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GLOBAL BOUNDEDNESS AND STABILITY OF SOLUTIONS
OF NONAUTONOMOUS DEGENERATE DIFFERENTIAL

EQUATIONS

MARIA S. FILIPKOVSKA (FILIPKOVSKAYA)

Abstract. For nonautonomous (time-varying) degenerate differential
equations, which are also called nonautonomous differential-algebraic
equations, conditions of the Lagrange stability and instability, the Lya-
punov stability and instability, ultimate boundedness and asymptotic
stability, including conditions of asymptotic stability in the large (or
complete stability) are obtained. Note that the Lagrange stability of
the equation (as well as the ultimate boundedness) guarantees its global
solvability for all consistent initial values and the boundedness (the ulti-
mate boundedness) of all its solutions. The Lagrange instability enable
to identify solutions with a finite escape time, i.e., the solutions blowing
up in finite time.

1. Introduction

In the present work, nonautonomous degenerate differential equations of the
form

𝑑

𝑑𝑡
[𝐴(𝑡)𝑥(𝑡)] + 𝐵(𝑡)𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡)), (1.1)

where 𝑓 : [𝑡+,∞) × R𝑛 → R𝑛, 𝑡+ ≥ 0, and 𝐴, 𝐵 : [𝑡+,∞) → 𝐿(R𝑛) are studied.
We do not require the operator 𝐴(𝑡) to be nondegenerate (invertible). Thus, in
the general case, the operator 𝐴(𝑡) is degenerate and therefore the differential
equation (DE) (1.1) is called degenerate. It is also called a semilinear (sometimes
quasilinear) differential-algebraic equation (DAE ). Equations of the type (1.1)
with time-varying operator 𝐴(𝑡) are called time-varying or nonautonomous. Note
that the operator 𝐵(𝑡) can also be degenerate.

The initial condition is given by

𝑥(𝑡0) = 𝑥0 (𝑡0 ≥ 𝑡+). (1.2)

The initial point (𝑡0, 𝑥0) must satisfy a consistency condition which will be given
below (see Remark 2.1).

A function 𝑥 ∈ 𝐶([𝑡0, 𝑡1),R𝑛) is said to be a solution of the equation (1.1) on
[𝑡0, 𝑡1) ([𝑡0, 𝑡1) ⊆ [𝑡+,∞)) if the function 𝐴(𝑡)𝑥(𝑡) is continuously differentiable on
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[𝑡0, 𝑡1) and 𝑥(𝑡) satisfies (1.1) on [𝑡0, 𝑡1). If the function 𝑥(𝑡) additionally satisfies
the initial condition (1.2), then it is called a solution of the initial value problem
(the Cauchy problem) (1.1), (1.2). If we consider the equation

𝐴(𝑡)
𝑑

𝑑𝑡
𝑥(𝑡) + 𝐵(𝑡)𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡)) (1.3)

instead of (1.1), then its solution has to be smoother, namely, a function 𝑥 ∈
𝐶1([𝑡0, 𝑡1),R𝑛) satisfying (1.3) on [𝑡0, 𝑡1) is called a solution of the equation (1.3)
on [𝑡0, 𝑡1). If 𝑥(𝑡) additionally satisfies (1.2), then it is called a solution of the
initial value problem (1.3), (1.2).

Degenerate DEs or DAEs of type (1.1) describe various dynamical systems
which are nonlinear and may have nonlinear algebraic (functional) relationships
between the coordinates of variables and relationships between these variables and
external influences. These equations are used to describe mathematical models
in control theory (where they are called descriptor equations), radio electronics,
robotics, economics, ecology and chemical kinetics (see, e.g., [26, 3, 2, 15, 19, 4,
14, 28]). Due to a wide range of applications, degenerate DEs (DAEs, algebraic-
differential systems, descriptor equations) have been studied by many authors.
The local solvability was studied, e.g., in the monographs [26, 2, 3, 15, 19, 14] (also,
see references therein), where various approaches to the study of such equations
are presented. In [3, 15, 19], the Lyapunov stability of the equilibrium position was
also studied. The Lyapunov stability of the zero solution of an nonautonomous
semilinear DAE under certain simplifications of the nonlinear function in the
equation was considered in [25]. The global solvability of semilinear DAEs was
studied in [11, 26, 3, 15].

The references cited, except for [26] and, in part, [15], concern the study of
degenerate DEs in finite-dimensional spaces. It is worth noting that degenerate
DEs of the type (1.1), (1.3) in infinite-dimensional spaces (operator-differential
equations, implicit evolution equations, abstract DAEs) are important for the
study of partial differential equations (PDEs), since any type of a PDE can be
represented as a degenerate DE and, possibly, a complementary boundary condi-
tion (see, e.g., [26, 24, 27]). Degenerate parabolic and elliptic-parabolic equations
were considered in [10, 26, 24, 27], and in [26] degenerate hyperbolic equations
were also considered.

The conditions of global solvability (including the uniqueness of global solu-
tions) for autonomous degenerate DEs of the form (1.1) (𝐴, 𝐵 are time-invariant)
were obtained by the author in [6] and, together with A.G. Rutkas, in [21] in
the case of the regular characteristic pencil 𝜆𝐴 + 𝐵, and in [9] in the case of the
nonregular (singular) characteristic pencil. The conditions of Lagrange stability
for autonomous degenerate DEs of the form (1.1) were obtained by the author in
[8, 9]. In [7], two combined numerical methods were presented and it was verified
that the results of applying the theorems from [8] were consistent with the results
of numerical experiments. In the present paper, the nonautonomous degenerate
DEs (1.1) and (1.3) with characteristic pencils regular for every 𝑡 are studied.

The following notation is used in the paper: 𝐼𝑋 is the identity operator in 𝑋;
rk𝐴 is the rank of the operator 𝐴; Ker𝐴 is the kernel (the null-space) of the
operator 𝐴; ℛ(𝐴) is the range (the image) of the operator 𝐴; 𝛿𝑖𝑗 is the Kronecker
delta.
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2. Preliminaries and basic definitions

The definitions and facts presented in this section will be used hereinafter.

The spectral projectors of the type of the Riesz projectors. Let for each
𝑡 ≥ 𝑡+ the operator pencil 𝜆𝐴(𝑡) + 𝐵(𝑡) be regular (𝜆 is a complex parameter)
and let there exist functions 𝐶1 : [𝑡+,∞) → (0,∞), 𝐶2 : [𝑡+,∞) → (0,∞) such
that for all 𝑡 ∈ [𝑡+,∞) the pencil resolvent 𝑅(𝜆, 𝑡) = (𝜆𝐴(𝑡) + 𝐵(𝑡))−1 satisfies
the constraint

‖𝑅(𝜆, 𝑡)‖ ≤ 𝐶1(𝑡), |𝜆| ≥ 𝐶2(𝑡). (2.1)
The condition (2.1) means that either the point 𝜇 = 0 is a simple pole of the
resolvent (𝐴(𝑡)+𝜇𝐵(𝑡))−1 (this is equivalent to the fact that 𝜆 = ∞ is a removable
singular point of the resolvent 𝑅(𝜆, 𝑡)), or 𝜇 = 0 is a regular point of the pencil
𝐴(𝑡) + 𝜇𝐵(𝑡).

If the regular pencil satisfies (2.1), then for each 𝑡 ∈ [𝑡+,∞) there exist the two
pairs of mutually complementary projectors [22], [26, Subsection 3.3] (𝑃1(𝑡) +
𝑃2(𝑡) = 𝐼R𝑛 , 𝑃𝑖(𝑡)𝑃𝑗(𝑡) = 𝛿𝑖𝑗𝑃𝑖(𝑡); 𝑄1(𝑡) + 𝑄2(𝑡) = 𝐼R𝑛 , 𝑄𝑖(𝑡)𝑄𝑗(𝑡) = 𝛿𝑖𝑗𝑄𝑖(𝑡))

𝑃1(𝑡) =
1

2𝜋𝑖

∮︁
|𝜆|=𝐶2(𝑡)

𝑅(𝜆, 𝑡) 𝑑𝜆𝐴(𝑡), 𝑃2(𝑡) = 𝐼R𝑛 − 𝑃1(𝑡),

𝑄1(𝑡) =
1

2𝜋𝑖

∮︁
|𝜆|=𝐶2(𝑡)

𝐴(𝑡)𝑅(𝜆, 𝑡) 𝑑𝜆, 𝑄2(𝑡) = 𝐼R𝑛 −𝑄1(𝑡)

(2.2)

which generate the direct decompositions of spaces

R𝑛 = 𝑋1(𝑡)+̇𝑋2(𝑡), 𝑋𝑗(𝑡) = 𝑃𝑗(𝑡)R𝑛, R𝑛 = 𝑌1(𝑡)+̇𝑌2(𝑡), 𝑌𝑗(𝑡) = 𝑄𝑗(𝑡)R𝑛 (2.3)

such that the pairs of subspaces 𝑋1(𝑡), 𝑌1(𝑡) and 𝑋2(𝑡), 𝑌2(𝑡) are invariant under
𝐴(𝑡), 𝐵(𝑡) (i.e., 𝐴(𝑡), 𝐵(𝑡) : 𝑋𝑗(𝑡) → 𝑌𝑗(𝑡), 𝑗 = 1, 2). The restricted operators
𝐴𝑗(𝑡) = 𝐴(𝑡)|𝑋𝑗(𝑡)

: 𝑋𝑗(𝑡) → 𝑌𝑗(𝑡), 𝐵𝑗(𝑡) = 𝐵(𝑡)|𝑋𝑗(𝑡)
: 𝑋𝑗(𝑡) → 𝑌𝑗(𝑡), 𝑗 = 1, 2,

are such that 𝐴2(𝑡) = 0, 𝐴−1
1 (𝑡) exists (if 𝑋1(𝑡) ̸= {0}), and 𝐵−1

2 (𝑡) exists (if
𝑋2(𝑡) ̸= {0}). The subspaces 𝑋𝑖(𝑡), 𝑌𝑗(𝑡) are such that 𝑌1(𝑡) = ℛ(𝐴(𝑡)) (ℛ(𝐴(𝑡))
is the range 𝐴(𝑡)), 𝑋2(𝑡) = Ker𝐴(𝑡), 𝑌2(𝑡) = 𝐵(𝑡)𝑋2(𝑡) and 𝑋1(𝑡) = 𝑅(𝜆, 𝑡)𝑌1(𝑡),
|𝜆| ≥ 𝐶2(𝑡). The projectors have the properties 𝐴(𝑡)𝑃1(𝑡) = 𝑄1(𝑡)𝐴(𝑡) = 𝐴(𝑡),
𝐴(𝑡)𝑃2(𝑡) = 𝑄2(𝑡)𝐴(𝑡) = 0, 𝐵(𝑡)𝑃𝑗(𝑡) = 𝑄𝑗(𝑡)𝐵(𝑡), 𝑗 = 1, 2, and are real, since
𝐴(𝑡), 𝐵(𝑡) are real.

Using the spectral projectors, for each 𝑡 ∈ [𝑡+,∞) we obtain the auxiliary
operator [22], [26, subsection 3.3]

𝐺(𝑡) = 𝐴(𝑡) + 𝐵(𝑡)𝑃2(𝑡) = 𝐴(𝑡) + 𝑄2(𝑡)𝐵(𝑡) ∈ 𝐿(R𝑛) (2.4)

such that 𝐺(𝑡) : 𝑋𝑗(𝑡) → 𝑌𝑗(𝑡) (𝐺(𝑡)𝑋𝑗(𝑡) = 𝑌𝑗(𝑡)), there exists
𝐺−1(𝑡) = 𝐴−1

1 (𝑡)𝑄1(𝑡) + 𝐵−1
2 (𝑡)𝑄2(𝑡) ∈ 𝐿(R𝑛) (𝐺−1(𝑡) : 𝑌𝑗(𝑡) → 𝑋𝑗(𝑡)),

and 𝐺−1(𝑡)𝐴(𝑡)𝑃1(𝑡) = 𝐺−1(𝑡)𝐴(𝑡) = 𝑃1(𝑡), 𝐺−1(𝑡)𝐵(𝑡)𝑃2(𝑡) = 𝑃2(𝑡),
𝐴(𝑡)𝐺−1(𝑡)𝑄1(𝑡) = 𝐴(𝑡)𝐺−1(𝑡) = 𝑄1(𝑡), 𝐵(𝑡)𝐺−1(𝑡)𝑄2(𝑡) = 𝑄2(𝑡).

Note that the projection operator functions 𝑃𝑖(𝑡), 𝑄𝑖(𝑡) and the operator func-
tions 𝐺(𝑡), 𝐺−1(𝑡) have the same degree of smoothness as the operator functions
𝐴(𝑡), 𝐵(𝑡) and the function 𝐶2(𝑡) [26, subsection 3.3]. Suppose that the opera-
tor functions 𝐴(𝑡), 𝐵(𝑡) and the function 𝐶2(𝑡) are continuously differentiable on
[𝑡+,∞), i.e., 𝐴, 𝐵 ∈ 𝐶1([𝑡+,∞), 𝐿(R𝑛)) and 𝐶2 ∈ 𝐶1([𝑡+,∞), (0,∞)), then the
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operator functions 𝑃𝑖(𝑡), 𝑄𝑖(𝑡), 𝐺(𝑡) and 𝐺−1(𝑡) are also continuously differen-
tiable on [𝑡+,∞).

With respect to the decomposition (2.3), for each 𝑡 any vector 𝑥 ∈ R𝑛 can be
uniquely represented in the form

𝑥 = 𝑃1(𝑡)𝑥 + 𝑃2(𝑡)𝑥 = 𝑥𝑝1(𝑡) + 𝑥𝑝2(𝑡), 𝑥𝑝𝑖(𝑡) = 𝑃𝑖(𝑡)𝑥 ∈ 𝑋𝑖(𝑡). (2.5)

Note that the equation (1.1) is equivalent to

𝐴(𝑡)[𝑃1(𝑡)𝑥(𝑡)]′ + 𝐴′(𝑡)[𝑃1(𝑡)𝑥(𝑡)] + 𝐵(𝑡)𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡)).

Applying the projectors 𝑄1(𝑡), 𝑄2(𝑡) to (1.1) and using their properties, we obtain
the equivalent system

𝐴(𝑡)𝑃1(𝑡)[𝑃1(𝑡)𝑥(𝑡)]′+𝑄1(𝑡)𝐴
′(𝑡)𝑃1(𝑡)𝑥(𝑡)+𝐵(𝑡)𝑃1(𝑡)𝑥(𝑡)=𝑄1(𝑡)𝑓(𝑡, 𝑥(𝑡)), (2.6)

𝑄2(𝑡)𝐴
′(𝑡)𝑃1(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑃2(𝑡)𝑥(𝑡) = 𝑄2(𝑡)𝑓(𝑡, 𝑥(𝑡)). (2.7)

Applying the operator 𝐺−1(𝑡) to the system (2.6), (2.7) and using its properties,
we obtain the equivalent system

𝑃1(𝑡)[𝑃1(𝑡)𝑥(𝑡)]′ + 𝐺−1(𝑡)𝑄1(𝑡)[𝐴
′(𝑡) + 𝐵(𝑡)]𝑃1(𝑡)𝑥(𝑡) = 𝐺−1(𝑡)𝑄1(𝑡)𝑓(𝑡, 𝑥(𝑡)),

𝑃2(𝑡)𝑥(𝑡) = 𝐺−1(𝑡)𝑄2(𝑡)[𝑓(𝑡, 𝑥(𝑡)) −𝐴′(𝑡)𝑃1(𝑡)𝑥(𝑡)].

Taking into account the equality 𝑃1(𝑡)[𝑃1(𝑡)𝑥(𝑡)]′ = [𝑃1(𝑡)𝑥(𝑡)]′ − 𝑃 ′
1(𝑡)𝑃1(𝑡)𝑥(𝑡),

the obtained system can be rewritten as

[𝑃1(𝑡)𝑥(𝑡)]′ =
[︀
𝑃 ′
1(𝑡) −𝐺−1(𝑡)𝑄1(𝑡)[𝐴

′(𝑡) + 𝐵(𝑡)]
]︀
𝑃1(𝑡)𝑥(𝑡)+

+ 𝐺−1(𝑡)𝑄1(𝑡)𝑓(𝑡, 𝑥(𝑡)),

𝐺−1(𝑡)𝑄2(𝑡)[𝑓(𝑡, 𝑥(𝑡)) −𝐴′(𝑡)𝑃1(𝑡)𝑥(𝑡)] − 𝑃2(𝑡)𝑥(𝑡) = 0.

