.1.

For all x, y ∈ M, we have x (t+ ω) = x (t), y (t+ ω) = y (t) and ‖x‖1 ≤ H,
‖y‖1 ≤ H. Now let us discuss Ax+ By. We have

(Ax) (t+ ω) = K(t+ ω)
(
K−1(ω)− I

)−1 ∫ t+2ω

t+ω
K−1(s) [LP1 (s)

+2LA1 (s) qx (s− τ)− Lbf (x (s)) + Lbqf (x (s− τ))] ds.

By letting s = µ+ ω, the above expression implies

(Ax) (t+ ω) = K(t+ ω)
(
K−1(ω)− I

)−1 ∫ t+ω

t
K−1(µ+ ω) [LP1 (µ+ ω)

+2LA1 (µ+ ω) qx (µ+ ω − τ)

−Lbf (x (µ+ ω)) + Lbqf (x (µ+ ω − τ))] dµ.

By (b) we have K(t+ ω) = K(t)eBωand K(ω) = eBω. Hence

K(t+ ω)
(
K−1(ω)− I

)−1
K−1(µ+ ω) = K(t)

(
K−1(ω)− I

)−1
K−1(µ).

Consequently, the above expression implies

(Ax) (t+ ω) = K(t)
(
K−1(ω)− I

)−1 ∫ t+ω

t
K−1(s) [LP1 (s)

+2LA1 (s) qx (s− τ)− Lbf (x (s)) + Lbqf (x (s− τ))] ds

= (Ax) (t) ,

and

(By) (t+ ω) = qy (t+ ω − τ) = qy (t− τ) = (By) (t) ,
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therefore (Ax+ By) (t+ ω) = (Ax+ By) (t). Meanwhile, we get

(Ax)′ (t) = K ′(t)
(
K−1(ω)− I

)−1 ∫ t+ω

t
K−1(s) [LP1 (s)

+2LA1 (s) qx (s− τ)− Lbf (x (s)) + Lbqf (x (s− τ))] ds

+K(t)
(
K−1(ω)− I

)−1 [
K−1(t+ ω)−K−1(t)

]
[LP1 (t)

+2LA1 (t) qx (t− τ)− Lbf (x (t)) + Lbqf (x (t− τ))] . (2.16)

Since

K ′(t) = LA1 (t)K(t), (2.17)

and noting that K−1(t+ ω) = e−BωK−1(t), we have

K−1(t+ ω)−K−1(t) = e−BωK−1(t)−K−1(t) =
(
K−1(ω)− I

)
K−1(t). (2.18)

A substitution of (2.17) and (2.18) into (2.16) yields

(Ax)′ (t) = LA1 (t) (Ax) (t) + LP1 (t) + 2LA1 (t) qx (t− τ)

− Lbf (x (t)) + Lbqf (x (t− τ)) .

Thus,

‖Ax‖1
= ‖Ax‖0 +

∥∥(Ax)′
∥∥
0

= sup
t∈[0,ω]

∣∣∣∣K(t)
(
K−1(ω)− I

)−1 ∫ t+ω

t
K−1(s) [LP1 (s)

+2LA1 (s) qx (s− τ)− Lbf (x (s)) + Lbqf (x (s− τ))] ds|

+ sup
t∈[0,ω]

∣∣∣∣LA1 (t)K(t)
(
K−1(ω)− I

)−1 ∫ t+ω

t
K−1(s) [LP1 (s)

+2LA1 (s) qx (s− τ)− Lbf (x (s)) + Lbqf (x (s− τ))] ds

+LP1 (t) + 2LA1 (t) qx (t− τ)− Lbf (x (t)) + Lbqf (x (t− τ))|

≤ cω

[
2L ‖A1‖ |q|H + Lb (1 + |q|) sup

|u|≤H
|f (u)|+ L ‖P1‖0

]

+ (1 + L ‖A1‖ cω)

[
2L ‖A1‖ |q|H + Lb (1 + |q|) sup

|u|≤H
|f (u)|+ L ‖P1‖0

]

= (1 + (1 + L ‖A1‖) cω)

[
2L ‖A1‖ |q|H + Lb (1 + |q|) sup

|u|≤H
|f (u)|+ L ‖P1‖0

]
,

and

‖By‖1 = ‖By‖0 +
∥∥(By)′

∥∥
0
≤ |q| ‖y‖0 + |q|

∥∥y′∥∥
0

= |q| ‖y‖1
≤ |q|H.
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Therefore

‖Ax+ By‖1
≤ ‖Ax‖1 + ‖By‖1
≤ (1 + (1 + L ‖A1‖) cω) [2L |A1| |q|H

+Lb (1 + |q|) sup
|u|≤H

|f (u)|+ L ‖P1‖0

]
+ |q|H

= [1 + (1 + (1 + L ‖A1‖) cω) 2L ‖A1‖] |q|H + (1 + (1 + L ‖A1‖) cω)L ‖P1‖0
+ (1 + (1 + L ‖A1‖) cω)Lb (1 + |q|) sup

|u|≤H
|f (u)| .

By (2.12), ‖Ax+ By‖1 ≤ H. Accordingly, Ax+ By ∈M.

For all x ∈M, ‖Ax‖0 ≤ H,
∥∥(Ax)′

∥∥
0
≤ H. According to Ascoli Arzela lemma,

the subset AM of Cω is a precompact set, therefore for all subsequence {xn} of
M, there exists the subsequence {xnk

} of {xn} such that Axnk
→ x0 ∈ Cω as

k → +∞.
Meanwhile, we get

(Ax)′′ (t) = LA′1 (t) (Ax) (t) + L2A2
1 (t) (Ax) (t) + LA1 (t) [LP1 (t)

+2LA1 (t) qx (t− τ)− Lbf (x (t)) + Lbqf (x (t− τ))]

+
[
LP ′1 (t) + 2Lq

[
A′1 (t)x (t− τ) +A1 (t)x′ (t− τ)

]
−Lbf ′ (x (t))x′ (t) + Lbqf ′ (x (t− τ))x′ (t− τ)

]
.

Thus,

sup
t∈[0,ω]

∣∣(Ax)′′ (t)
∣∣ ≤ (L ‖A1‖+

(
L
∥∥A′1∥∥+ L2 ‖A1‖2

)
cω
)

[2L ‖A1‖ |q|H

+Lb (1 + |q|) sup
|u|≤H

|f (u)|+ L ‖P1‖0

]
+
[
2L
(
‖A1‖+

∥∥A′1∥∥) |q|H
+LbH (1 + |q|) sup

|u|≤H
|f (u)|+ L

∥∥P ′1∥∥0
]
.

Therefore there is a constant H1 > 0 such that

sup
t∈[0,ω]

∣∣(Ax)′′ (t)
∣∣ ≤ H1 and

{
(Ax)′ : x ∈M

}
⊂ Cω.

According to Ascoli Arzela lemma, {xnk
} has a subsequence, for simplicity, writ-

ten as {xnk
}, such that (Axnk

)′ → z0 ∈ Cω. Since d
dt is a closed operator,

z0 = (x0)
′. Hence, x0 ∈ C1

ω and {Axn} is contained in a compact set. Then, A
is a compact operator.
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Suppose that {xn} ∈M, x ∈ S, xn → x, then ‖xn − x‖0 → 0 and ‖x′n − x′‖0 →
0 as n→ +∞. And we get

‖Axn −Ax‖0

= sup
t∈[0,ω]

∣∣∣∣K(t)
(
K−1(ω)− I

)−1 ∫ t+ω

t
K−1(s)

× [2LA1 (s) q (xn (s− τ)− x (s− τ))− Lb (f (xn (s))− f (x (s)))

+Lbq (f (xn (s− τ))− f (x (s− τ)))] ds|

≤ ωc

[
2L ‖A1‖ |q| ‖xn − x‖+ Lb (1 + |q|) sup

t∈[0,ω]
|f (xn (t))− f (x (t))|

]
,

and ∥∥(Axn)′ − (Ax)′
∥∥
0

= sup
t∈[0,ω]

|LA1 (t) ((Axn) (t)− (Ax) (t))

+ 2LA1 (t) q (xn (t− τ)− x (t− τ))− Lb (f (xn (t))− f (x (t)))

+Lbq (f (xn (t− τ))− f (x (t− τ)))]|
≤ (1 + L ‖A1‖ωc) [2L ‖A1‖ |q| ‖xn − x‖

+Lb (1 + |q|) sup
t∈[0,ω]

|f (xn (t))− f (x (t))|

]
.