(2.8)

Thus, the degenerate DE (1.1) is reduced to the equivalent system (2.8). Using
the representation (2.5), we can write the system (2.8) in the form

𝑥′𝑝1(𝑡) =
[︀
𝑃 ′
1(𝑡) −𝐺−1(𝑡)𝑄1(𝑡)[𝐴

′(𝑡) + 𝐵(𝑡)]
]︀
𝑥𝑝1(𝑡)+

+ 𝐺−1(𝑡)𝑄1(𝑡)𝑓(𝑡, 𝑥𝑝1(𝑡) + 𝑥𝑝2(𝑡)), (2.9)

𝐺−1(𝑡)𝑄2(𝑡)[𝑓(𝑡, 𝑥𝑝1(𝑡) + 𝑥𝑝2(𝑡)) −𝐴′(𝑡)𝑥𝑝1(𝑡)] − 𝑥𝑝2(𝑡) = 0. (2.10)

The equation (1.3) is transformed analogously. Applying the projectors 𝑄1(𝑡),
𝑄2(𝑡) to (1.3), we obtain the equivalent system

𝐴(𝑡)𝑃1(𝑡)𝑥
′(𝑡) + 𝐵(𝑡)𝑃1(𝑡)𝑥(𝑡) = 𝑄1(𝑡)𝑓(𝑡, 𝑥(𝑡)), (2.11)

𝐵(𝑡)𝑃2(𝑡)𝑥(𝑡) = 𝑄2(𝑡)𝑓(𝑡, 𝑥(𝑡)). (2.12)

Further, using 𝐺−1(𝑡), we transform the obtained system to the equivalent system

[𝑃1(𝑡)𝑥(𝑡)]′ = 𝐺−1(𝑡)[−𝐵(𝑡)𝑃1(𝑡)𝑥(𝑡) + 𝑄1(𝑡)𝑓(𝑡, 𝑥(𝑡))] + 𝑃 ′
1(𝑡)𝑥(𝑡),

𝐺−1(𝑡)𝑄2(𝑡)𝑓(𝑡, 𝑥(𝑡)) − 𝑃2(𝑡)𝑥(𝑡) = 0.
(2.13)

Thus, the degenerate DE (1.3) is reduced to the equivalent system (2.13). Using
the representation (2.5), we can write (2.13) in the form

𝑥′𝑝1(𝑡) = 𝐺−1(𝑡)[−𝐵(𝑡)𝑥𝑝1(𝑡) + 𝑄1(𝑡)𝑓(𝑡, 𝑥𝑝1(𝑡) + 𝑥𝑝2(𝑡))]+

+ 𝑃 ′
1(𝑡)(𝑥𝑝1(𝑡) + 𝑥𝑝2(𝑡)), (2.14)

𝐺−1(𝑡)𝑄2(𝑡)𝑓(𝑡, 𝑥𝑝1(𝑡) + 𝑥𝑝2(𝑡)) − 𝑥𝑝2(𝑡) = 0. (2.15)
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From the foregoing, the remark follows:

Remark 2.1. Introduce the manifolds (the varieties)

𝐿𝑡+ = {(𝑡, 𝑥) ∈ [𝑡+,∞) × R𝑛 | 𝑄2(𝑡)[𝐵(𝑡)𝑥 + 𝐴′(𝑡)𝑃1(𝑡)𝑥− 𝑓(𝑡, 𝑥)] = 0}, (2.16)̂︀𝐿𝑡+ = {(𝑡, 𝑥) ∈ [𝑡+,∞) × R𝑛 | 𝑄2(𝑡)[𝐵(𝑡)𝑥− 𝑓(𝑡, 𝑥)] = 0}. (2.17)

The consistency condition (𝑡0, 𝑥0) ∈ 𝐿𝑡+ ((𝑡0, 𝑥0) ∈ ̂︀𝐿𝑡+) for the initial point
(𝑡0, 𝑥0) is one of the necessary conditions for the existence of a solution of the
initial value problem (1.1), (1.2) (the initial value problem (1.3), (1.2)). The ini-
tial point (𝑡0, 𝑥0) satisfying this condition is called consistent (the corresponding
initial values 𝑡0, 𝑥0 are also called consistent).

The La Salle method for the continuation of solutions by using functions
of the Lyapunov type. First we give some classic definitions from [17]. Let 𝐷 ⊂
R𝑛 be a region containing the origin. A function 𝑊 ∈ 𝐶(𝐷,R) is called positive
definite if 𝑊 (0) = 0 and 𝑊 (𝑥) > 0 for all 𝑥 ̸= 0. A function 𝑉 ∈ 𝐶([𝑡+,∞)×𝐷,R)
is called positive definite if 𝑉 (𝑡, 0) ≡ 0 and there exists a positive definite scalar
function 𝑊 (𝑥) such that 𝑉 (𝑡, 𝑥) ≥ 𝑊 (𝑥) for all 𝑥 ̸= 0, 𝑡 ∈ [𝑡+,∞). Suppose
that 𝑉 (𝑡, 𝑥) has continuous first-order partial derivatives. The derivative of the
function 𝑉 along the trajectories of the system (or the derivative of 𝑉 with respect
to the system)

𝑥′ = 𝑓(𝑡, 𝑥) (2.18)
is

𝑉 ′
(2.18)(𝑡, 𝑥) =

𝜕𝑉

𝜕𝑡
(𝑡, 𝑥) +

(︂
𝜕𝑉

𝜕𝑥
(𝑡, 𝑥), 𝑓(𝑡, 𝑥)

)︂
.

By extending the second method of Lyapunov, in [16] J. La Salle obtained
the theorems on the global solvability (solutions defined in the future) and also
the Lagrange stability and instability of the ordinary differential equation (ODE)
(2.18) (𝑓 : [0,∞) × R𝑛 → R𝑛), where differential inequalities of the form

𝑣′ ≤ 𝜒(𝑡, 𝑣), 𝑡 ≥ 0, and 𝑣′ ≥ 𝜒(𝑡, 𝑣), 𝑡 ≥ 0, (2.19)

𝜒 ∈ 𝐶([0,∞) × (0,∞),R), were used. To apply these results, it is usually
convenient to take 𝜒(𝑡, 𝑣) = 𝑘(𝑡)𝑈(𝑣), where 𝑘 ∈ 𝐶([0,∞),R) and 𝑈 ∈ 𝐶(0,∞)
(𝑈 ∈ 𝐶

(︀
(0,∞),R

)︀
is a positive function). Then the inequalities (2.19) take the

form
𝑣′

𝑈(𝑣)
≤ 𝑘(𝑡), 𝑡 ≥ 0, (2.20)

𝑣′

𝑈(𝑣)
≥ 𝑘(𝑡), 𝑡 ≥ 0, (2.21)

and the following statements are true [16]: if
∞∫︀
𝑐

𝑑𝑣
𝑈(𝑣) = ∞ (𝑐 = 𝑐𝑜𝑛𝑠𝑡 > 0),

then the inequality (2.20) has no positive solution 𝑣(𝑡) with finite escape time; if
∞∫︀
𝑐

𝑑𝑣
𝑈(𝑣) = ∞ and

∞∫︀
𝑡0

𝑘(𝑡)𝑑𝑡 < ∞ (𝑡0 ≥ 0), then (2.20) has no unbounded positive

solution for 𝑡 ≥ 0; if
∞∫︀
𝑐

𝑑𝑣
𝑈(𝑣) < ∞ and

∞∫︀
𝑡0

𝑘(𝑡)𝑑𝑡 = ∞, then (2.21) has no positive

solution defined in the future (i.e., global).
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Basic definitions.
In [16], the definitions of a solution defined in the future, a solution with finite

escape time and the Lagrange stability of the explicit ODE were given. Let us
introduce similar definitions for degenerate DEs (DAEs).

A solution 𝑥(𝑡) of the initial value problem (1.1), (1.2) is called global or defined
in the future if it exists on the interval [𝑡0,∞). A solution 𝑥(𝑡) of (1.1), (1.2) is
called Lagrange stable if it is global and bounded, i.e., 𝑥(𝑡) exists on [𝑡0,∞) and

sup
𝑡∈[𝑡0,∞)

‖𝑥(𝑡)‖ < ∞ [8].

A solution 𝑥(𝑡) of the initial value problem (1.1), (1.2) has a finite escape time
(the solution is blow-up in finite time) if it exists on some finite interval [𝑡0, 𝑇 )
and is unbounded, i.e., there exists 𝑇 > 𝑡0 (𝑇 < ∞) such that lim

𝑡→𝑇−0
‖𝑥(𝑡)‖ = ∞.

A solution 𝑥(𝑡) of (1.1), (1.2) is called Lagrange unstable if it has a finite escape
time [8].

The equation (1.1) is Lagrange stable for the initial point (𝑡0, 𝑥0) if for this
initial point the solution of the initial value problem (1.1), (1.2) is Lagrange
stable.

The equation (1.1) is called Lagrange stable if every solution of the initial value
problem (1.1), (1.2) is Lagrange stable (i.e., the equation is Lagrange stable for
every consistent initial point) [8].

The equation (1.1) is Lagrange unstable for the initial point (𝑡0, 𝑥0) if for this
initial point the solution of the initial value problem (1.1), (1.2) is Lagrange
unstable.

The equation (1.1) is called Lagrange unstable if every solution of the initial
value problem (1.1), (1.2) is Lagrange unstable [8].

Similar definitions hold for the equation (1.3) (the initial value problem (1.3),
(1.2)).

Definition 2.1. Consider an operator function 𝐻 : [𝑡+,∞) → 𝐿(𝑋), where 𝑋 is a
finite-dimensional linear space or Hilbert space. Let the operator 𝐻(𝑡) ∈ 𝐿(𝑋) be
self-adjoint for every 𝑡 ∈ [𝑡+,∞). By analogy with [5], we introduce the following
definitions. The operator 𝐻(𝑡) is called positive if (𝐻(𝑡)𝑥, 𝑥) > 0 for all 𝑥 ̸= 0,
𝑡 ∈ [𝑡+,∞). The operator 𝐻(𝑡) is called uniformly positive or positive definite if
there exists a constant 𝐻0 > 0 such that (𝐻(𝑡)𝑥, 𝑥) ≥ 𝐻0‖𝑥‖2 for all 𝑥, 𝑡.

If 𝑋 is a finite-dimensional linear space and a self-adjoint operator 𝐻 ∈ 𝐿(𝑋)
is time-invariant and positive (i.e., (𝐻𝑥, 𝑥) > 0 for all 𝑥 ̸= 0), then it is
also positive definite (uniformly positive). Clearly, (𝐻𝑥, 𝑥) ≥ 𝐻0‖𝑥‖2, where
𝐻0 = inf

‖𝑥‖=1
(𝐻𝑥, 𝑥) > 0 [5]. For the time-varying operator 𝐻(𝑡) we can take

𝐻0 = inf
‖𝑥‖=1, 𝑡∈[𝑡+,∞)

(𝐻(𝑡)𝑥, 𝑥).

Remark 2.2. If we take the time-invariant self-adjoint operator 𝐻 ∈ 𝐿(R𝑛) in the
theorems presented in the paper, then it suffices to require that it be positive.
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3. Global boundedness of solutions of nonautonomous
degenerate differential equations

In subsection 3.1, the conditions for the unique global solvability of the equa-
tion (1.1) are given. In subsection 3.2, the conditions for the Lagrange stability,
which include the conditions of the unique global solvability and contain the con-
ditions for the boundedness of global solutions (for all consistent initial points),
are presented, as well as the conditions for the Lagrange instability under which
the equation (1.1) has no global solutions (for consistent initial points (𝑡0, 𝑥0),
where 𝑃1(𝑡0)𝑥0 from a certain region Ω) are presented. In subsection 3.3, the
conditions for the ultimate boundedness of solutions (dissipativity) of (1.1) are
given. The corresponding results for the equation (1.3) are given in subsection 3.4.

3.1. Global solvability.

Theorem 3.1. Let 𝑓 ∈ 𝐶([𝑡+,∞) × R𝑛,R𝑛), 𝜕
𝜕𝑥𝑓 ∈ 𝐶([𝑡+,∞) × R𝑛, 𝐿(R𝑛)),

𝐴, 𝐵 ∈ 𝐶1([𝑡+,∞), 𝐿(R𝑛)), the pencil 𝜆𝐴(𝑡) + 𝐵(𝑡) satisfy (2.1), where
𝐶2 ∈ 𝐶1([𝑡+,∞), (0,∞)), and the following conditions be satisfied:
1) for each 𝑡 ∈ [𝑡+,∞) and each 𝑥𝑝1(𝑡) ∈ 𝑋1(𝑡) there exists a unique

𝑥𝑝2(𝑡) ∈ 𝑋2(𝑡) such that

(𝑡, 𝑥𝑝1(𝑡) + 𝑥𝑝2(𝑡)) ∈ 𝐿𝑡+ ; (3.1)

2) for any fixed 𝑡* ∈ [𝑡+,∞), 𝑥*𝑝1(𝑡*) ∈ 𝑋1(𝑡*), 𝑥*𝑝2(𝑡*) ∈ 𝑋2(𝑡*) such that
(𝑡*, 𝑥

*
𝑝1(𝑡*) + 𝑥*𝑝2(𝑡*)) ∈ 𝐿𝑡+ the operator

Φ𝑡*,𝑥*
𝑝1

(𝑡*),𝑥*
𝑝2

(𝑡*) =

[︂
𝜕

𝜕𝑥

[︀
𝑄2(𝑡*)𝑓(𝑡*, 𝑥

*
𝑝1(𝑡*) + 𝑥*𝑝2(𝑡*))

]︀
−𝐵(𝑡*)

]︂
𝑃2(𝑡*) (3.2)

acting from 𝑋2(𝑡*) into 𝑌2(𝑡*) has the inverse Φ−1
𝑡*,𝑥*

𝑝1
(𝑡*),𝑥*

𝑝2
(𝑡*)

∈
𝐿(𝑌2(𝑡*), 𝑋2(𝑡*));

3) there exist a positive definite self-adjoint operator 𝐻(𝑡) ∈ 𝐿(R𝑛), a num-
ber 𝑅 > 0 and functions 𝑈 ∈ 𝐶(0,∞), 𝑘 ∈ 𝐶([𝑡+,∞),R) such that

𝐻 ∈ 𝐶1([𝑡+,∞), 𝐿(R𝑛)),
∞∫︀
𝑐

𝑑𝑣

𝑈(𝑣)
= ∞ (𝑐 = 𝑐𝑜𝑛𝑠𝑡 > 0) and the inequality

𝐽(𝑡, 𝑃1(𝑡)𝑥) ≤ 𝑘(𝑡)𝑈
(︀

(𝐻(𝑡)𝑃1(𝑡)𝑥, 𝑃1(𝑡)𝑥)
)︀
, where

𝐽(𝑡, 𝑃1(𝑡)𝑥) =
1

2

(︁
𝐻 ′(𝑡)𝑃1(𝑡)𝑥, 𝑃1(𝑡)𝑥

)︁
+
(︁
𝐻(𝑡)𝑃1(𝑡)𝑥,

[︀
𝑃 ′
1(𝑡)−

−𝐺−1(𝑡)𝑄1(𝑡)[𝐴
′(𝑡) + 𝐵(𝑡)]

]︀
𝑃1(𝑡)𝑥 + 𝐺−1(𝑡)𝑄1(𝑡)𝑓(𝑡, 𝑥)

)︁
, (3.3)

holds for all (𝑡, 𝑥) ∈ 𝐿𝑡+ such that ‖𝑃1(𝑡)𝑥‖ ≥ 𝑅.
Then for each initial point (𝑡0, 𝑥0) ∈ 𝐿𝑡+ there exists a unique global solution of
the initial value problem (1.1), (1.2).

Proof. Recall that the equation (1.1) is equivalent to the system (2.8) or (2.9),
(2.10). Consider the mappings

Π(𝑡, 𝑧, 𝑢) =
[︀
𝑃 ′
1(𝑡) −𝐺−1(𝑡)𝑄1(𝑡)[𝐴

′(𝑡) + 𝐵(𝑡)]
]︀
𝑃1(𝑡)𝑧+

+ 𝐺−1(𝑡)𝑄1(𝑡)𝑓(𝑡, 𝑃1(𝑡)𝑧 + 𝑃2(𝑡)𝑢), (3.4)

𝐹 (𝑡, 𝑧, 𝑢) = 𝐺−1(𝑡)𝑄2(𝑡)
[︀
𝑓(𝑡, 𝑃1(𝑡)𝑧 + 𝑃2(𝑡)𝑢) −𝐴′(𝑡)𝑧

]︀
− 𝑢 (3.5)
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acting from [𝑡+,∞) × R𝑛 × R𝑛 into R𝑛, and the system

𝑧′(𝑡) = Π(𝑡, 𝑧(𝑡), 𝑢(𝑡)), (3.6)
𝐹 (𝑡, 𝑧(𝑡), 𝑢(𝑡)) = 0. (3.7)

Obviously, the mappings Π(𝑡, 𝑧, 𝑢), 𝐹 (𝑡, 𝑧, 𝑢) are continuous in (𝑡, 𝑧, 𝑢) and have
continuous partial derivatives with respect to 𝑧, 𝑢 on [𝑡+,∞) × R𝑛 × R𝑛. The
partial derivatives of 𝐹 (𝑡, 𝑧, 𝑢) with respect to 𝑧, 𝑢 have the form

𝜕

𝜕𝑧
𝐹 (𝑡, 𝑧, 𝑢)=𝐺−1(𝑡)

[︁ 𝜕

𝜕𝑥

[︀
𝑄2(𝑡)𝑓(𝑡, 𝑃1(𝑡)𝑧 + 𝑃2(𝑡)𝑢)

]︀
−𝑄2(𝑡)𝐴

′(𝑡)
]︁
𝑃1(𝑡), (3.8)

𝜕

𝜕𝑢
𝐹 (𝑡, 𝑧, 𝑢) = 𝐺−1(𝑡)

𝜕

𝜕𝑥

[︀
𝑄2(𝑡)𝑓(𝑡, 𝑃1(𝑡)𝑧 + 𝑃2(𝑡)𝑢)

]︀
𝑃2(𝑡) − 𝐼R𝑛 =

= 𝐺−1(𝑡)Φ𝑡,𝑃1(𝑡)𝑧,𝑃2(𝑡)𝑢𝑃2(𝑡) − 𝑃1(𝑡), (3.9)

where Φ𝑡,𝑃1(𝑡)𝑧,𝑃2(𝑡)𝑢 is the operator (3.2). Denote Φ̃𝑡,𝑧,𝑢 = Φ𝑡,𝑃1(𝑡)𝑧,𝑃2(𝑡)𝑢.

Lemma 3.1. If a function 𝑥(𝑡) is a solution of the equation (1.1) on [𝑡0, 𝑡1) and
satisfies the initial condition (1.2), then the functions 𝑧(𝑡) = 𝑃1(𝑡)𝑥(𝑡), 𝑢(𝑡) =
𝑃2(𝑡)𝑥(𝑡) are a solution of the system (3.6), (3.7) on [𝑡0, 𝑡1) and satisfy the initial
conditions 𝑧(𝑡0) = 𝑃1(𝑡0)𝑥0, 𝑢(𝑡0) = 𝑃2(𝑡0)𝑥0, and 𝑧 ∈ 𝐶1([𝑡0, 𝑡1),R𝑛), 𝑢 ∈
𝐶([𝑡0, 𝑡1),R𝑛).

Conversely, if functions 𝑧 ∈ 𝐶1([𝑡0, 𝑡1),R𝑛), 𝑢 ∈ 𝐶([𝑡0, 𝑡1),R𝑛) are a so-
lution of the system (3.6), (3.7) on [𝑡0, 𝑡1) and satisfy the initial conditions
𝑧(𝑡0) = 𝑃1(𝑡0)𝑥0, 𝑢(𝑡0) = 𝑃2(𝑡0)𝑥0, then 𝑃1(𝑡)𝑧(𝑡) = 𝑧(𝑡), 𝑃2(𝑡)𝑢(𝑡) = 𝑢(𝑡) and
the function 𝑥(𝑡) = 𝑧(𝑡) + 𝑢(𝑡) is a solution of the equation (1.1) on [𝑡0, 𝑡1) and
satisfies the initial condition (1.2).