When ‖xn − x‖1 → 0 as n → +∞, |xn (t)− x (t)| → 0 for t ∈ [0, ω] uniformly.

And since f is continuous, ‖Axn −Ax‖0 → 0,
∥∥(Axn)′ − (Ax)′

∥∥
0
→ 0. Conse-

quently, A is continuous.
For all x, y ∈ M, ‖Bx− By‖1 ≤ |q| ‖x− y‖1 and |q| < 1, therefore B is a

contraction operator.
Thus, the conditions of Theorem 2.1 are satisfied and there is a φ ∈ M such

that φ = Aφ + Bφ. It is a ω-periodic solution for (2.1). Since v (t) = u (Lt),
P1 (t) = P (Lt) and A1 (t) = A (Lt), then (1.2) has a T -periodic solution. �

Example 2.1. Consider the following neutral differential system

d

dt
u (t)− q d

dt
u (t− r)

= P (t) +A (t)u (t) +A (t) qu (t− r)− bf (u (t)) + bqf (u (t− r)) , (2.19)

where T = 2π, b = 1, q =
1

80
, r = 2, A (t) =

(
0 1
−1 1

)
, P (t) =

(
0

0.01 cos (t)

)
and f (u (t)) =

(
0

sin (u (t))

)
. For L = 0.25, (2.19) can be transformed as

d

dt
v (t)− q d

dt
v (t− τ)

= LP1 (t) + LA1 (t) v (t) + LA1 (t) qv (t− τ)− Lbf (v (t)) + Lbqf (v (t− τ)) ,
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where v (t) = u (0.25t), ω = 8π, τ = 8, P1 (t) =

(
0

0.01 cos (0.25t)

)
and A1 (t) =(

0 1
−1 1

)
. Since the matrix A1 has eigenvalues with non-zero real parts, the

system
d

dt
v (t) = LA1 (t) v (t) is noncritical. Let H = 30, then all conditions of

Theorem 2.2 are satisfied and hence (2.19) has a 2π-periodic solution.

3. Asymptotic stability of periodic solutions

This section concerned with the asymptotic stability of periodic solutions.
When the conditions of Theorem 2.2 are satisfied, there is a T -periodic solution
u∗ for (1.2). Let v (t) = u (t)− u∗ (t), then (1.2) is transformed as

v′ (t)− qv′ (t− r) = A (t) v (t) +A (t) qv (t− r)− b [f (v (t) + u∗ (t))− f (u∗ (t))]

+ bq [f (v (t− r) + u∗ (t− r))− f (u∗ (t− r))] . (3.1)

Obviously, (3.1) has the zero solution. Now we use Krasnoselskii’s fixed point
theorem to prove the zero solution for (3.1) is asymptotically stable. We set S
as the Banach space of bounded continuous function φ : [−r,∞)→ Rn with the
supremum norm ‖.‖. Also, Given the initial function ψ, denote the norm of ψ by
‖ψ‖ = supt∈[−r,0] |ψ (t)|, which should not cause confusion with the same symbol
for the norm in S.

Proposition 3.1 ([7], Proposition 2.14). If t → Φ(t) is a fundamental matrix
solution for the system

y′ (t) = A(t)y (t) , (3.2)

defined on an open interval J , then Φ(t, r) := Φ(t)Φ−1(r) is the state transi-
tion matrix. Also, the state transition matrix satisfies the Chapman-Kolmogorov
identities

Φ(r, r) = I, Φ(t, s)Φ(s, r) = Φ(t, r),

and the identities

Φ(t, s)−1 = Φ(s, t),
∂Φ(t, s)

∂s
= −Φ(t, s)A (s) .

Theorem 3.1. If all conditions of Theorem 2.2 are satisfied, f satisfies the locally
Lipschitz condition. Further assume that

Φ(t)→ 0 as t→∞,
and there exists Q > H such that

sup
|u|≤H+Q

|f (u)|+ sup
|u|≤H

|f (u)| < Q

λb
, (3.3)

and that

|q| <
Q− λb

(
sup

|u|≤H+Q
|f (u)|+ sup

|u|≤H
|f (u)|

)

(1 + 2λ ‖A‖)Q+ λb

(
sup

|u|≤H+Q
|f (u)|+ sup

|u|≤H
|f (u)|

) , (3.4)
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and

‖ψ‖ ≤
(1− (1 + 2λ ‖A‖) |q|)Q− λb (1 + |q|)

(
sup

|u|≤H+Q
|f (u)|+ sup

|u|≤H
|f (u)|

)
θ (1 + |q|)

,

(3.5)

where θ = supt≥0 |Φ(t, 0)| and λ = sup
t≥0

∣∣∣∫ t0 Φ(t, s)ds
∣∣∣. Then the solution of (3.1)

v (t)→ 0 as t→∞.

Proof. According to the conditions (3.3), (3.4) and (3.5), we have

(1 + 2λ ‖A‖) |q|Q+ θ (1 + |q|) ‖ψ‖

+ λb (1 + |q|)

(
sup

|u|≤H+Q
|f (u)|+ sup

|u|≤H
|f (u)|

)
≤ Q. (3.6)

Given the initial function ψ, there exists a unique solution v for (3.1). Let

Mψ = {φ ∈ S, ‖φ‖ ≤ Q, φ (t) = ψ (t) if t ∈ [−r, 0] , |φ (t)| → 0 as t→∞} ,

then Mψ is a bounded convex closed set of S.
Let v be a solution of (3.1). We write (3.1) as

d

dt
{v (t)− qv (t− r)}

= A (t) v (t) +A (t) qv (t− r)− b [f (v (t) + u∗ (t))− f (u∗ (t))]

+ bq [f (v (t− r) + u∗ (t− r))− f (u∗ (t− r))]

Since Φ is a fundamental matrix solution for the system (3.2). We have

d

dt

{
Φ−1(t) (v (t)− qv (t− r))

}
=

{
d

dt
Φ−1(t)

}
(v (t)− qv (t− r)) + Φ−1(t)

d

dt
{(v (t)− qv (t− r))} .

By the Proposition 3.1, it follows that

d

dt
Φ−1(t) = −Φ−1(t)A (t) .

Then

d

dt

{
Φ−1(t) (v (t)− qv (t− r))

}
= −Φ−1(t)A (t) (v (t)− qv (t− r)) + Φ−1(t) {A (t) v (t)

+A (t) qv (t− r)− b [f (v (t) + u∗ (t))− f (u∗ (t))]

+bq [f (v (t− r) + u∗ (t− r))− f (u∗ (t− r))]}
= Φ−1(t) {2A (t) qv (t− r)− b [f (v (t) + u∗ (t))− f (u∗ (t))]

+bq [f (v (t− r) + u∗ (t− r))− f (u∗ (t− r))]} .
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An integration of the above equation from 0 to t yields

Φ−1(t) (v (t)− qv (t− r))− Φ−1(0) (v (0)− qv (0− r))

=

∫ t

0
Φ−1(s) {2A (s) qv (s− r)− b [f (v (s) + u∗ (s))− f (u∗ (s))]

+bq [f (v (s− r) + u∗ (s− r))− f (u∗ (s− r))]} ds. (3.7)

(3.7) can be expressed by

v (t) = Φ(t, 0) (v (0)− qv (0− r)) + qv (t− r)

+

∫ t

0
Φ(t, s) {2A (s) qv (s− r)− b [f (v (s) + u∗ (s))− f (u∗ (s))]

+bq [f (v (s− r) + u∗ (s− r))− f (u∗ (s− r))]} ds,

then we have

v (t) = Φ(t, 0) (ψ (0)− qψ (0− r)) + qv (t− r)

+

∫ t

0
Φ(t, s) {2A (s) qv (s− r)− b [f (v (s) + u∗ (s))− f (u∗ (s))]

+bq [f (v (s− r) + u∗ (s− r))− f (u∗ (s− r))]} ds.