Proof. Let 𝑥(𝑡) be a solution of the equation (1.1) on [𝑡0, 𝑡1) and satisfy (1.2).
Notice that (𝑡0, 𝑥0) ∈ 𝐿𝑡+ since (1.1) is equivalent to the system (2.6), (2.7) and
𝑥(𝑡0) = 𝑥0 satisfies (2.7) at 𝑡 = 𝑡0 (see Remark 2.1). Since (1.1) is equivalent to
the system (2.8), then 𝑧(𝑡) = 𝑃1(𝑡)𝑥(𝑡), 𝑢(𝑡) = 𝑃2(𝑡)𝑥(𝑡) are a solution of the
system (2.8) on [𝑡0, 𝑡1) and consequently are a solution of the system (3.6), (3.7).
It is clear that 𝑧(𝑡0) = 𝑃1(𝑡0)𝑥0 and 𝑢(𝑡0) = 𝑃2(𝑡0)𝑥0. The smoothness of 𝑧(𝑡),
𝑢(𝑡) follows from the smoothness of 𝑥(𝑡) and the projectors 𝑃𝑖(𝑡).

Now let 𝑧 ∈ 𝐶1([𝑡0, 𝑡1),R𝑛), 𝑢 ∈ 𝐶([𝑡0, 𝑡1),R𝑛) be a solution of the sys-
tem (3.6), (3.7) on [𝑡0, 𝑡1) and 𝑧(𝑡0) = 𝑃1(𝑡0)𝑥0, 𝑢(𝑡0) = 𝑃2(𝑡0)𝑥0. Obviously,
(𝑡0, 𝑥0) ∈ 𝐿𝑡+ . Multiplying (3.7) by 𝑃1(𝑡) and 𝑃2(𝑡), we get that 𝑃1(𝑡)𝑢(𝑡) ≡ 0 and
𝑃2(𝑡)𝑢(𝑡) ≡ 𝑢(𝑡). Multiplying (3.6) by 𝑃2(𝑡), we get that 𝑧(𝑡) satisfies the equa-
tion 𝑃2(𝑡)𝑧

′(𝑡) = 𝑃2(𝑡)𝑃
′
1(𝑡)𝑃1(𝑡)𝑧(𝑡). Since 𝑃2(𝑡)𝑧

′(𝑡) = [𝑃2(𝑡)𝑧(𝑡)]′ − 𝑃 ′
2(𝑡)𝑧(𝑡),

𝑃2(𝑡)𝑃
′
1(𝑡) = −𝑃 ′

2(𝑡)𝑃1(𝑡) and 𝑧(𝑡0) ∈ 𝑋1(𝑡0), then 𝑃2(𝑡)𝑧(𝑡) satisfies the equation
[𝑃2(𝑡)𝑧(𝑡)]′ = 𝑃 ′

2(𝑡)[𝑃2(𝑡)𝑧(𝑡)] and the initial condition 𝑃2(𝑡0)𝑧(𝑡0) = 0. Con-
sequently, 𝑃2(𝑡)𝑧(𝑡) ≡ 0 and therefore 𝑃1(𝑡)𝑧(𝑡) ≡ 𝑧(𝑡). Thus, the function
𝑥(𝑡) = 𝑧(𝑡) + 𝑢(𝑡) is such that 𝑃1(𝑡)𝑥(𝑡) = 𝑧(𝑡) and 𝑃2(𝑡)𝑥(𝑡) = 𝑢(𝑡). There-
fore, the function 𝑥(𝑡) = 𝑧(𝑡) + 𝑢(𝑡) is a solution of the system (2.8) on [𝑡0, 𝑡1)
and 𝑥(𝑡0) = 𝑥0. Consequently, it is a solution of (1.1) on [𝑡0, 𝑡1) and satisfies
(1.2). �

In the proof of Lemma 3.1, it is shown that if 𝑢(𝑡) ∈ R𝑛 satisfies (3.7), then
𝑢(𝑡) = 𝑃2(𝑡)𝑢(𝑡), i.e., 𝑢(𝑡) ∈ 𝑋2(𝑡).
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Lemma 3.2. For each 𝑡 ∈ [𝑡+,∞) and each 𝑧 ∈ R𝑛 there exists a unique
𝑢 ∈ 𝑋2(𝑡) such that

𝐹 (𝑡, 𝑧, 𝑢) = 0. (3.10)

Proof. Notice that 𝐹 (𝑡, 𝑧, 𝑢) = 𝐹 (𝑡, 𝑃1(𝑡)𝑧, 𝑢) for any 𝑧 ∈ R𝑛, since 𝑄2(𝑡)𝐴
′(𝑡) =

𝑄2(𝑡)𝐴
′(𝑡)𝑃1(𝑡), and that the point (𝑡, 𝑥𝑝1(𝑡) + 𝑥𝑝2(𝑡)) belongs to 𝐿𝑡+ if and only

if 𝑡, 𝑥𝑝1(𝑡), 𝑥𝑝2(𝑡) satisfy (2.10) or the equivalent condition 𝐹 (𝑡, 𝑥𝑝1(𝑡), 𝑥𝑝2(𝑡)) = 0
(i.e., 𝑡, 𝑧(𝑡) = 𝑥𝑝1(𝑡), 𝑢(𝑡) = 𝑥𝑝2(𝑡) satisfy (3.7)). Therefore, by virtue of the
condition 1), for each 𝑡 ∈ [𝑡+,∞) and each 𝑧 ∈ R𝑛 there exists a unique 𝑢 =
𝑥𝑝2(𝑡) ∈ 𝑋2(𝑡) such that (𝑡, 𝑃1(𝑡)𝑧 + 𝑢) ∈ 𝐿𝑡+ , i.e., 𝐹 (𝑡, 𝑧, 𝑢) = 0. �

Take any initial point (𝑡0, 𝑥0) ∈ 𝐿𝑡+ and any fixed 𝑡* ∈ [𝑡0,∞), 𝑧* ∈ R𝑛, where
𝑧* = 𝑃1(𝑡*)𝑥0 for 𝑡* = 𝑡0. By Lemma 3.2, there exists a unique 𝑢* ∈ 𝑋2(𝑡*)
(𝑢* = 𝑃2(𝑡*)𝑥0 for 𝑡* = 𝑡0) such that 𝐹 (𝑡*, 𝑧*, 𝑢*) = 0. Since the operator
Φ̃𝑡,𝑧,𝑢 is invertible for each point (𝑡, 𝑧, 𝑢) = (𝑡*, 𝑧*, 𝑢*) such that 𝑢* ∈ 𝑋2(𝑡*) and
𝐹 (𝑡*, 𝑧*, 𝑢*) = 0 (i.e., (𝑡*, 𝑃1(𝑡*)𝑧* + 𝑢*) ∈ 𝐿𝑡0), then for such points (𝑡, 𝑧, 𝑢) =
(𝑡*, 𝑧*, 𝑢*) the operator

Ψ𝑡,𝑧,𝑢 =
𝜕

𝜕𝑢
𝐹 (𝑡, 𝑧, 𝑢) = 𝐺−1(𝑡)Φ̃𝑡,𝑧,𝑢𝑃2(𝑡) − 𝑃1(𝑡) ∈ 𝐿(R𝑛) (3.11)

has the inverse [Ψ𝑡,𝑧,𝑢]−1 =
[︁
Φ̃𝑡,𝑧,𝑢

]︁−1
𝐺(𝑡)𝑃2(𝑡) − 𝑃1(𝑡) ∈ 𝐿(R𝑛).

Using the implicit function theorems, we obtain the following statement:
there exist neighborhoods 𝑈𝛿1(𝑡*) = {𝑡 ∈ (𝑡0,∞) | |𝑡 − 𝑡*| < 𝛿1}
(𝑈𝛿1(𝑡0) = [𝑡0, 𝑡0 + 𝛿1) when 𝑡* = 𝑡0), 𝑈𝛿2(𝑧*) ⊂ R𝑛, 𝑈𝛿3(𝑢*) ⊂ R𝑛 and a
unique function 𝑢 = 𝜈(𝑡, 𝑧) : 𝑈𝛿1(𝑡*) × 𝑈𝛿2(𝑧*) → 𝑈𝛿3(𝑢*) which is continu-
ous in (𝑡, 𝑧) and continuously differentiable in 𝑧 on 𝑈𝛿1(𝑡*) × 𝑈𝛿2(𝑧*) and is
such that 𝐹 (𝑡, 𝑧, 𝜈(𝑡, 𝑧)) = 0 for (𝑡, 𝑧) ∈ 𝑈𝛿1(𝑡*) × 𝑈𝛿2(𝑧*) and 𝜈(𝑡*, 𝑧*) = 𝑢*.
Since 𝑢 = 𝜈(𝑡, 𝑧) is a solution of (3.10) (i.e., 𝐹 (𝑡, 𝑧, 𝜈(𝑡, 𝑧)) = 0), then
𝜈(𝑡, 𝑧) = 𝑃2(𝑡)𝜈(𝑡, 𝑧) ∈ 𝑋2(𝑡) for each point (𝑡, 𝑧) ∈ 𝑈𝛿1(𝑡*) ×𝑈𝛿2(𝑧*). Thus, it is
proved that in some neighborhood 𝑈(𝑡*, 𝑧*) of each point (𝑡*, 𝑧*) ∈ [𝑡0,∞) × R𝑛

(𝑧* = 𝑃1(𝑡*)𝑥0 when 𝑡* = 𝑡0) there exists a unique solution 𝑢 = 𝜈𝑡*,𝑧*(𝑡, 𝑧)
of (3.10), which is continuous in (𝑡, 𝑧) and continuously differentiable in 𝑧,
and 𝜈𝑡*,𝑧*(𝑡, 𝑧) ∈ 𝑋2(𝑡) for each (𝑡, 𝑧) ∈ 𝑈(𝑡*, 𝑧*). Introduce the function
𝑢 = 𝜂(𝑡, 𝑧) : [𝑡0,∞) × R𝑛 → R𝑛 defined by 𝜂(𝑡, 𝑧) = 𝜈𝑡*,𝑧*(𝑡, 𝑧) at the point
(𝑡, 𝑧) = (𝑡*, 𝑧*) for each (𝑡*, 𝑧*) ∈ [𝑡0,∞) × R𝑛. Then the function 𝑢 = 𝜂(𝑡, 𝑧) is
continuous in (𝑡, 𝑧), continuously differentiable in 𝑧 and a solution of the equation
(3.10) (i.e., 𝐹 (𝑡, 𝑧, 𝜂(𝑡, 𝑧)) = 0), and 𝜂(𝑡, 𝑧) ∈ 𝑋2(𝑡) for (𝑡, 𝑧) ∈ [𝑡0,∞) × R𝑛.
We prove the uniqueness of 𝑢 = 𝜂(𝑡, 𝑧). Assume that there exists a func-
tion 𝑢 = 𝜇(𝑡, 𝑧) having the same properties as 𝑢 = 𝜂(𝑡, 𝑧) at some point
(𝑡, 𝑧) ∈ [𝑡0,∞) × R𝑛. By Lemma 3.2, there exists a unique �̃� ∈ 𝑋2(𝑡) such that
(𝑡, 𝑧, 𝑢) = (𝑡, 𝑧, �̃�) satisfies (3.10). Consequently, 𝜂(𝑡, 𝑧) = 𝜇(𝑡, 𝑧) = �̃�. It is simi-
larly proved that if the point (𝑡, 𝑧) belongs to the intersection of neighborhoods
𝑈1(𝑡1, 𝑧1), 𝑈2(𝑡2, 𝑧2) of some points (𝑡1, 𝑧1), (𝑡2, 𝑧2) ∈ [𝑡0,∞) × R𝑛 in which the
solutions 𝑢 = 𝜈𝑡1,𝑧1(𝑡, 𝑧) and 𝑢 = 𝜈𝑡2,𝑧2(𝑡, 𝑧) of (3.10) are defined respectively, then
𝜈𝑡1,𝑧1(𝑡, 𝑧) = 𝜈𝑡2,𝑧2(𝑡, 𝑧) = 𝜂(𝑡, 𝑧) = �̃�. This holds for any (𝑡, 𝑧) ∈ [𝑡0,∞) × R𝑛.
Consequently, there exists the unique function 𝑢 = 𝜂(𝑡, 𝑧) with the above proper-
ties.
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Substitute the function 𝑢 = 𝜂(𝑡, 𝑧) in (3.4) and denote ̃︀Π(𝑡, 𝑧) = Π(𝑡, 𝑧, 𝜂(𝑡, 𝑧)).
Then the equation (3.6) takes the form

𝑧′(𝑡) = ̃︀Π(𝑡, 𝑧(𝑡)). (3.12)

By the properties of 𝜂 and Π, the function ̃︀Π is continuous in (𝑡, 𝑧) and contin-
uously differentiable in 𝑧 on [𝑡0,∞) × R𝑛. Hence, there exists a unique solution
𝑧 = 𝜁(𝑡) of (3.12) satisfying the initial condition 𝜁(𝑡0) = 𝑧0, where 𝑧0 = 𝑃1(𝑡0)𝑥0,
on some interval [𝑡0, 𝛼). Notice that 𝜂(𝑡0, 𝑧0) = 𝑃2(𝑡0)𝑥0 and 𝑥0 = 𝑧0 + 𝜂(𝑡0, 𝜁0).
The solution 𝜁(𝑡) can be continued to a maximal interval of existence and this
continuation will be the unique one (see [18, 23]), namely, there exists the max-
imal interval [𝑡0, 𝜔) ⊆ [𝑡0,∞) on which there exists a unique solution 𝑧 = 𝜁(𝑡)
of (3.12) satisfying the initial condition 𝜁(𝑡0) = 𝑧0. Since the functions 𝑧 = 𝜁(𝑡)
and 𝑢 = 𝛾(𝑡), where 𝛾(𝑡) = 𝜂(𝑡, 𝜁(𝑡)), are the solution of the system (3.6), (3.7)
on [𝑡0, 𝜔) and satisfy the initial conditions 𝜁(𝑡0) = 𝑃1(𝑡0)𝑥0, 𝛾(𝑡0) = 𝑃2(𝑡0)𝑥0,
then, by Lemma 3.1, 𝜁(𝑡) = 𝑃1(𝑡)𝜁(𝑡) ∈ 𝑋1(𝑡), 𝛾(𝑡) = 𝑃2(𝑡)𝛾(𝑡) ∈ 𝑋2(𝑡) for all
𝑡 ∈ [𝑡0, 𝜔), and the function 𝑥(𝑡) = 𝜁(𝑡) + 𝛾(𝑡) is a solution of the equation (1.1)
on [𝑡0, 𝜔) that satisfies the initial condition (1.2). The uniqueness of the solution
𝑧 = 𝜁(𝑡), 𝑢 = 𝛾(𝑡) of the system (3.6), (3.7) and, accordingly, the solution 𝑥(𝑡) of
the equation (1.1) on [𝑡0, 𝜔) follows from the uniqueness of the solution 𝑢 = 𝜂(𝑡, 𝑧)
of (3.10) and the solution 𝑧 = 𝜁(𝑡) of (3.12). We prove that the maximal interval
[𝑡0, 𝜔) coincides with [𝑡0,∞) (the proof of this statement is similar to the proof of
the theorem [16, Ch. 4, Theorem XIII]).

Introduce the positive definite scalar function

𝑉 (𝑡, 𝑧) = (𝐻(𝑡)𝑧, 𝑧) (3.13)

where 𝐻(𝑡) is the operator defined in the condition 3) (𝑉 (𝑡, 𝑧) ∈ 𝐶1([𝑡+,∞) ×
R𝑛,R)). It is clear that 𝑉 (𝑡, 𝑧) → ∞ uniformly in 𝑡 on every finite time interval
[𝑎, 𝑏) ⊂ [𝑡+,∞) as ‖𝑧‖ → ∞. Moreover, since the operator 𝐻(𝑡) is positive def-
inite, i.e. there exists a constant 𝐻0 > 0 such that (𝐻(𝑡)𝑧, 𝑧) ≥ 𝐻0‖𝑧‖2 for all
𝑧 ∈ R𝑛, 𝑡 ∈ [𝑡+,∞), then 𝑉 (𝑡, 𝑧) → ∞ uniformly in 𝑡 on [𝑡+,∞) as ‖𝑧‖ → ∞.
The gradient of the function 𝑉 has the form 𝜕𝑉

𝜕𝑧 (𝑡, 𝑧) = 2𝑧𝑇𝐻(𝑡). The derivative
of 𝑉 along the trajectories of the system (3.12) has the form

𝑉 ′
(3.12)(𝑡, 𝑧) = (𝐻 ′(𝑡)𝑧, 𝑧) + 2

(︀
𝐻(𝑡)𝑧, ̃︀Π(𝑡, 𝑧)

)︀
. (3.14)

The solution 𝑧 = 𝜁(𝑡) of (3.12) either is defined in the future, i.e., the max-
imal interval of existence of the solution coincides with [𝑡0,∞), or has the fi-
nite escape time [𝑡0, 𝜔), i.e., 𝜔 < ∞ and lim

𝑡→𝜔−0
‖𝜁(𝑡)‖ = ∞, [16]. Notice that

𝜁(𝑡) = 𝑃1(𝑡)𝑥(𝑡), 𝜂(𝑡, 𝜁(𝑡)) = 𝑃2(𝑡)𝑥(𝑡), where 𝑥(𝑡) = 𝜁(𝑡) + 𝜂(𝑡, 𝜁(𝑡)) is a
solution of (1.1). Assume that the solution 𝑧 = 𝜁(𝑡) has the finite escape
time. Then there exists 𝑡1 ∈ (𝑡0, 𝜔) such that 𝜁(𝑡) is contained in the set
𝐵𝑐

𝑅0
= {𝑥 ∈ R𝑛 | (𝑡, 𝑥) ∈ 𝐿𝑡0 , ‖𝑃1(𝑡)𝑥‖ ≥ 𝑅0}, where 𝑅0 > 𝑅 (𝑅 > 0 is defined
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in the condition 3)), for any 𝑡 ∈ [𝑡1, 𝜔). By the condition 3), the inequality

𝑉 ′
(3.12)(𝑡, 𝜁(𝑡)) =

(︀
𝐻 ′(𝑡)𝜁(𝑡), 𝜁(𝑡)

)︀
+ 2

(︀
𝐻(𝑡)𝜁(𝑡), ̃︀Π(𝑡, 𝜁(𝑡))

)︀
=

=
(︀
𝐻 ′(𝑡)𝑃1(𝑡)𝑥(𝑡), 𝑃1(𝑡)𝑥(𝑡)

)︀
+ 2

(︁
𝐻(𝑡)𝑃1(𝑡)𝑥(𝑡),

[︀
𝑃 ′
1(𝑡)−

−𝐺−1(𝑡)𝑄1(𝑡)[𝐴
′(𝑡)+𝐵(𝑡)]

]︀
𝑃1(𝑡)𝑥(𝑡)+𝐺−1(𝑡)𝑄1(𝑡)𝑓(𝑡, 𝑃1(𝑡)𝑥(𝑡)+𝑃2(𝑡)𝑥(𝑡))

)︁
=

= 2 𝐽(𝑡, 𝑃1(𝑡)𝑥(𝑡)) ≤ 2 𝑘(𝑡)𝑈
(︀
(𝐻(𝑡)𝜁(𝑡), 𝜁(𝑡))

)︀
= 2 𝑘(𝑡)𝑈

(︀
𝑉 (𝑡, 𝜁(𝑡))

)︀
. (3.15)

holds for 𝑡 ≥ 𝑡1. Therefore, for 𝑡 ≥ 𝑡1 the function 𝑣(𝑡) = 𝑉 (𝑡, 𝜁(𝑡)) is a positive
solution of the differential inequality

𝑣′ ≤ 2𝑘(𝑡)𝑈(𝑣). (3.16)

By assumption, the solution 𝜁(𝑡) has the finite escape time, therefore 𝑣(𝑡) has
the finite escape time. On the other hand, from the properties of the functions
𝑘(𝑡), 𝑈(𝑣) it follows that the inequality (3.16) (𝑡 ≥ 𝑡+) has no positive solutions
with finite escape time, which contradicts the assumption. Consequently, 𝜁(𝑡) is
defined in the future, i.e., [𝑡0, 𝜔) = [𝑡0,∞).