For all φ ∈Mψ, define the operators A and B by

(Aφ) (t) =


0, t ∈ [−r, 0] ,∫ t
0 Φ(t, s) {2A (s) qφ (s− r)− b [f (φ (s) + u∗ (s))− f (u∗ (s))]

+bq [f (φ (s− r) + u∗ (s− r))− f (u∗ (s− r))]} ds, t ≥ 0,

and

(Bφ) (t) =

{
ψ (t) , t ∈ [−r, 0] ,
Φ(t, 0) (ψ (0)− qψ (−r)) + qφ (t− r) , t ≥ 0.

(i) For all x, y ∈Mψ, x (t)→ 0 and y (t)→ 0 as t→∞, then (By) (t)→ 0 and

lim
t→∞

(Ax) (t)

= lim
t→∞

{
Φ (t)

∫ t

0
Φ−1(s) {2A (s) qx (s− r)− b [f (x (s) + u∗ (s))− f (u∗ (s))]

+bq [f (x (s− r) + u∗ (s− r))− f (u∗ (s− r))]} ds}
= 0,
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therefore lim
t→∞

(Ax+ By) (t) = 0. And

‖Ax‖ = sup
t≥0

∣∣∣∣∫ t

0
Φ(t, s) {2A (s) qx (s− r)− b [f (x (s) + u∗ (s))− f (u∗ (s))]

+bq [f (x (s− r) + u∗ (s− r))− f (u∗ (s− r))]} ds|

≤

{
2 ‖A‖ |q| sup

t≥−r
|x (t)|+ b

[
sup

|u|≤H+Q
|f (u)|+ sup

|u|≤H
|f (u)|

]

+b |q|

[
sup

|u|≤H+Q
|f (u)|+ sup

|u|≤H
|f (u)|

]}
sup
t≥0

∣∣∣∣∫ t

0
Φ(t, s)ds

∣∣∣∣
≤ λ

[
2 ‖A‖ |q|Q+ b (1 + |q|)

(
sup

|u|≤H+Q
|f (u)|+ sup

|u|≤H
|f (u)|

)]
,

and

‖By‖ = sup
t≥−r

|(By) (t)|

= max

{
‖ψ‖ , sup

t≥0
|Φ(t, 0) (ψ (0)− qψ (−r)) + qy (t− r)|

}
≤ θ (1 + |q|) ‖ψ‖+ sup

t≥0
|qy (t− r)|

≤ θ (1 + |q|) ‖ψ‖+ |q|Q.

Thus,

‖Ax+ By‖
≤ ‖Ax‖+ ‖By‖

≤ λ

[
2 ‖A‖ |q|Q+ b (1 + |q|)

(
sup

|u|≤H+Q
|f (u)|+ sup

|u|≤H
|f (u)|

)]
+ θ (1 + |q|) ‖ψ‖+ |q|Q
= (1 + 2λ ‖A‖) |q|Q+ θ (1 + |q|) ‖ψ‖

+ λb (1 + |q|)

(
sup

|u|≤H+Q
|f (u)|+ sup

|u|≤H
|f (u)|

)
.