Thus, it is proved that the function 𝑥(𝑡) = 𝜁(𝑡)+𝛾(𝑡), where 𝛾(𝑡) = 𝜂(𝑡, 𝜁(𝑡)), is
a unique solution of the initial value problem (1.1), (1.2) on [𝑡0,∞). Consequently,
for each initial point (𝑡0, 𝑥0) ∈ 𝐿𝑡+ there exists a unique global solution of (1.1),
(1.2). �

The following are the definitions introduced in [21].
A system of 𝑠 pairwise disjoint projectors {Θ𝑘}𝑠𝑘=1 (the projectors are one-

dimensional), Θ𝑘 ∈ 𝐿(𝑍), the sum of which is the identity operator 𝐼𝑍 in an

𝑠-dimensional linear space 𝑍, i.e., Θ𝑖 Θ𝑗 = 𝛿𝑖𝑗 Θ𝑖 and 𝐼𝑍 =
𝑠∑︀

𝑘=1

Θ𝑘, is called an

additive resolution of the identity in 𝑍. The additive resolution of the identity
generates the decomposition 𝑍 = 𝑍1+̇ · · · +̇𝑍𝑠 into the direct sum of the one-
dimensional subspaces 𝑍𝑘 = Θ𝑘 𝑍, and the system {𝑧𝑘 ∈ 𝑍}𝑠𝑘=1 of the vectors
such that 𝑧𝑘 ̸= 0 and 𝑧𝑘 = Θ𝑘 𝑧𝑘 forms a basis of 𝑍. Note that the property of
basis invertibility does not depend on the choice of an additive resolution of the
identity or a basis of 𝑍.

Definition 3.1. An operator function Φ: 𝐷 → 𝐿(𝑊,𝑍), where 𝑊 , 𝑍 are 𝑠-
dimensional linear spaces and 𝐷 ⊂ 𝑊 , is called basis invertible on an interval
𝐽 ⊂ 𝐷, if for some additive resolution of the identity {Θ𝑘}𝑠𝑘=1 in the space 𝑍 and

for any set {𝑤𝑘}𝑠𝑘=1 of elements 𝑤𝑘 ∈ 𝐽 the operator Λ =
𝑠∑︀

𝑘=1

Θ𝑘Φ(𝑤𝑘) ∈ 𝐿(𝑊,𝑍)

has the inverse Λ−1 ∈ 𝐿(𝑍,𝑊 ).

Obviously, it follows from the basis invertibility of the mapping Φ on the interval
𝐽 that Φ is invertible on this interval, i.e., for each point 𝑤* ∈ 𝐽 its image under
the mapping Φ is the invertible operator Φ(𝑤*) ∈ 𝐿(𝑊,𝑍). The converse is not
true (see [8, Example 2.1]) unless the spaces 𝑊 , 𝑍 are one-dimensional.

A theorem similar to Theorem 3.1, in which there is no the requirement of the
uniqueness of 𝑥𝑝2(𝑡) in the condition 1), but in the condition 2) the requirement of
invertibility is replaced by the requirement of basis invertibility, is proved below.
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Remark 3.1. Notice that rk𝑃𝑗(𝑡) = rk𝑄𝑗(𝑡) = dim𝑋𝑗(𝑡) = dim𝑌𝑗(𝑡), 𝑗 = 1, 2,
dim𝑌1(𝑡) = rk𝐴(𝑡) and that, by virtue of the smoothness of the projectors
(i.e., projection operator functions) 𝑃𝑗(𝑡), 𝑄𝑗(𝑡), the dimensions of the subspaces
𝑋𝑗(𝑡) = 𝑃𝑗(𝑡)R𝑛, 𝑌𝑗(𝑡) = 𝑄𝑗(𝑡)R𝑛, 𝑗 = 1, 2, are constant for all 𝑡 ∈ [𝑡+,∞)
(see [12, p. 34, Lemma 4.10]). We denote dim𝑋2(𝑡) = dim𝑌2(𝑡) = 𝑑, then
dim𝑋1(𝑡) = dim𝑌1(𝑡) = 𝑛− 𝑑 (𝑡 ∈ [𝑡+,∞)).

Theorem 3.2. Let 𝑓 ∈ 𝐶([𝑡+,∞) × R𝑛,R𝑛), 𝜕
𝜕𝑥𝑓 ∈ 𝐶([𝑡+,∞) × R𝑛, 𝐿(R𝑛)),

𝐴,𝐵 ∈ 𝐶1([𝑡+,∞), 𝐿(R𝑛)), the pencil 𝜆𝐴(𝑡) + 𝐵(𝑡) satisfy (2.1), where
𝐶2 ∈ 𝐶1([𝑡+,∞), (0,∞)), and the following conditions be satisfied:
1) for each 𝑡 ∈ [𝑡+,∞) and each 𝑥𝑝1(𝑡) ∈ 𝑋1(𝑡) there exists 𝑥𝑝2(𝑡) ∈ 𝑋2(𝑡) such

that (3.1);
2) for any fixed 𝑡* ∈ [𝑡+,∞), 𝑥*𝑝1(𝑡*) ∈ 𝑋1(𝑡*), 𝑥𝑖𝑝2(𝑡*) ∈ 𝑋2(𝑡*) such that

(𝑡*, 𝑥
*
𝑝1(𝑡*) + 𝑥𝑖𝑝2(𝑡*)) ∈ 𝐿𝑡+ , 𝑖 = 1, 2, the operator function

Φ𝑡*,𝑥*
𝑝1

(𝑡*) : 𝑋2(𝑡*) → 𝐿(𝑋2(𝑡*), 𝑌2(𝑡*)),

Φ𝑡*,𝑥*
𝑝1

(𝑡*)(𝑥𝑝2(𝑡*)) =

[︂
𝜕

𝜕𝑥

[︀
𝑄2(𝑡*)𝑓(𝑡*, 𝑥

*
𝑝1(𝑡*) + 𝑥𝑝2(𝑡*))

]︀
−𝐵(𝑡*)

]︂
𝑃2(𝑡*),

(3.17)

is basis invertible on [𝑥1𝑝2(𝑡*), 𝑥
2
𝑝2(𝑡*)];

3) it coincides with the condition 3) of Theorem 3.1.
Then for each initial point (𝑡0, 𝑥0) ∈ 𝐿𝑡+ there exists a unique global solution of
the initial value problem (1.1), (1.2).

Proof. As in the proof of Theorem 3.1, we consider the mappings (3.4), (3.5) and
the system (3.6), (3.7). The mapping (3.5) has continuous partial derivatives
with respect to 𝑧, 𝑢 on [𝑡+,∞) × R𝑛 × R𝑛. The partial derivative with respect

to 𝑢 have the form
𝜕

𝜕𝑢
𝐹 (𝑡, 𝑧, 𝑢) = 𝐺−1(𝑡)

𝜕

𝜕𝑥

[︀
𝑄2(𝑡)𝑓(𝑡, 𝑃1(𝑡)𝑧 + 𝑃2(𝑡)𝑢)

]︀
𝑃2(𝑡) −

𝐼R𝑛 = 𝐺−1(𝑡)Φ𝑡,𝑃1(𝑡)𝑧(𝑃2(𝑡)𝑢)𝑃2(𝑡)−𝑃1(𝑡), where Φ𝑡,𝑃1(𝑡)𝑧(𝑃2(𝑡)𝑢) is the operator
function (3.17). Denote Φ̃𝑡,𝑧(𝑢) = Φ𝑡,𝑃1(𝑡)𝑧(𝑃2(𝑡)𝑢) and introduce the operator
function

Ψ𝑡,𝑧 : R𝑛 → 𝐿(R𝑛), Ψ𝑡,𝑧(𝑢) =
𝜕

𝜕𝑢
𝐹 (𝑡, 𝑧, 𝑢) = 𝐺−1(𝑡)Φ̃𝑡,𝑧(𝑢)𝑃2(𝑡) − 𝑃1(𝑡).

(3.18)
By virtue of the basis invertibility of (3.17) for any fixed 𝑡* ∈ [𝑡+,∞), 𝑧* ∈ R𝑛,
𝑢𝑖* ∈ 𝑋2(𝑡*) (𝑖 = 1, 2) such that 𝐹 (𝑡*, 𝑧*, 𝑢

𝑖
*) = 0 (i.e., (𝑡*, 𝑃1(𝑡*)𝑧* + 𝑢𝑖*) ∈ 𝐿𝑡+),

the operator function Φ̃𝑡*,𝑧* is basis invertible on [𝑢1*, 𝑢
2
*]. This property is needed

to prove Lemma 3.2 (see below). It also follows from the basis invertibility of

Φ̃𝑡*,𝑧*(𝑢) that there exists the inverse operator
[︁
Φ̃𝑡*,𝑧*(𝑢*)

]︁−1
for any fixed 𝑡* ∈

[𝑡+,∞), 𝑧* ∈ R𝑛, 𝑢* ∈ 𝑋2(𝑡*) such that 𝐹 (𝑡*, 𝑧*, 𝑢*) = 0 and, consequently, for
such points (𝑡*, 𝑧*, 𝑢*) the operator Ψ𝑡*,𝑧*(𝑢*) has the inverse [Ψ𝑡*,𝑧*(𝑢*)]

−1 =[︁
Φ̃𝑡*,𝑧*(𝑢*)

]︁−1
𝐺(𝑡*)𝑃2(𝑡*) − 𝑃1(𝑡*) ∈ 𝐿(R𝑛).

Lemmas 3.1 and 3.2 remain valid, however, the proof of Lemma 3.2 changes.

Lemma (Lemma 3.2). For each 𝑡 ∈ [𝑡+,∞) and each 𝑧 ∈ R𝑛 there exists a unique
𝑢 ∈ 𝑋2(𝑡) such that (3.10).
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Proof. By virtue of the condition 1) (here the existence of a unique 𝑥𝑝2(𝑡) is not
required, unlike the condition 1) of Theorem 3.1), for each 𝑡 ∈ [𝑡+,∞) and each
𝑧 ∈ R𝑛 there exists 𝑢 ∈ 𝑋2(𝑡) such that (𝑡, 𝑃1(𝑡)𝑧 + 𝑢) ∈ 𝐿𝑡+ , i.e., 𝐹 (𝑡, 𝑧, 𝑢) = 0.
We prove the uniqueness of such 𝑢. Consider arbitrary fixed 𝑡* ∈ [𝑡+,∞), 𝑧* ∈ R𝑛,
𝑢𝑖* ∈ 𝑋2(𝑡*), 𝑖 = 1, 2, such that 𝐹 (𝑡*, 𝑧*, 𝑢

𝑖
*) = 0. The basis invertibility of

Φ̃𝑡*,𝑧*(𝑢) on [𝑢1*, 𝑢
2
*] means that for any set of points {𝑢𝑘}𝑑𝑘=1 ⊂ [𝑢1*, 𝑢

2
*], the

operator

Λ1 =
𝑑∑︁

𝑘=1

Θ̃𝑘(𝑡*)Φ̃𝑡*,𝑧*(𝑢𝑘) ∈ 𝐿(𝑋2(𝑡*), 𝑌2(𝑡*)), (3.19)

where {Θ̃𝑘(𝑡*)}𝑑𝑘=1 is some additive resolution of the identity in 𝑌2(𝑡*)
(𝑑 = dim𝑌2(𝑡) = dim𝑋2(𝑡), 𝑡 ∈ [𝑡+,∞), see Remark 3.1), has the inverse
Λ−1
1 ∈ 𝐿(𝑌2(𝑡*), 𝑋2(𝑡*)). Since 𝑄2(𝑡*) (restricted to 𝑌2(𝑡*)) is the identity in

𝑌2(𝑡*) (because 𝑄2(𝑡*)𝑦* = 𝑦* for any 𝑦* ∈ 𝑌2(𝑡*)), then we choose {Θ̃𝑘(𝑡*)}𝑑𝑘=1

such that
𝑑∑︀

𝑘=1

Θ̃𝑘(𝑡*) = 𝑄2(𝑡*)|𝑌2(𝑡*)
, i.e., {Θ̃𝑘(𝑡*)}𝑑𝑘=1 is an additive resolu-

tion of the identity 𝑄2(𝑡*)|𝑌2(𝑡*)
in 𝑌2(𝑡*). Then the system {Θ𝑘(𝑡*)}𝑑𝑘=1 of

the projectors Θ𝑘(𝑡*) = 𝐺−1(𝑡*)Θ̃𝑘(𝑡*)𝐺(𝑡*)
⃒⃒⃒
𝑋2(𝑡*)

is an additive resolution of

the identity 𝑃2(𝑡*)|𝑋2(𝑡*)
in 𝑋2(𝑡*) (

𝑑∑︀
𝑘=1

Θ𝑘(𝑡*) = 𝑃2(𝑡*)|𝑋2(𝑡*)
). Note that

𝐹 (𝑡*, 𝑧*, 𝑢*) = 𝑃2(𝑡*)𝐹 (𝑡*, 𝑧*, 𝑢*) for any 𝑡* ∈ [𝑡+,∞), 𝑧* ∈ R𝑛, 𝑢* ∈ 𝑋2(𝑡*).
The projections 𝐹𝑘(𝑡*, 𝑧*, 𝑢*) = Θ𝑘(𝑡*)𝐹 (𝑡*, 𝑧*, 𝑢*) = Θ𝑘(𝑡*)𝑃2(𝑡*)𝐹 (𝑡*, 𝑧*, 𝑢*),
where 𝑢* ∈ 𝑋2(𝑡*), are the functions with values in the one-dimensional spaces
Θ𝑘(𝑡*)𝑋2(𝑡*) isomorphic to R. By the formula of finite increments, there exists a
point 𝑢𝑘 ∈ [𝑢1*, 𝑢

2
*] such that 𝐹𝑘(𝑡*, 𝑧*, 𝑢

2
*) − 𝐹𝑘(𝑡*, 𝑧*, 𝑢

1
*) = 𝜕

𝜕𝑢𝐹𝑘(𝑡*, 𝑧*, 𝑢𝑘)(𝑢2* −
𝑢1*) = Θ𝑘(𝑡*)𝑃2(𝑡*)

𝜕
𝜕𝑢𝐹 (𝑡*, 𝑧*, 𝑢𝑘)(𝑢2* − 𝑢1*) = Θ𝑘(𝑡*)𝑃2(𝑡*)Ψ𝑡*,𝑧*(𝑢𝑘)(𝑢2* − 𝑢1*),

𝑘 = 1, 𝑑. By summing the obtained expressions over 𝑘 and taking into account

that 𝐹 (𝑡*, 𝑧*, 𝑢
𝑖
*) = 0 (𝑖 = 1, 2), we obtain that

𝑑∑︀
𝑘=1

Θ𝑘(𝑡*)𝑃2(𝑡*)Ψ𝑡*,𝑧*(𝑢𝑘)(𝑢2* −

𝑢1*) = 𝐺−1(𝑡*)
𝑑∑︀

𝑘=1

Θ̃𝑘(𝑡*)Φ̃𝑡*,𝑧*(𝑢𝑘)(𝑢2* − 𝑢1*) = 𝐺−1(𝑡*)Λ1(𝑢
2
* − 𝑢1*) = 0. Since

there exists Λ−1
1 , then 𝑢2* = 𝑢1*. �

The further proof of the theorem coincides with the proof of Theorem 3.1 (see
the part of the proof which is located below Lemma 3.2). �

3.2. Lagrange stability and instability.

Theorem 3.3. Let the conditions of Theorem 3.1 or Theorem 3.2 be fulfilled,
∞∫︀
𝑡+

𝑘(𝑡)𝑑𝑡 < ∞, and one of the following conditions be also fulfilled:

a) sup
(𝑡,𝑥)∈𝐿𝑡+ , ‖𝑃1(𝑡)𝑥‖≤𝑀, 𝑀= 𝑐𝑜𝑛𝑠𝑡>0

‖𝐺−1(𝑡)𝑄2(𝑡)[𝑓(𝑡, 𝑥) −𝐴′(𝑡)𝑃1(𝑡)𝑥]‖ < ∞;

b) for any point (𝑡, 𝑥𝑝1(𝑡) + 𝑥𝑝2(𝑡)) ∈ 𝐿𝑡+ such that ‖𝑥𝑝1(𝑡)‖ ≤ 𝑀 ,
𝑀 = 𝑐𝑜𝑛𝑠𝑡 > 0, there exists a constant 𝐾𝑀 > 0, independent of 𝑡, 𝑥𝑝2(𝑡),
such that ‖𝑥𝑝2(𝑡)‖ ≤ 𝐾𝑀 ;
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c) for each 𝑡* ∈ [𝑡+,∞) there exists �̃�𝑝2(𝑡*) ∈ 𝑋2(𝑡*) such that for any fixed
𝑥*𝑝1(𝑡*) ∈ 𝑋1(𝑡*), 𝑥*𝑝2(𝑡*) ∈ 𝑋2(𝑡*), satisfying (𝑡*, 𝑥

*
𝑝1(𝑡*) + 𝑥*𝑝2(𝑡*)) ∈ 𝐿𝑡+ , the

operator function (3.17) is basis invertible on (�̃�𝑝2(𝑡*), 𝑥
*
𝑝2(𝑡*)] and the corre-

sponding inverse operator is bounded uniformly in 𝑡*, 𝑥𝑝2(𝑡*) (i.e., the oper-

ator Λ−1
1 =

[︂
𝑑∑︀

𝑘=1

Θ̃𝑘(𝑡*)Φ𝑡*,𝑥*
𝑝1

(𝑡*)(𝑥𝑝2,𝑘(𝑡*))

]︂−1

inverse to the operator (3.19),

where 𝑧* = 𝑥*𝑝1(𝑡*) and {𝑢𝑘 = 𝑥𝑝2,𝑘(𝑡*)}𝑑𝑘=1 is an arbitrary set of the ele-
ments from (�̃�𝑝2(𝑡*), 𝑥

*
𝑝2(𝑡*)], is bounded uniformly in 𝑡*, 𝑥𝑝2,𝑘(𝑡*) on [𝑡+,∞),

(�̃�𝑝2(𝑡*), 𝑥
*
𝑝2(𝑡*)] ), and also sup

𝑡*∈[𝑡+,∞)
‖�̃�𝑝2(𝑡*)‖ < ∞ and

sup
𝑡∈[𝑡+,∞), ‖𝑥𝑝1 (𝑡)‖≤𝑀,𝑀= 𝑐𝑜𝑛𝑠𝑡>0

‖𝐺−1(𝑡)𝑄2(𝑡)[𝑓(𝑡, 𝑥𝑝1(𝑡) + �̃�𝑝2(𝑡*))−

−𝐴′(𝑡)𝑥𝑝1(𝑡)]‖ < ∞. (3.20)

Then the equation (1.1) is Lagrange stable.

Proof. Just as for Theorem 3.1, we prove that 𝑧 = 𝜁(𝑡) and 𝑢 = 𝛾(𝑡), where 𝛾(𝑡) =
𝜂(𝑡, 𝜁(𝑡)), are the unique solution of the system (3.6), (3.7) on [𝑡0,∞) satisfying
the initial conditions 𝜁(𝑡0) = 𝑃1(𝑡0)𝑥0, 𝛾(𝑡0) = 𝑃2(𝑡0)𝑥0, where (𝑡0, 𝑥0) ∈ 𝐿𝑡+ ,
and that 𝑥(𝑡) = 𝜁(𝑡)+𝛾(𝑡) is the unique solution of the initial value problem (1.1),
(1.2). Recall that 𝜁(𝑡) = 𝑃1(𝑡)𝑥(𝑡), 𝛾(𝑡) = 𝑃2(𝑡)𝑥(𝑡) (𝜁(𝑡) ∈ 𝑋1(𝑡), 𝛾(𝑡) ∈ 𝑋2(𝑡))
and (𝑡, 𝜁(𝑡) + 𝛾(𝑡)) ∈ 𝐿𝑡0 for any 𝑡 ∈ [𝑡0,∞).

It follows from the properties of the functions 𝑘(𝑡), 𝑈(𝑣) that the inequality
(3.16) (𝑡 ≥ 𝑡+) has no unbounded positive solution for 𝑡 ≥ 𝑡+. Consequently, the
solution 𝑧 = 𝜁(𝑡) is bounded on [𝑡0,∞), i.e., there exists a constant 𝑀* > 0 such
that

‖𝜁(𝑡)‖ ≤ 𝑀* for all 𝑡 ∈ [𝑡0,∞). (3.21)

Since the equation (3.7) can be rewritten in the form 𝑢(𝑡) =
𝐺−1(𝑡)𝑄2(𝑡)

[︀
𝑓(𝑡, 𝑃1(𝑡)𝑧(𝑡) + 𝑃2(𝑡)𝑢(𝑡)) −𝐴′(𝑡)𝑧(𝑡)

]︀
, then

𝛾(𝑡) = 𝜂(𝑡, 𝜁(𝑡)) = 𝐺−1(𝑡)𝑄2(𝑡)
[︀
𝑓(𝑡, 𝜁(𝑡) + 𝜂(𝑡, 𝜁(𝑡))) −𝐴′(𝑡)𝜁(𝑡)

]︀
. (3.22)

Hence, by (3.21) and the condition a), there exists a constant 𝐾𝑀* = 𝐾(𝑀*) > 0
such that

‖𝛾(𝑡)‖ = ‖𝜂(𝑡, 𝜁(𝑡))‖ ≤ 𝐾𝑀* < ∞ for all 𝑡 ∈ [𝑡0,∞). (3.23)

Also, by (3.21) and the condition b), there exists a constant 𝐾𝑀* > 0 such
that (3.23).

Now we prove the boundedness of ‖𝛾(𝑡)‖ using the condition c).
Take arbitrary fixed 𝑡* ∈ [𝑡+,∞), 𝑧* ∈ R𝑛, 𝑢* ∈ 𝑋2(𝑡*) satisfying

the condition 𝐹 (𝑡*, 𝑧*, 𝑢*) = 0 (i.e., (𝑡*, 𝑃1(𝑡*)𝑧* + 𝑢*) ∈ 𝐿𝑡+). By virtue
of the condition c), there exists an element �̃�* = �̃�(𝑡*) ∈ 𝑋2(𝑡*) such
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that the operator function Φ̃𝑡*,𝑧*(𝑢) = Φ𝑡*,𝑃1(𝑡*)𝑧*(𝑃2(𝑡*)𝑢) (3.17) is basis in-
vertible on (�̃�*, 𝑢*] and the corresponding inverse operator, i.e., the opera-

tor Λ−1
1 =

[︂
𝑑∑︀

𝑘=1

Θ̃𝑘(𝑡*)Φ̃𝑡*,𝑧*(𝑢𝑘)

]︂−1

= Λ−1
1 (𝑡*, 𝑧*, 𝑢𝑘) ∈ 𝐿(𝑌2(𝑡*), 𝑋2(𝑡*)) in-

verse to the operator (3.19), where {𝑢𝑘}𝑑𝑘=1 is an arbitrary set of the ele-
ments 𝑢𝑘 ∈ (�̃�*, 𝑢*] (𝑑 = dim𝑋2(𝑡*)) and {Θ̃𝑘(𝑡*)}𝑑𝑘=1 is an additive reso-
lution of the identity in 𝑌2(𝑡*), is bounded uniformly in 𝑡*, 𝑢𝑘 on [𝑡+,∞),
(�̃�*, 𝑢*]. As in the proof of Lemma (see p. 255), we choose {Θ̃𝑘(𝑡*)}𝑑𝑘=1

such that
𝑑∑︀

𝑘=1

Θ̃𝑘(𝑡*) = 𝑄2(𝑡*)|𝑌2(𝑡*)
and take the additive resolution of the{︀

Θ𝑘(𝑡*) = 𝐺−1(𝑡*)Θ̃𝑘(𝑡*)𝐺(𝑡*)
⃒⃒
𝑋2(𝑡*)

}︀𝑑

𝑘=1
in 𝑋2(𝑡*). Also, consider the pro-

jections 𝐹𝑘(𝑡*, 𝑧*, 𝑢) = Θ𝑘(𝑡*)𝐹 (𝑡*, 𝑧*, 𝑢) = Θ𝑘(𝑡*)𝑃2(𝑡*)𝐹 (𝑡*, 𝑧*, 𝑢), where
𝑢 ∈ 𝑋2(𝑡*). By the formula of finite increments, there exists a point
𝑢𝑘 ∈ (�̃�*, 𝑢*] such that 𝐹𝑘(𝑡*, 𝑧*, 𝑢*)−𝐹𝑘(𝑡*, 𝑧*, �̃�*) = 𝜕

𝜕𝑢𝐹𝑘(𝑡*, 𝑧*, 𝑢𝑘)(𝑢* − �̃�*) =
Θ𝑘(𝑡*)𝑃2(𝑡*)Ψ𝑡*,𝑧*(𝑢𝑘)(𝑢* − �̃�*), where the operator function Ψ𝑡,𝑧 is defined
in (3.18), 𝑘 = 1, 𝑑. Since 𝐹𝑘(𝑡*, 𝑧*, 𝑢*) = 0, then, by summing the ob-
tained equalities over 𝑘, we obtain that there exists a set {𝑢𝑘}𝑑𝑘=1 ⊂ (�̃�*, 𝑢*]

such that −𝐹 (𝑡*, 𝑧*, �̃�*) = 𝐺−1(𝑡*)Λ1(𝑢* − �̃�*). Since there exists Λ−1
1 ,

then 𝑢* = �̃�* − Λ−1
1 𝐺(𝑡*)𝐹 (𝑡*, 𝑧*, �̃�*) = �̃�* − Λ−1

1

(︀
𝑄2(𝑡*)

[︀
𝑓(𝑡*, 𝑃1(𝑡*)𝑧* +

𝑃2(𝑡*)�̃�*) − 𝐴′(𝑡*)𝑧*
]︀
− 𝐺(𝑡*)�̃�*

)︀
. This holds for any fixed 𝑡* ∈ [𝑡+,∞),

𝑧* ∈ R𝑛, 𝑢* ∈ 𝑋2(𝑡*) satisfying 𝐹 (𝑡*, 𝑧*, 𝑢*) = 0. Therefore, for each
𝑡* ∈ [𝑡0,∞) the equality 𝛾(𝑡*) = 𝜂(𝑡*, 𝜁(𝑡*)) = �̃�* − Λ−1

1 𝐺(𝑡*)𝐹 (𝑡*, 𝑧*, �̃�*) = �̃�* −
Λ−1
1 𝐺(𝑡*)

(︀
𝐺−1(𝑡*)𝑄2(𝑡*)

[︀
𝑓(𝑡*, 𝜁(𝑡*) + 𝑃2(𝑡*)�̃�*) − 𝐴′(𝑡*)𝜁(𝑡*)

]︀
− �̃�*

)︀
is fulfilled.

By virtue of the condition c), the set of the elements �̃�* = �̃�(𝑡*) is bounded,
i.e., there exists a constant �̃� < ∞ such that ‖�̃�*‖ = ‖�̃�(𝑡*)‖ ≤ �̃� for each
𝑡* ∈ [𝑡+,∞). From the continuity of the nonlinear mapping Λ−1

1 = Λ−1
1 (𝑡*, 𝑧*, 𝑢𝑘)

in 𝑡*, 𝑧* and the compactness of the ball ‖𝜁(𝑡*)‖ ≤ 𝑀*, 𝑡* ∈ [𝑡0,∞), where
𝑧 = 𝜁(𝑡) ∈ 𝐶([𝑡0,∞),R𝑛) (𝜁(𝑡) ∈ 𝑋1(𝑡)), it follows that Λ−1

1 is uniformly con-
tinuous in 𝑧* (in 𝑃1(𝑡*)𝑧*) and is bounded on ‖𝑧*‖ = ‖𝜁(𝑡*)‖ ≤ 𝑀*. By the
condition c), Λ−1

1 = Λ−1
1 (𝑡*, 𝑧*, 𝑢𝑘) ∈ 𝐿(𝑌2(𝑡*), 𝑋2(𝑡*)) is bounded uniformly in

𝑡*, 𝑢𝑘 on [𝑡+,∞), (�̃�*, 𝑢*]. Therefore, there exists a constant 𝑁 > 0, independent
of 𝑡*, 𝑧*, 𝑢𝑘, such that ‖Λ−1

1 ‖ ≤ 𝑁 for each 𝑡* ∈ [𝑡+,∞), each 𝑧* ∈ R𝑛 and
each 𝑢* ∈ 𝑋2(𝑡*) satisfying 𝐹 (𝑡*, 𝑧*, 𝑢*) = 0 and for any set {𝑢𝑘}𝑑𝑘=1 ⊂ (�̃�*, 𝑢*].
Thus, ‖𝛾(𝑡*)‖ ≤ �̃�(1 + 𝑁‖𝐺(𝑡*)‖) + ‖𝐺−1(𝑡*)𝑄2(𝑡*)

[︀
𝑓(𝑡*, 𝜁(𝑡*) + 𝑃2(𝑡*)�̃�*) −

𝐴′(𝑡*)𝜁(𝑡*)
]︀
‖ for each 𝑡* ∈ [𝑡+,∞). Then it follows from (3.21), (3.20) that there

exists a constant 𝐾𝑀* > 0 such that ‖𝛾(𝑡*)‖ ≤ 𝐾𝑀* for all 𝑡* ∈ [𝑡+,∞).
It follows from the above that ‖𝑥(𝑡)‖ = ‖𝜁(𝑡) + 𝛾(𝑡)‖ ≤ 𝑀* + 𝐾𝑀* for all

𝑡 ∈ [𝑡0,∞), i.e., the solution 𝑥(𝑡) is bounded on [𝑡0,∞) and therefore Lagrange
stable. Since for every consistent initial point (𝑡0, 𝑥0) (i.e., for (𝑡0, 𝑥0) ∈ 𝐿𝑡+) there
exists a unique solution of the initial value problem (1.1), (1.2) which is Lagrange
stable, then every solution of (1.1), (1.2) is Lagrange stable (recall that the initial
value problem (1.1), (1.2) has a solution only for the initial points (𝑡0, 𝑥0) ∈ 𝐿𝑡+).
Thus, the equation (1.1) is Lagrange stable. �

Theorem 3.4. Let 𝑓 ∈ 𝐶([𝑡+,∞) × R𝑛,R𝑛), 𝜕
𝜕𝑥𝑓 ∈ 𝐶([𝑡+,∞) × R𝑛, 𝐿(R𝑛)),

𝐴,𝐵 ∈ 𝐶1([𝑡+,∞), 𝐿(R𝑛)) and the pencil 𝜆𝐴(𝑡) + 𝐵(𝑡) satisfy (2.1), where
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𝐶2 ∈ 𝐶1([𝑡+,∞), (0,∞)). Let the conditions 1), 2) of Theorem 3.1 or 1), 2)
of Theorem 3.2 be fulfilled, and the following conditions be also fulfilled:
3) there exists a region Ω ⊂ R𝑛 such that 0 ̸∈ Ω and the component 𝑃1(𝑡)𝑥(𝑡)

of each existing solution 𝑥(𝑡) with the initial point (𝑡0, 𝑥0) ∈ 𝐿𝑡+, where
𝑃1(𝑡0)𝑥0 ∈ Ω, remains all the time in Ω;

4) there exist a positive definite self-adjoint operator 𝐻(𝑡) ∈ 𝐿(R𝑛) and func-
tions 𝑘 ∈ 𝐶([𝑡+,∞),R), 𝑈 ∈ 𝐶(0,∞) such that 𝐻 ∈ 𝐶1([𝑡+,∞), 𝐿(R𝑛)),
+∞∫︀
𝑡+

𝑘(𝑡)𝑑𝑡 = ∞,
+∞∫︀
𝑐

𝑑𝑣

𝑈(𝑣)
< ∞ (𝑐 = 𝑐𝑜𝑛𝑠𝑡 > 0) and the inequality

𝐽(𝑡, 𝑃1(𝑡)𝑥) ≥ 𝑘(𝑡)𝑈
(︀

(𝐻(𝑡)𝑃1(𝑡)𝑥, 𝑃1(𝑡)𝑥)
)︀
, where 𝐽(𝑡, 𝑃1(𝑡)𝑥) is of the

form (3.3), holds for all (𝑡, 𝑥) ∈ 𝐿𝑡+ such that 𝑃1(𝑡)𝑥 ∈ Ω.
Then for each initial point (𝑡0, 𝑥0) ∈ 𝐿𝑡+ such that 𝑃1(𝑡0)𝑥0 ∈ Ω there exists
a unique solution of the initial value problem (1.1), (1.2) and this solution is
Lagrange unstable.

Proof. It is proved in the same way as in Theorem 3.1 (see p. 252) that there
exists the unique solution 𝑧 = 𝜁(𝑡) of the equation (3.12) on [𝑡0, 𝜔) which satisfies
the initial condition 𝜁(𝑡0) = 𝑃1(𝑡0)𝑥0, where [𝑡0, 𝜔) is the maximal interval of
the existence of the solution. Further, as in the proof of Theorem 3.1, we obtain
that there exists the unique solution 𝑥(𝑡) = 𝜁(𝑡) + 𝛾(𝑡) of (1.1) on [𝑡0, 𝜔) which
satisfies the initial condition (1.2). Recall that 𝑧 = 𝜁(𝑡) and 𝑢 = 𝛾(𝑡) (where
𝛾(𝑡) = 𝜂(𝑡, 𝜁(𝑡))) are the unique solution of the system (3.6), (3.7) on [𝑡0, 𝜔) which
satisfies the initial conditions 𝜁(𝑡0) = 𝑃1(𝑡0)𝑥0, 𝛾(𝑡0) = 𝑃2(𝑡0)𝑥0 ((𝑡0, 𝑥0) ∈ 𝐿𝑡+ ,
𝜁(𝑡) ∈ 𝑋1(𝑡), 𝛾(𝑡) ∈ 𝑋2(𝑡)).