According to the condition (3.6), ‖Ax+ By‖ ≤ Q. Thus, Ax+ By ∈Mψ.
(ii) For all x ∈Mψ, ‖x‖ ≤ Q. And

∣∣(Ax)′ (t)
∣∣ = 0, t ∈ [−r, 0] ,
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and∣∣(Ax)′ (t)
∣∣

=

∣∣∣∣A (t)

∫ t

0
Φ(t, s) {2A (s) qx (s− r)− b [f (x (s) + u∗ (s))− f (u∗ (s))]

+bq [f (x (s− r) + u∗ (s− r))− f (u∗ (s− r))]} ds
+ {2A (t) qx (t− r)− b [f (x (t) + u∗ (t))− f (u∗ (t))]

+bq [f (x (t− r) + u∗ (t− r))− f (u∗ (t− r))]}|

≤ (1 + λ ‖A‖)

[
2 ‖A‖ |q|Q+ b (1 + |q|)

(
sup

|u|≤H+Q
|f (u)|+ sup

|u|≤H
|f (u)|

)]
,

here, the derivative of (Ax)′ (t) at zero means the left hand side derivative when
t ≤ 0 and the right hand side derivative when t ≥ 0. One can see

∣∣(Ax)′ (t)
∣∣

is bounded for all x ∈ Mψ and AMψ is a precompact set of S. Therefore A is
compact.

Suppose {xn} ⊂ Mψ, x ∈ S, xn → x as n → ∞, then |xn (t)− x (t)| → ∞
uniformly for t ≥ −r as n→∞. Since

‖Axn −Ax‖

= sup
t≥0

∣∣∣∣∫ t

0
Φ(t, s) {2A (s) q (xn (s− r)− x (s− r))

− b [f (xn (s) + u∗ (s))− f (x (s) + u∗ (s))]

+bq [f (xn (s− r) + u∗ (s− r))− f (x (s− r) + u∗ (s− r))]} ds|
≤ λ [2 ‖A‖ |q| ‖xn − x‖+ b (1 + |q|)

× sup
t≥−r

|f (xn (t) + u∗ (t))− f (x (t) + u∗ (t))|
]
,

and f is continuous, therefore‖Axn −Ax‖ → 0 as n→∞ and A is continuous.
(iii) For all x, y ∈Mψ,

‖Bx− By‖ = sup
t≥0
|qx (t− r)− qy (t− r)| ≤ |q| ‖x− y‖ ,

and |q| < 1, therefore B is a contraction operator.
According to Krasnoselskii’s fixed point theorem, there is a φ ∈Mψ such that

(A+ B)φ = φ and φ is a solution for (3.1). Because the solution through ψ for
the equation is unique, the solution v (t) = φ (t)→ 0 as t→∞. �

When f satisfies the locally Lipschitz condition, H in Theorem 2.2 and Q in
Theorem 3.1 exists, there is a constant R > 0 such that

|f (v (t) + u∗ (t))− f (v (t))| < R |v (t)| .
Since φ satisfies

φ (t) = Φ(t, 0)(ψ (0)− qψ (−r)) + qφ (t− r)

+

∫ t

0
Φ(t, s){2A (s) qφ (s− r)− b[f (φ (s) + u∗ (s))− f (u∗ (s))]

+bq[f (φ (s− r) + u∗ (s− r))− f (u∗ (s− r))]}ds,
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then

‖φ‖ ≤ θ (1 + |q|) ‖ψ‖+ |q| ‖φ‖+ λ[2 ‖A‖ |q| ‖φ‖+ b (1 + |q|)R ‖φ‖],

that is

[1− |q| − λ (2 ‖A‖ |q|+ b (1 + |q|)R)] ‖φ‖ ≤ θ (1 + |q|) ‖ψ‖ .

Then there clearly exists a δ > 0 for each ε > 0 such that |φ (t)| < ε for all
t ≥ −r if ‖ψ‖ < δ. Thus we have the following theorem.

Theorem 3.2. If R satisfies

1− |q| − λ (2 ‖A‖ |q|+ b (1 + |q|))R > 0.

Then the zero solution for (3.1) is stable.

4. Conclusion

In this paper, we provided the existence and asymptotic stability of periodic
solutions with sufficient conditions for neutral differential systems. The main tool
of this paper is the method of fixed points. However, by introducing new fixed
mappings, we get new existence and stability conditions. The obtained results
have a contribution to the related literature, and they improve and extend the
results in [8] from the case of neutral differential equations to that case with
neutral differential systems.
Acknowledgment. The authors would like to thank the anonymous referee for
his/her valuable comments and good advice.
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