We prove that the solution 𝑥(𝑡) is Lagrange unstable.
By the condition of the theorem, there exists a domain Ω ⊂ R𝑛 such that

0 ̸∈ Ω and the component 𝑃1(𝑡)𝑥(𝑡) of each existing solution 𝑥(𝑡) with the initial
point (𝑡0, 𝑥0) ∈ 𝐿𝑡+ , where 𝑃1(𝑡0)𝑥0 ∈ Ω, remains all the time in Ω. Since
𝜁(𝑡) = 𝑃1(𝑡)𝑥(𝑡), then each solution 𝜁(𝑡) of the equation (3.12) starting in the
region Ω remains all the time in it. Introduce the positive definite scalar function
(3.13): 𝑉 (𝑡, 𝑧) = (𝐻(𝑡)𝑧, 𝑧), where 𝐻(𝑡) is the operator satisfying the condition 4).
The derivative of 𝑉 along the trajectories of the system (3.12) has the form (3.14).
By the condition 4), the inequality

𝑉 ′
(3.12)(𝑡, 𝜁(𝑡)) =

(︀
𝐻 ′(𝑡)𝜁(𝑡), 𝜁(𝑡)

)︀
+ 2

(︀
𝐻(𝑡)𝜁(𝑡), ̃︀Π(𝑡, 𝜁(𝑡))

)︀
= 2 𝐽(𝑡, 𝑃1(𝑡)𝑥(𝑡)) ≥

≥ 2 𝑘(𝑡)𝑈
(︀
(𝐻(𝑡)𝜁(𝑡), 𝜁(𝑡))

)︀
= 2 𝑘(𝑡)𝑈

(︀
𝑉 (𝑡, 𝜁(𝑡))

)︀
.

holds for all 𝑡 ≥ 𝑡0, 𝜁(𝑡) ∈ Ω. Hence, for 𝑡 ≥ 𝑡0 the function 𝑣(𝑡) = 𝑉 (𝑡, 𝜁(𝑡)) is a
positive solution of the differential inequality

𝑣′ ≥ 2𝑘(𝑡)𝑈(𝑣). (3.24)

It follows from the properties of the functions 𝑘(𝑡), 𝑈(𝑣) that the inequality
(3.24) (𝑡 ≥ 𝑡+) has no positive solution defined in the future [16]. Consequently,
by Theorem [16, Ch. 4, Theorem XIV] the solution 𝜁(𝑡) is Lagrange unstable, i.e.,
the maximal interval of existence [𝑡0, 𝜔) is a finite interval and lim

𝑡→𝜔−0
‖𝜁(𝑡)‖ = ∞.

Hence, the solution 𝑥(𝑡) = 𝜁(𝑡) + 𝛾(𝑡) of (1.1), (1.2) is also Lagrange unstable
(has the finite escape time [𝑡0, 𝜔)). �
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3.3. Dissipativity (ultimate boundedness).

Ultimately bounded systems of (explicit) ordinary differential equations, which
are also called dissipative systems or 𝐷-systems, were investigated, in particular,
in [16, 29, 20]. Below are definitions similar to those given in [16, 29, 20].

Definition 3.2. Solutions of the equation (1.1) are called ultimately bounded, if
there exists a constant 𝐾 > 0 and for each solution 𝑥(𝑡) with an initial point
(𝑡0, 𝑥0) there exists a number 𝜏 = 𝜏(𝑡0, 𝑥0) ≥ 𝑡0 such that ‖𝑥(𝑡)‖ < 𝐾 for all
𝑡 ∈ [𝑡0+𝜏,∞) (note that the constant 𝐾 is independent of the choice of a solution,
i.e. the choice of 𝑡0, 𝑥0). The equation (1.1) is called ultimately bounded or
dissipative, if for any consistent initial point (𝑡0, 𝑥0) there exists a global solution
of the initial value problem (1.1), (1.2) and all solutions are ultimately bounded.

Definition 3.3. If in Definition 3.2 the number 𝜏 does not depend on the choice
of 𝑡0, i.e., 𝜏 = 𝜏(𝑥0), then the solutions of the equation (1.1) are called uni-
formly ultimately bounded and, accordingly, the equation (1.1) is called uniformly
ultimately bounded or uniformly dissipative.

Analogous definitions hold for the equation (1.3).

Theorem 3.5. Let 𝑓 ∈ 𝐶([𝑡+,∞) × R𝑛,R𝑛), 𝜕
𝜕𝑥𝑓 ∈ 𝐶([𝑡+,∞) × R𝑛, 𝐿(R𝑛)),

𝐴,𝐵 ∈ 𝐶1([𝑡+,∞), 𝐿(R𝑛)), the pencil 𝜆𝐴(𝑡) + 𝐵(𝑡) satisfy (2.1), where
𝐶2 ∈ 𝐶1([𝑡+,∞), (0,∞)), and the conditions 1), 2) of Theorem 3.1 or 1), 2)
of Theorem 3.2 be fulfilled. Let the following conditions be also fulfilled:
3) there exist a positive definite self-adjoint operator 𝐻(𝑡) ∈ 𝐿(R𝑛), a num-

ber 𝑅 > 0 and a function 𝑈 ∈ 𝐶(0,∞) such that 𝐻 ∈ 𝐶1([𝑡+,∞), 𝐿(R𝑛)),
sup

𝑡∈[𝑡+,∞)
‖𝐻(𝑡)‖ < ∞ and for all (𝑡, 𝑥) ∈ 𝐿𝑡+, ‖𝑃1(𝑡)𝑥‖ ≥ 𝑅, one of the follow-

ing inequalities (where 𝐽(𝑡, 𝑃1(𝑡)𝑥) is of the form (3.3)) is fulfilled:
3.a) 𝐽(𝑡, 𝑃1(𝑡)𝑥) ≤ −𝑈

(︀
(𝐻(𝑡)𝑃1(𝑡)𝑥, 𝑃1(𝑡)𝑥)

)︀
;

3.b) 𝐽(𝑡, 𝑃1(𝑡)𝑥) ≤ −𝑈
(︀
‖𝑃1(𝑡)𝑥‖

)︀
;

4) there exist a constant 𝑐 > 0 and a number 𝑇 > 𝑡+ such that
‖𝐺−1(𝑡)𝑄2(𝑡)[𝑓(𝑡, 𝑃1(𝑡)𝑥 + 𝑃2(𝑡)𝑥) − 𝐴′(𝑡)𝑃1(𝑡)𝑥]‖ ≤ 𝑐 ‖𝑃1(𝑡)𝑥‖ for all
(𝑡, 𝑥) ∈ 𝐿𝑇 (𝐿𝑇 is 𝐿𝑡+, where 𝑡+ is replaced by 𝑇 ).

Then the equation (1.1) is uniformly dissipative (uniformly ultimately bounded).

Proof. As in the proof of Theorem 3.1 or 3.2, we obtain that for each initial point
(𝑡0, 𝑥0) ∈ 𝐿𝑡+ there exists the unique global solution 𝑥(𝑡) = 𝜁(𝑡) + 𝛾(𝑡) of the
initial value problem (1.1), (1.2), where 𝛾(𝑡) = 𝜂(𝑡, 𝜁(𝑡)) (𝜁(𝑡) = 𝑃1(𝑡)𝑥(𝑡), 𝛾(𝑡) =
𝑃2(𝑡)𝑥(𝑡)). Indeed, since the inequality 𝑉 ′

(3.12)(𝑡, 𝜁(𝑡)) ≤ −2𝑈
(︀
(𝐻(𝑡)𝜁(𝑡), 𝜁(𝑡))

)︀
or 𝑉 ′

(3.12)(𝑡, 𝜁(𝑡)) ≤ −2𝑈
(︀
‖𝜁(𝑡)‖

)︀
will be fulfilled instead of (3.15), then the in-

equality 𝑣′ ≤ 0, which also has no positive solution with finite escape time,
will be fulfilled instead of (3.16). Moreover, by virtue of the condition 3), as
in the proof of Yoshizawa’s theorem [29, Theorem 10.4], we obtain that solu-
tions of the ODE (3.12) are uniformly ultimately bounded, i.e., there exists a
constant 𝑁 > 0 and for each solution 𝑧 = 𝜁(𝑡) satisfying the initial condition
𝜁(𝑡0) = 𝑃1(𝑡0)𝑥0 there exists a number 𝜏1 = 𝜏1(𝑥0) ≥ 𝑡0 such that ‖𝜁(𝑡)‖ < 𝑁
for all 𝑡 ≥ 𝑡0 + 𝜏1. Although in Yoshizawa’s theorem an inequality of the form
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𝑉 ′
(3.12)(𝑡, 𝜁(𝑡)) ≤ −2𝑈

(︀
‖𝜁(𝑡)‖

)︀
is used, but it is easy to verify that the statement

remains true if 𝑉 ′
(3.12)(𝑡, 𝜁(𝑡)) ≤ −2𝑈

(︀
(𝐻(𝑡)𝜁(𝑡), 𝜁(𝑡))

)︀
. Then, by the condition 4)

and the equality (3.22), there exist a constant 𝑐 > 0 and a number 𝜏2 = 𝜏2(𝑥0) > 𝑡0
such that ‖𝛾(𝑡)‖ = ‖𝜂(𝑡, 𝜁(𝑡))‖ ≤ 𝑐 ‖𝜁(𝑡)‖ < 𝑐𝑁 for all 𝑡 ≥ 𝜏2. Thus, for each
solution with the initial point (𝑡0, 𝑥0) there exists a number 𝜏 = 𝜏(𝑥0) ≥ 𝑡0 such
that ‖𝑥(𝑡)‖ ≤ ‖𝜁(𝑡)‖ + ‖𝛾(𝑡)‖ < (1 + 𝑐)𝑁 for all 𝑡 ∈ [𝑡0 + 𝜏,∞), where the con-
stant (1 + 𝑐)𝑁 > 0 is independent of 𝑡0, 𝑥0. Consequently, the equation (1.1) is
uniformly dissipative (uniformly ultimately bounded). �

3.4. Global boundedness of solutions of the equation (1.3).

Theorems similar to those proved above for the equation (1.1) are true for the
nonautonomous degenerate DE (1.3). The theorems for the equation (1.3) are
formulated as Theorems 3.1–3.5, where the following changes are made:

∙ in the condition 3) of Theorem 3.1, which is also contained in Theorems
3.2 and 3.3, in the condition 4) of Theorem 3.4 and the condition 3) of
Theorem 3.5, the function 𝐽(𝑡, 𝑃1(𝑡)𝑥) (3.3) on the left-hand sides of the
inequalities is replaced by

𝐾(𝑡, 𝑃1(𝑡)𝑥) =
1

2

(︁
𝐻 ′(𝑡)𝑃1(𝑡)𝑥, 𝑃1(𝑡)𝑥

)︁
+

+
(︁
𝐻(𝑡)𝑃1(𝑡)𝑥,𝐺

−1(𝑡)[−𝐵(𝑡)𝑃1(𝑡)𝑥 + 𝑄1(𝑡)𝑓(𝑡, 𝑥)] + 𝑃 ′
1(𝑡)𝑥

)︁
; (3.25)

∙ the manifold 𝐿𝑡+ is replaced by ̂︀𝐿𝑡+ and it is assumed that
𝑓 ∈ 𝐶1([𝑡+,∞) × R𝑛,R𝑛) everywhere;

∙ in Theorem 3.3, the condition a) takes the form
sup

(𝑡,𝑥)∈ ̂︀𝐿𝑡+ , ‖𝑃1(𝑡)𝑥‖≤𝑀, 𝑀= 𝑐𝑜𝑛𝑠𝑡>0

‖𝐺−1(𝑡)𝑄2(𝑡)𝑓(𝑡, 𝑥)‖ < ∞,

and the requirement (3.20) is replaced by
sup

𝑡∈[𝑡+,∞), ‖𝑥𝑝1 (𝑡)‖≤𝑀, 𝑀= 𝑐𝑜𝑛𝑠𝑡>0
‖𝐺−1(𝑡)𝑄2(𝑡)𝑓(𝑡, 𝑥𝑝1(𝑡) + �̃�𝑝2(𝑡*))‖ < ∞;

∙ in Theorem 3.5, in the condition 4) the inequality
‖𝐺−1(𝑡)𝑄2(𝑡)[𝑓(𝑡, 𝑃1(𝑡)𝑥 + 𝑃2(𝑡)𝑥) − 𝐴′(𝑡)𝑃1(𝑡)𝑥]‖ ≤ 𝑐 ‖𝑃1(𝑡)𝑥‖ is
replaced by ‖𝐺−1(𝑡)𝑄2(𝑡)𝑓(𝑡, 𝑃1(𝑡)𝑥 + 𝑃2(𝑡)𝑥)‖ ≤ 𝑐 ‖𝑃1(𝑡)𝑥‖ and the
manifold 𝐿𝑇 is replaced by ̂︀𝐿𝑇 .

The proofs of the theorems for the equation (1.3) are carried out in the same way
as the proofs of the corresponding theorems for (1.1).

4. The Lyapunov stability and asymptotic stability of solutions,
and the complete stability of nonautonomous degenerate DEs

Consider the equations (1.1), (1.3), where 𝑓(𝑡, 𝑥) is such that 𝑓(𝑡, 0) ≡ 0. Such
equations are called DAEs (degenerate DEs) of perturbed motion (by analogy
with ODEs). They have the equilibrium state (equilibrium position, station-
ary solution) 𝑥𝑜(𝑡) ≡ 0. Recall that the points (𝑡0, 𝑥0) ∈ 𝐿𝑡+ and (𝑡0, 𝑥0) ∈ ̂︀𝐿𝑡+

are called consistent initial points for the initial value problems (1.1), (1.2) and
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(1.3), (1.2) respectively (see Remark 2.1). Obviously, for the considered equations,
(𝑡, 0) ∈ 𝐿𝑡+ and (𝑡, 0) ∈ ̂︀𝐿𝑡+ for each 𝑡 ∈ [𝑡+,∞).

The definitions of stability and asymptotic stability formulated below are sim-
ilar to those given in [3, 15, 19].

Let 𝑓 : [𝑡+,∞) × 𝑈𝑅(0) → R𝑛, where 𝑈𝑅(0) = {𝑥 ∈ R𝑛 | ‖𝑥‖ < 𝑅}.

Definition 4.1. The solution 𝑥𝑜(𝑡) ≡ 0 of (1.1) (𝑓(𝑡, 0) ≡ 0) is called Lyapunov
stable (or simply stable) if for any 𝜀 > 0 (𝜀 < 𝑅), 𝑡0 ∈ [𝑡+,∞) there exists a
number 𝛿 = 𝛿(𝜀, 𝑡0) > 0 (𝛿 ≤ 𝜀) such that for any consistent initial point (𝑡0, 𝑥0)
satisfying the condition ‖𝑥0‖ < 𝛿 there exists a global solution 𝑥(𝑡) of the initial
value problem (1.1), (1.2) and this solution satisfies the inequality ‖𝑥(𝑡)‖ < 𝜀 for
all 𝑡 ∈ [𝑡0,∞). If, in addition, there exists ̃︀𝛿 = ̃︀𝛿(𝑡0) > 0 (̃︀𝛿 ≤ 𝛿) such that for
each solution 𝑥(𝑡) with an initial point (𝑡0, 𝑥0) satisfying the condition ‖𝑥0‖ < ̃︀𝛿
the requirement lim

𝑡→∞
𝑥(𝑡) = 0 is fulfilled, then the solution 𝑥𝑜(𝑡) ≡ 0 is called

asymptotically Lyapunov stable or simply asymptotically stable.

If in Definition 4.1 𝛿 is independent of 𝑡0, i.e., 𝛿 = 𝛿(𝜀), then the solution is
called uniformly Lyapunov stable or uniformly stable (on [𝑡+,∞)).

Definition 4.2. The solution 𝑥𝑜(𝑡) ≡ 0 of (1.1) (𝑓(𝑡, 0) ≡ 0) is called Lyapunov
unstable (or simply unstable) if for some 𝜀 > 0 (𝜀 < 𝑅), 𝑡0 ∈ [𝑡+,∞) and any
𝛿 > 0 there exist a solution 𝑥𝛿(𝑡) of the initial value problem (1.1), (1.2) and a
time moment 𝑡1 > 𝑡0 such that ‖𝑥0‖ < 𝛿 and ‖𝑥𝛿(𝑡1)‖ ≥ 𝜀.

The definition of asymptotic stability in the large or complete stability given
below for a DAE is similar to the corresponding definition for an explicit ODE
(see [13, Ch. I, Section 5] and [16, Ch. II, Section 13]).

Definition 4.3. Consider the equation (1.1), where 𝑓(𝑡, 𝑥) is defined on [𝑡+,∞)×
R𝑛 and 𝑓(𝑡, 0) ≡ 0. If the solution 𝑥𝑜(𝑡) ≡ 0 of (1.1) (𝑓(𝑡, 0) ≡ 0) is asymptotically
stable and, moreover, for each point (𝑡0, 𝑥0) ∈ 𝐿𝑡+ (i.e. for each consistent initial
point) there exists a global solution 𝑥(𝑡) of the initial value problem (1.1), (1.2)
and lim

𝑡→∞
𝑥(𝑡) = 0, then the solution 𝑥𝑜(𝑡) ≡ 0 is called asymptotically stable in the

large, and the equation (1.1) is called completely stable or asymptotically stable.

Similar definitions hold for the equation (1.3).
It is known that the Lyapunov stability of a nonzero (non-stationary) solution

of a nonlinear ODE does not imply its boundedness on the whole domain of
definition and, accordingly, the Lagrange stability. Also, in general the Lagrange
stability of ODE solutions does not imply their Lyapunov stability. In the general
case, the Lyapunov instability does not imply the Lagrange instability, but the
converse statement is true.

Theorem 4.1. Let 𝑓 ∈ 𝐶([𝑡+,∞)×𝑈𝑅(0),R𝑛), 𝑓(𝑡, 0) ≡ 0, 𝜕
𝜕𝑥𝑓 ∈ 𝐶([𝑡+,∞)×

𝑈𝑅(0), 𝐿(R𝑛)), 𝐴,𝐵 ∈ 𝐶1([𝑡+,∞), 𝐿(R𝑛)) and the pencil 𝜆𝐴(𝑡) + 𝐵(𝑡) satisfy
(2.1), where 𝐶2 ∈ 𝐶1([𝑡+,∞), (0,∞)). Let for each 𝑡* ∈ [𝑡+,∞) and 𝑥*𝑝1(𝑡*) = 0,
𝑥*𝑝2(𝑡*) = 0 the operator (3.2) has the inverse. Then the following statements are
true:
(a) If there exist a positive definite self-adjoint operator 𝐻(𝑡) ∈ 𝐿(R𝑛) and num-

bers 𝑟1, 𝑟2 > 0, 𝑟1 + 𝑟2 < 𝑅, such that 𝐻 ∈ 𝐶1([𝑡+,∞), 𝐿(R𝑛)) and for all
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𝑡 ∈ [𝑡+,∞), 𝑥 ∈ 𝐵𝑟1,𝑟2(0) = {𝑥 ∈ R𝑛 | ‖𝑃𝑖(𝑡)𝑥‖ ≤ 𝑟𝑖, 𝑖 = 1, 2} the inequality

𝐽(𝑡, 𝑃1(𝑡)𝑥) ≤ 0, where 𝐽(𝑡, 𝑃1(𝑡)𝑥) is of the form (3.3), (4.1)

holds, then the solution 𝑥𝑜(𝑡) ≡ 0 of (1.1) is Lyapunov stable.
(b) Let there exist a positive definite self-adjoint operator 𝐻(𝑡) ∈ 𝐿(R𝑛), numbers

𝑟1, 𝑟2 > 0, 𝑟1 + 𝑟2 < 𝑅, and a function 𝑊 ∈ 𝐶({𝑧 ∈ R𝑛 | ‖𝑧‖ ≤ 𝑟1}, [0,∞))
such that 𝐻 ∈ 𝐶1([𝑡+,∞), 𝐿(R𝑛)), sup

𝑡∈[𝑡+,∞)
‖𝐻(𝑡)‖ < ∞, 𝑊 (𝑧) > 0 for 𝑧 ̸= 0,

𝑊 (0) = 0, and for all 𝑡 ∈ [𝑡+,∞), 𝑥 ∈ 𝐵𝑟1,𝑟2(0), 𝑃1(𝑡)𝑥 ̸= 0, the following
inequality holds:

𝐽(𝑡, 𝑃1(𝑡)𝑥) ≤ −𝑊
(︀
𝑃1(𝑡)𝑥

)︀
, where 𝐽(𝑡, 𝑃1(𝑡)𝑥) is of the form (3.3); (4.2)

let 𝐺−1(𝑡)𝑄2(𝑡)[𝑓(𝑡, 𝑃1(𝑡)𝑥 + 𝑃2(𝑡)𝑥) −𝐴′(𝑡)𝑃1(𝑡)𝑥] → 0 uniformly in 𝑡

on [𝑇,∞) as 𝑥 → 0 for some 𝑇 > 𝑡+; (4.3)

then the solution 𝑥𝑜(𝑡) ≡ 0 of (1.1) is asymptotically Lyapunov stable.
(c) The statement (a), where the function 𝐽(𝑡, 𝑃1(𝑡)𝑥) in the inequality (4.1) is

replaced by 𝐾(𝑡, 𝑃1(𝑡)𝑥) (3.25), the equation (1.1) is replaced by (1.3), and it
is additionally assumed that 𝑓 ∈ 𝐶1([𝑡+,∞) × 𝑈𝑅(0),R𝑛), is true.

(d) The statement (b), where the inequality (4.2) and the requirement (4.3) are
replaced respectively by

𝐾(𝑡, 𝑃1(𝑡)𝑥) ≤ −𝑊
(︀
𝑃1(𝑡)𝑥

)︀
, where 𝐾(𝑡, 𝑃1(𝑡)𝑥) is of the form (3.25), (4.4)

and

𝐺−1(𝑡)𝑄2(𝑡)𝑓(𝑡, 𝑃1(𝑡)𝑥 + 𝑃2(𝑡)𝑥) → 0 uniformly in 𝑡

on [𝑇,∞) as 𝑥 → 0 for some 𝑇 > 𝑡+, (4.5)

the equation (1.1) is replaced by (1.3), and it is additionally assumed that
𝑓 ∈ 𝐶1([𝑡+,∞) × 𝑈𝑅(0),R𝑛), is true.

Proof. The proof of the statement (a).
As in the proof of Theorem 3.1, we consider the mappings (3.4), (3.5) and the

system (3.6), (3.7), i.e., 𝑧′(𝑡) = Π(𝑡, 𝑧(𝑡), 𝑢(𝑡)), 𝐹 (𝑡, 𝑧(𝑡), 𝑢(𝑡)) = 0. Obviously,
𝑓(𝑡, 0) ≡ 0 if and only if Π(𝑡, 0, 0) ≡ 0 and 𝐹 (𝑡, 0, 0) ≡ 0.

We will assume that 𝐴(𝑡) is not equal to zero or invertible for all 𝑡, because these
cases correspond either to a purely algebraic equation or to a purely differential
equation (ODE). In the case when 𝐴(𝑡) is invertible (for all 𝑡), the DAE (1.1) can
be reduced to an ODE and then the classical Lyapunov theorems can be used.
In the case when 𝐴(𝑡) is identically equal to zero, the implicit function theorems
and the constructions similar to those given below are used. Thus, the theorem
remains true for these special cases, but the proof of the theorem is of interest
precisely to the DAE (degenerate DE). Therefore, in what follows, it is assumed
that 𝑋1(𝑡) ̸= {0} and 𝑋2(𝑡) ̸= {0}. Recall that the dimensions of the subspaces
𝑋1(𝑡) and 𝑋2(𝑡) are constant for all 𝑡 ∈ [𝑡+,∞) (see Remark 3.1).

It is clear that there exist some regions 𝐷𝑧, 𝐷𝑢 ⊂ R𝑛 containing the origin
for which the mappings Π, 𝐹 are defined, i.e., 𝑃1(𝑡)𝐷

𝑧 + 𝑃2(𝑡)𝐷
𝑢 ⊂ 𝑈𝑅(0) and

Π(𝑡, 𝑧, 𝑢) : [𝑡+,∞)×𝐷𝑧×𝐷𝑢 → R𝑛, 𝐹 (𝑡, 𝑧, 𝑢) : [𝑡+,∞)×𝐷𝑧×𝐷𝑢 → R𝑛. The map-
pings Π, 𝐹 ∈ 𝐶([𝑡+,∞)×𝐷𝑧×𝐷𝑢,R𝑛) are continuously differentiable in 𝑧, 𝑢 and
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the partial derivatives of 𝐹 (𝑡, 𝑧, 𝑢) have the form (3.8), (3.9), where Φ𝑡,𝑃1(𝑡)𝑧,𝑃2(𝑡)𝑢

is the operator (3.2). As in Theorem 3.1, denote Φ̃𝑡,𝑧,𝑢 = Φ𝑡,𝑃1(𝑡)𝑧,𝑃2(𝑡)𝑢.
Obviously, Lemma 3.1 remains valid.
By the condition of the theorem, for each 𝑡* ∈ [𝑡+,∞) the operator Φ̃𝑡*,0,0 =

Φ𝑡*,0,0 is invertible. Therefore, for each point (𝑡, 𝑧, 𝑢) = (𝑡*, 0, 0) the operator
Ψ𝑡,𝑧,𝑢 = 𝜕

𝜕𝑢𝐹 (𝑡, 𝑧, 𝑢) (3.11) is invertible. Let 𝑡* ∈ [𝑡+,∞) be an arbitrary fixed
element. Since 𝐹 (𝑡*, 0, 0) = 0 and the conditions of the implicit function theorems
are satisfied, then there exist neighborhoods 𝑈𝜎1(𝑡*) × 𝑈 𝑧

𝛿1
(0) ⊂ [𝑡+,∞) × 𝐷𝑧

(𝑈𝜎1(𝑡+) = [𝑡+, 𝑡+ + 𝜎1)), 𝑈𝑢
𝛾1(0) ⊂ 𝐷𝑢 and a unique function 𝑢 = 𝜇(𝑡, 𝑧) ∈

𝐶(𝑈𝜎1(𝑡*)×𝑈 𝑧
𝛿1

(0), 𝑈𝑢
𝛾1(0)) which is continuously differentiable in 𝑧 on 𝑈𝜎1(𝑡*)×

𝑈 𝑧
𝛿1

(0), satisfies the equation (3.10) (i.e., 𝐹 (𝑡, 𝑧, 𝜇(𝑡, 𝑧)) = 0 for (𝑡, 𝑧) ∈ 𝑈𝜎1(𝑡*) ×
𝑈 𝑧
𝛿1

(0)) and 𝜇(𝑡*, 0) = 0. Since 𝑢 = 𝜇(𝑡, 𝑧) satisfies (3.10) for (𝑡, 𝑧) ∈ 𝑈𝜎1(𝑡*) ×
𝑈 𝑧
𝛿1

(0), then 𝜇(𝑡, 𝑧) ∈ 𝑋2(𝑡) and (𝑡, 𝑃1(𝑡)𝑧 + 𝜇(𝑡, 𝑧)) ∈ 𝐿𝑡+ for each (𝑡, 𝑧) ∈
𝑈𝜎1(𝑡*) × 𝑈 𝑧

𝛿1
(0). Thus, the following statement similar to Lemma 3.2 is proved:

for each 𝑡 ∈ [𝑡+,∞) and each 𝑧 from the sufficiently small neighborhood 𝑈 𝑧
𝛿1

(0)
there exists a unique 𝑢 from the sufficiently small neighborhood 𝑈𝑢

𝛾1(0), satisfying
(3.10). Since the obtained implicit function 𝑢 = 𝜇(𝑡, 𝑧) is continuous at the point
(𝑡*, 0), then for every 𝜀1 > 0 there are �̃�1 = �̃�1(𝜀1, 𝑡*) > 0, 𝛿1 = 𝛿1(𝜀1, 𝑡*) > 0

(�̃�1 ≤ 𝜎1, 𝛿1 ≤ 𝛿1) such that ‖𝜇(𝑡, 𝑧)‖ < 𝜀1 for (𝑡, 𝑧) ∈ 𝑈�̃�1(𝑡*) × 𝑈 𝑧
𝛿1

(0) and
therefore ‖𝑢‖ < 𝜀1 for 𝑢 = 𝜇(𝑡, 𝑧). Thus, the following lemma is proved.

Lemma 4.1. For any 𝜀𝑢 > 0, 𝑡 ∈ [𝑡+,∞) and any 𝑧 ∈ 𝑈 𝑧
𝛿*

(0), where 𝛿* > 0 is
sufficiently small, there exists a unique 𝑢 ∈ 𝑈𝑢

𝜀𝑢(0) satisfying (3.10) and this 𝑢
belongs to 𝑋2(𝑡) (i.e., ‖𝑢‖ < 𝜀𝑢, 𝐹 (𝑡, 𝑧, 𝑢) = 0 and 𝑢 = 𝑃2(𝑡)𝑢).

Let 𝜀 > 0 (𝜀 < 𝑅) be an arbitrary number. We represent it as the sum
𝜀 = 𝜀𝑧 + 𝜀𝑢 of numbers 𝜀𝑧 > 0, 𝜀𝑢 > 0 which will be indicated below.

Using the implicit function theorems and Lemma 4.1, we obtain the
following statement. For any fixed 𝑡* ∈ [𝑡0,∞) there exist an in-
terval 𝑈𝜎2(𝑡*) ⊂ [𝑡+,∞) (𝜎2 = 𝜎2(𝜀𝑢, 𝑡*), 𝑈𝜎2(𝑡+) = [𝑡+, 𝑡+ + 𝜎2)),
a neighborhood 𝑈 𝑧

𝛿2
(0) (𝛿2 = 𝛿2(𝜀𝑢, 𝑡*) ≤ 𝜀𝑧) and a unique function

𝜈𝑡*(𝑡, 𝑧) ∈ 𝐶(𝑈𝜎2(𝑡*) × 𝑈 𝑧
𝛿2

(0), 𝑈𝑢
𝜀𝑢(0)) which is a solution of the equation (3.10)

with respect to 𝑢 (i.e., 𝐹 (𝑡, 𝑧, 𝜈𝑡*(𝑡, 𝑧)) = 0 for (𝑡, 𝑧) ∈ 𝑈𝜎2(𝑡*)×𝑈 𝑧
𝛿2

(0)), is contin-
uously differentiable in 𝑧 and belongs to 𝑋2(𝑡) for each (𝑡, 𝑧) ∈ 𝑈𝜎2(𝑡*) × 𝑈 𝑧

𝛿2
(0),

as well as satisfies the equality 𝜈𝑡*(𝑡*, 0) = 0. Introduce the function
𝑢 = 𝜂(𝑡, 𝑧) : [𝑡+,∞) × 𝑈 𝑧

𝛿2
(0) → 𝑈𝑢

𝜀𝑢(0) and define by 𝜂(𝑡, 𝑧) = 𝜈𝑡*(𝑡, 𝑧) at the
point (𝑡, 𝑧) = (𝑡*, 𝑧*) for each point (𝑡*, 𝑧*) ∈ [𝑡+,∞)×𝑈 𝑧

𝛿2
(0). Then the function

𝑢 = 𝜂(𝑡, 𝑧) is continuous in (𝑡, 𝑧), continuously differentiable in 𝑧 and a unique so-
lution of the equation (3.10), and 𝜂(𝑡, 𝑧) ∈ 𝑋2(𝑡) for each (𝑡, 𝑧) ∈ [𝑡+,∞)×𝑈 𝑧

𝛿2
(0)

as well as 𝜂(𝑡, 0) ≡ 0.
Substitute the function 𝑢 = 𝜂(𝑡, 𝑧) in (3.4) and denote ̃︀Π(𝑡, 𝑧) = Π(𝑡, 𝑧, 𝜂(𝑡, 𝑧)),

then the equation (3.6) takes the form (3.12), i.e., 𝑧′(𝑡) = ̃︀Π(𝑡, 𝑧(𝑡)). By the
properties of 𝜂 and Π, the function ̃︀Π is continuous in (𝑡, 𝑧) and continuously
differentiable in 𝑧 on [𝑡+,∞) × 𝑈 𝑧

𝛿2
(0), and ̃︀Π(𝑡, 0) ≡ 0. Clearly, for each initial

point (𝑡0, 𝑧0) ∈ [𝑡+,∞) × 𝑈 𝑧
𝛿2

(0) there exists a unique local solution of (3.12).
Take any initial value 𝑡0 ∈ [𝑡+,∞) and choose any consistent initial

value 𝑥0, i.e., (𝑡0, 𝑥0) ∈ 𝐿𝑡+ or 𝐹 (𝑡0, 𝑃1(𝑡0)𝑥0, 𝑃2(𝑡0)𝑥0) = 0, satisfying
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the condition ‖𝑥0‖ < 𝛿 ≤ 𝜀, where 𝛿 = 𝛿(𝜀, 𝑡0) > 0 is chosen so that
‖𝑃1(𝑡0)𝑥0‖ < 𝛿𝑧 ≤ min{𝜀𝑧, 𝛿2}, 𝛿𝑧 is a sufficiently small number which will be de-
termined below, and ‖𝑃2(𝑡0)𝑥0‖ < 𝜀𝑢. Denote 𝑧0 = 𝑃1(𝑡0)𝑥0 and 𝑢0 = 𝑃2(𝑡0)𝑥0,
then 𝜂(𝑡0, 𝑧0) = 𝑢0 (since 𝐹 (𝑡0, 𝑧0, 𝑢0) = 0). For the chosen initial point (𝑡0, 𝑧0)
there exists a unique local solution 𝑧 = 𝜁(𝑡) of (3.12) satisfying the initial con-
dition 𝜁(𝑡0) = 𝑧0. Then the functions 𝑧 = 𝜁(𝑡), 𝑢 = 𝜂(𝑡, 𝜁(𝑡)) are a unique local
solution of the system (3.6), (3.7) satisfying the initial conditions 𝜁(𝑡0) = 𝑧0,
𝜂(𝑡0, 𝜁(𝑡0)) = 𝑢0, and by Lemma 3.1 the function 𝑥(𝑡) = 𝜁(𝑡) + 𝜂(𝑡, 𝜁(𝑡))
(𝜁(𝑡) = 𝑃1(𝑡)𝑥(𝑡) ∈ 𝑋1(𝑡), 𝜂(𝑡, 𝜁(𝑡)) = 𝑃2(𝑡)𝑥(𝑡) ∈ 𝑋2(𝑡)) is a unique local solu-
tion of (1.1) satisfying the initial condition (1.2), where 𝑥0 = 𝑧0 + 𝑢0. Introduce
the positive definite function (3.13), where 𝐻(𝑡) is the operator satisfying the
conditions of the statement (a). Without loss of generality, we can assume that
𝛿2 ≤ 𝑟1 and 𝜀𝑢 ≤ 𝑟2, where the numbers 𝑟1, 𝑟2 are defined in the statement (a).
By virtue of the condition (4.1), for any 𝑡 ∈ [𝑡0,∞), 𝑧 ∈ 𝑋1(𝑡) such that ‖𝑧‖ < 𝛿2
the derivative of 𝑉 along the trajectories of the system (3.12) (see (3.14)) satisfies
the inequality

𝑉 ′
(3.12)(𝑡, 𝑧) ≤ 0. (4.6)

Recall that ‖𝑧0‖ < 𝛿𝑧 ≤ min{𝜀𝑧, 𝛿2}, where 𝑧0 = 𝑃1(𝑡0)𝑥0 = 𝜁(𝑡0). Further, as
in the proof of Lyapunov’s theorem on stability [17], we obtain that the number
𝛿𝑧 = 𝛿𝑧(𝜀𝑧, 𝑡0) > 0 can be chosen such that the solution 𝑧 = 𝜁(𝑡) is global and
‖𝜁(𝑡)‖ < 𝜀𝑧 for all 𝑡 ∈ [𝑡0,∞). This holds for any 𝜀𝑧 > 0. Choose 𝛿𝑧, 𝜀𝑧 and
𝜀𝑢 such that ‖𝜁(𝑡)‖ < 𝜀𝑧 for 𝑡 ∈ [𝑡0,∞), ‖𝜂(𝑡, 𝜁(𝑡))‖ < 𝜀𝑢 for 𝑡 ∈ [𝑡0,∞) and
‖𝜁(𝑡)‖ < 𝜀𝑧, and 𝜀𝑧 + 𝜀𝑢 = 𝜀. Then ‖𝑥(𝑡)‖ = ‖𝜁(𝑡) + 𝜂(𝑡, 𝜁(𝑡))‖ < 𝜀𝑧 + 𝜀𝑢 = 𝜀
for all 𝑡 ∈ [𝑡0,∞). Since 𝜀 > 0 and 𝑡0 ∈ [𝑡+,∞) were chosen arbitrarily, the
statement (a) is proved.

The proof of the statement (b).
The Lyapunov stability of the zero solution is proved in the same way as above.

We show that the solution 𝑥(𝑡) = 𝜁(𝑡) + 𝜂(𝑡, 𝜁(𝑡)) with the initial point (𝑡0, 𝑥0)
(𝑥0 = 𝑧0 +𝑢0), constructed in the proof of the statement (a), satisfies the require-
ment lim

𝑡→∞
𝑥(𝑡) = 0 for ‖𝑥0‖ < 𝛿 and a sufficiently small 𝛿 = 𝛿(𝑡0) > 0. As above,

𝛿 is chosen so that ‖𝑧0‖ = ‖𝑃1(𝑡0)𝑥0‖ < 𝛿𝑧, where 𝛿𝑧 is sufficiently small number
which will be defined below. It is clear that the mentioned 𝛿 and 𝛿𝑧 are different
from those chosen in the proof of the statement (a), but for convenience we retain
the previous notation.

Since, by the condition of the statement (b), 𝐻1 = sup
𝑡∈[𝑡+,∞)

‖𝐻(𝑡)‖ < ∞ and the

function 𝑉 (𝑡, 𝑧) = (𝐻(𝑡)𝑧, 𝑧) satisfies the inequality |𝑉 (𝑡, 𝑧)| ≤ 𝐻1‖𝑧‖2 for any
𝑡 ∈ [𝑡+,∞) and 𝑧 ∈ R𝑛, then 𝑉 (𝑡, 𝑧) has an infinitely small upper limit (in R𝑛) (see
the definition in [13, p. 11, Def. 1.7]). Since, by virtue of the condition (4.2), the
inequality 𝑉 ′

(3.12)(𝑡, 𝑧) ≤ −𝑊 (𝑧), where the scalar function 𝑊 (𝑧) is continuous and
positive definite, is fulfilled instead of (4.6), then, as in the proof of Lyapunov?s
theorem on asymptotic stability [17], we obtain that the number 𝛿𝑧 = 𝛿𝑧(𝑡0) > 0
can be chosen such that lim

𝑡→∞
𝜁(𝑡) = 0. Then, taking into account (4.3), (3.22)

and 𝜂(𝑡, 0) ≡ 0, we obtain that lim
𝑡→∞

𝜂(𝑡, 𝜁(𝑡)) = 0. Consequently, lim
𝑡→∞

𝑥(𝑡) = 0,
and the statement (b) is proved.

The statements (c) and (d) can be proved similarly. �
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Theorem 4.2. Let 𝑓 ∈ 𝐶([𝑡+,∞) × R𝑛,R𝑛), 𝑓(𝑡, 0) ≡ 0, 𝜕
𝜕𝑥𝑓 ∈ 𝐶([𝑡+,∞) ×

R𝑛, 𝐿(R𝑛)), 𝐴,𝐵 ∈ 𝐶1([𝑡+,∞), 𝐿(R𝑛)) and the pencil 𝜆𝐴(𝑡) + 𝐵(𝑡) satisfy (2.1),
where 𝐶2 ∈ 𝐶1([𝑡+,∞), (0,∞)). Let the conditions 1), 2) of Theorem 3.1
or 1), 2) of Theorem 3.2 be fulfilled. Let there exist a positive definite self-
adjoint operator 𝐻(𝑡) ∈ 𝐿(R𝑛) and a function 𝑊 ∈ 𝐶(R𝑛, [0,∞)) such that
𝐻 ∈ 𝐶1([𝑡+,∞), 𝐿(R𝑛)), sup

𝑡∈[𝑡+,∞)
‖𝐻(𝑡)‖ < ∞, 𝑊 (𝑧) > 0 for 𝑧 ̸= 0, 𝑊 (0) = 0,

and the inequality (4.2) holds for all (𝑡, 𝑥) ∈ 𝐿𝑡+, 𝑃1(𝑡)𝑥 ̸= 0. Let (4.3) be fulfilled.
Then the solution 𝑥𝑜(𝑡) ≡ 0 of (1.1) is asymptotically stable in the large, i.e., the
equation (1.1) is completely stable.

Proof. Since the conditions of the theorem include the conditions of the state-
ment (b) of Theorem 4.1, then the zero solution of (1.1) is asymptotically stable.

As in the proof of Theorem 3.1 or 3.2, where the inequality 𝑣′ ≤ 0 holds instead
of (3.16), we obtain that for each consistent initial point (𝑡0, 𝑥0) there exists a
unique global solution 𝑥(𝑡) = 𝜁(𝑡) + 𝜂(𝑡, 𝜁(𝑡)) of the initial value problem (1.1),
(1.2), where 𝜁(𝑡) = 𝑃1(𝑡)𝑥(𝑡), 𝜂(𝑡, 𝜁(𝑡)) = 𝑃2(𝑡)𝑥(𝑡). We prove that lim

𝑡→∞
𝑥(𝑡) = 0.

Since in the present theorem the equation (1.1), where 𝑓(𝑡, 0) ≡ 0, is considered,
then, as in Theorem 4.1, the function 𝑢 = 𝜂(𝑡, 𝑧) is such that 𝜂(𝑡, 0) ≡ 0. Note
that for 𝑡 ≥ 𝑡0, 𝜁(𝑡) ̸= 0, the inequality 𝑉 ′

(3.12)(𝑡, 𝜁(𝑡)) ≤ −𝑊 (𝜁(𝑡)), where the
function 𝑊 (𝑧) is continuous and positive definite, holds (since (4.2) holds) and
𝑉 ′

(3.12)(𝑡, 0) ≡ 0. Since the operator 𝐻(𝑡) is positive definite and sup
𝑡∈[𝑡+,∞)

‖𝐻(𝑡)‖ <

∞, then the function 𝑉 (𝑡, 𝑧) = (𝐻(𝑡)𝑧, 𝑧) has an infinitely small upper limit in
R𝑛 (see the proof of the statement (b) of Theorem 4.1) and an infinitely large
lower limit in R𝑛 (see the definition in [13, p. 36, Def. 5.2]). Further, as in the
proof of the Barbashin-Krasovsky theorem on asymptotic stability in the large
[13, p. 36, Theorem 5.2], we obtain that lim

𝑡→∞
𝜁(𝑡) = 0. Then, as in the proof of

the statement (b) of Theorem 4.1, we obtain that lim
𝑡→∞

𝜂(𝑡, 𝜁(𝑡)) = 0, and therefore
lim
𝑡→∞

𝑥(𝑡) = 0. �

Theorem 4.3. Let 𝑓 ∈ 𝐶1([𝑡+,∞) × R𝑛,R𝑛), 𝑓(𝑡, 0) ≡ 0, 𝐴,𝐵 ∈
𝐶1([𝑡+,∞), 𝐿(R𝑛)) and the pencil 𝜆𝐴(𝑡) + 𝐵(𝑡) satisfy (2.1), where 𝐶2 ∈
𝐶1([𝑡+,∞), (0,∞)). Let the conditions 1), 2) of Theorem 3.1 or 1), 2) of Theo-
rem 3.2, where 𝐿𝑡+ is replaced by ̂︀𝐿𝑡+ , be fulfilled. Let there exist a positive definite
self-adjoint operator 𝐻(𝑡) ∈ 𝐿(R𝑛) and a function 𝑊 ∈ 𝐶(R𝑛, [0,∞)) such that
𝐻 ∈ 𝐶1([𝑡+,∞), 𝐿(R𝑛)), sup

𝑡∈[𝑡+,∞)
‖𝐻(𝑡)‖ < ∞, 𝑊 (𝑧) > 0 for 𝑧 ̸= 0, 𝑊 (0) = 0,

and the inequality (4.4) holds for all (𝑡, 𝑥) ∈ ̂︀𝐿𝑡+, 𝑃1(𝑡)𝑥 ̸= 0. Let (4.5) be fulfilled.
Then the solution 𝑥𝑜(𝑡) ≡ 0 of (1.3) is asymptotically stable in the large, i.e., the
equation (1.3) is completely stable.

Proof. The proof is similar to the proof of Theorem 4.2. �

5. Lyapunov instability of nonautonomous degenerate DEs

Remark 5.1. Since the Lagrange instability of a solution implies its Lyapunov
instability, then the theorems on the Lagrange instability of the equations (1.1),
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(1.3) can also be considered as the theorems on the Lyapunov instability (see
Definition 4.2).

Theorem 5.1. Let 𝑓 ∈ 𝐶([𝑡+,∞)×𝑈𝑅(0),R𝑛) (𝑈𝑅(0) = {𝑥 ∈ R𝑛 | ‖𝑥‖ < 𝑅}),
𝑓(𝑡, 0) ≡ 0, 𝜕

𝜕𝑥𝑓 ∈ 𝐶([𝑡+,∞)×𝑈𝑅(0), 𝐿(R𝑛)), 𝐴,𝐵 ∈ 𝐶1([𝑡+,∞), 𝐿(R𝑛)) and the
pencil 𝜆𝐴(𝑡) + 𝐵(𝑡) satisfy (2.1), where 𝐶2 ∈ 𝐶1([𝑡+,∞), (0,∞)). Let for each
𝑡* ∈ [𝑡+,∞) the operator (3.2), where 𝑥*𝑝1(𝑡*) = 0 and 𝑥*𝑝2(𝑡*) = 0, has the
inverse. Then the following statements are true:
(a) If there exist a positive definite self-adjoint operator 𝐻(𝑡) ∈ 𝐿(R𝑛), numbers

𝑟1, 𝑟2 > 0, 𝑟1 + 𝑟2 < 𝑅, and a function 𝑊 ∈ 𝐶({𝑧 ∈ R𝑛 | ‖𝑧‖ ≤ 𝑟1}, [0,∞))
such that 𝐻 ∈ 𝐶1([𝑡+,∞), 𝐿(R𝑛)), sup

𝑡∈[𝑡+,∞)
‖𝐻(𝑡)‖ < ∞, 𝑊 (𝑧) > 0 for 𝑧 ̸= 0,

𝑊 (0) = 0, and for all 𝑡 ∈ [𝑡+,∞), 𝑥 ∈ 𝐵𝑟1,𝑟2(0), 𝑃1(𝑡)𝑥 ̸= 0 (𝐵𝑟1,𝑟2(0) =
{𝑥 ∈ R𝑛 | ‖𝑃𝑖(𝑡)𝑥‖ ≤ 𝑟𝑖, 𝑖 = 1, 2}), the inequality

𝐽(𝑡, 𝑃1(𝑡)𝑥) ≥ 𝑊
(︀
𝑃1(𝑡)𝑥

)︀
, where 𝐽(𝑡, 𝑃1(𝑡)𝑥) is of the form (3.3), (5.1)

holds, then the solution 𝑥𝑜(𝑡) ≡ 0 of (1.1) is Lyapunov unstable.
(b) The statement (a), where the function 𝐽(𝑡, 𝑃1(𝑡)𝑥) in the inequality (5.1) is

replaced by 𝐾(𝑡, 𝑃1(𝑡)𝑥) (3.25), the equation (1.1) is replaced by (1.3), and it
is additionally assumed that 𝑓 ∈ 𝐶1([𝑡+,∞) × 𝑈𝑅(0),R𝑛), is true.

Proof. The proof of the statement (a).
Let 𝜀𝑢 > 0 be an arbitrary number satisfying 𝜀𝑢 ≤ 𝑟2. As in the proof of

the statement (a) of Theorem 4.1 (where 𝜀𝑧 = 𝑟1) we construct the function
𝜂(𝑡, 𝑧) ∈ 𝐶([𝑡+,∞) × 𝑈 𝑧

𝛿2
(0), 𝑈𝑢

𝜀𝑢(0)), where 0 < 𝛿2 ≤ 𝑟1, such that 𝑢 = 𝜂(𝑡, 𝑧) is
continuously differentiable in 𝑧, belongs to 𝑋2(𝑡) for each (𝑡, 𝑧) ∈ [𝑡+,∞)×𝑈 𝑧

𝛿2
(0),

satisfies the identity 𝜂(𝑡, 0) ≡ 0 and is a unique solution of the equation (3.10).
Here 𝑟1, 𝑟2 are the numbers defined in the statement (a).

Substituting the obtained function 𝑢 = 𝜂(𝑡, 𝑧) in (3.4) and denoting ̃︀Π(𝑡, 𝑧) =
Π(𝑡, 𝑧, 𝜂(𝑡, 𝑧)), we get the equation (3.12). Introduce the positive definite function
(3.13), where 𝐻(𝑡) is the operator defined in the condition (a). By virtue of the
condition sup

𝑡∈[𝑡+,∞)
‖𝐻(𝑡)‖ < ∞, the function 𝑉 (𝑡, 𝑧) has an infinitely small upper

limit (in R𝑛) (see the proof of the statement (b) of Theorem 4.1). By virtue
of (5.1), for all 𝑡 ∈ [𝑡+,∞) and all 𝑧 ∈ 𝑋1(𝑡) such that 0 < ‖𝑧‖ < 𝛿2 the
derivative of 𝑉 along the trajectories of the system (3.12) satisfies the inequality
𝑉 ′

(3.12)(𝑡, 𝑧) ≥ 𝑊 (𝑧), where the function 𝑊 (𝑧) is continuous and positive definite.
Thus, 𝑉 (𝑡, 𝑧) and 𝑉 ′

(3.12)(𝑡, 𝑧) are positive for all 𝑡 ∈ [𝑡+,∞) and all 𝑧 ∈ 𝑋1(𝑡)

such that 0 < ‖𝑧‖ < 𝛿2.
As in the proof of the statement (a) of Theorem 4.1 we obtain that for any

consistent initial point (𝑡0, 𝑥0) satisfying the condition ‖𝑥0‖ < ∆, where ∆ = 𝛿2 +
𝜀𝑢 > 0 is chosen so that ‖𝑃1(𝑡0)𝑥0‖ < 𝛿2 and ‖𝑃2(𝑡0)𝑥0‖ < 𝜀𝑢, there exists a
unique local solution 𝑧 = 𝜁(𝑡), 𝑢 = 𝜂(𝑡, 𝜁(𝑡)) of the system (3.6), (3.7) satisfying
the initial conditions 𝜁(𝑡0) = 𝑧0 = 𝑃1(𝑡0)𝑥0, 𝜂(𝑡0, 𝜁(𝑡0)) = 𝑢0 = 𝑃2(𝑡0)𝑥0. Then
by Lemma 3.1 the function 𝑥(𝑡) = 𝜁(𝑡) + 𝜂(𝑡, 𝜁(𝑡)) is a unique local solution of
(1.1) satisfying the initial condition (1.2), where 𝑥0 = 𝑧0 + 𝑢0. Take an initial
value 𝑡0 ∈ [𝑡+,∞), any consistent initial value 𝑥0 ((𝑡0, 𝑥0) ∈ 𝐿𝑡+) satisfying the
condition 0< ‖𝑥0‖<𝛿 (0 < 𝛿 < ∆) and any (arbitrarily small) numbers 𝛿𝑧 > 0,
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𝛿𝑢 > 0 such that 0 < ‖𝑃1(𝑡0)𝑥0‖ < 𝛿𝑧 < 𝛿2, ‖𝑃2(𝑡0)𝑥0‖ < 𝛿𝑢 < 𝜀𝑢 and 𝛿 = 𝛿𝑧 +𝛿𝑢.
Taking into account the properties of the function 𝑉 (𝑡, 𝑧) and its derivative along
the trajectories of the system (3.12), as in the proof of Lyapunov?s theorem
on instability [17], we obtain that for the solution 𝑧 = 𝜁(𝑡) of (3.12) satisfying
the initial condition 𝜁(𝑡0) = 𝑧0 = 𝑃1(𝑡0)𝑥0 and for some time moment 𝑡1 > 𝑡0
the inequalities 0 < ‖𝑧0‖ < 𝛿𝑧 and ‖𝜁(𝑡1)‖ > 𝛿2 hold. Consequently, for the
corresponding solution 𝑥(𝑡) = 𝜁(𝑡) + 𝜂(𝑡, 𝜁(𝑡)) with the initial point (𝑡0, 𝑥0) the
inequalities ‖𝑥0‖ < 𝛿 and ‖𝑥(𝑡1)‖ > 𝜀 = 𝛿2/‖𝑃1(𝑡1)‖ > 0 hold (since ‖𝜁(𝑡1)‖ =
‖𝑃1(𝑡1)𝑥(𝑡1)‖). Since 𝛿 = 𝛿𝑧+𝛿𝑢 > 0 (𝛿 < ∆) is arbitrary and 𝜀 = 𝛿2/‖𝑃1(𝑡1)‖ > 0
is fixed, then the statement (a) is proved.

The statement (b) can be proved similarly. �

6. Application of the obtained theorems

It is known that the dynamics of electrical circuits is modeled using systems
of differential and algebraic equations, which in a vector form have the form of
degenerate DEs or differential-algebraic equations. Generally, a degenerate DE
describing the dynamics of an electrical circuit cannot be reduced to a purely dif-
ferential equation, i.e., to an explicit ODE. In this section, we consider a simple
electrical circuit with nonlinear and time-varying elements in order to demonstrate
the application of the obtained theorems (on global solvability) and the verifica-
tion of their conditions as well as to verify the adequacy of obtained restrictions
(this is easily done by reducing the degenerate DE describing the circuit model to
an explicit ODE). Namely, consider the electrical circuit with a time-varying in-
ductance 𝐿(𝑡), time-varying linear resistances 𝑟(𝑡), 𝑟𝐿(𝑡) and nonlinear resistances
𝜙𝐿(𝐼𝐿), 𝜙(𝐼𝜙), whose dynamics is described by the system of equations

𝑑

𝑑𝑡
[𝐿(𝑡)𝑥1(𝑡)] + 𝑟𝐿(𝑡)𝑥1(𝑡) − 𝑥2(𝑡) = −𝜙𝐿(𝑥1(𝑡)), (6.1)

𝑥1(𝑡) + 𝑥3(𝑡) = 𝐼(𝑡), (6.2)
𝑥2(𝑡) − 𝑟(𝑡)𝑥3(𝑡) = 𝑈(𝑡) + 𝜙(𝑥3(𝑡)), (6.3)

where 𝐼(𝑡) is a given (input) current, 𝑈(𝑡) is a given (input) voltage, 𝑥1(𝑡) = 𝐼𝐿(𝑡)
and 𝑥3(𝑡) = 𝐼𝜙(𝑡) are unknown currents, and 𝑥2(𝑡) = 𝑈𝐿(𝑡) is an unknown voltage.
The remaining currents and voltages in the circuit are uniquely expressed in terms
of 𝐼(𝑡), 𝐼𝐿(𝑡), 𝐼𝜙(𝑡), 𝑈(𝑡) and 𝑈𝐿(𝑡).

In what follows, for brevity we omit the dependence on 𝑡 in the notation of the
variables 𝑥𝑖(𝑡), 𝑖 = 1, 2, 3.

The vector form of the system (6.1)–(6.3) is the nonautonomous degenerate
DE (1.1), where 𝑥 = (𝑥1, 𝑥2, 𝑥3)

𝑇 = (𝐼𝐿, 𝑈𝐿, 𝐼𝜙)𝑇 ∈ R3,

𝐴(𝑡)=

⎛⎝𝐿(𝑡) 0 0
0 0 0
0 0 0

⎞⎠, 𝐵(𝑡)=

⎛⎝𝑟𝐿(𝑡) −1 0
1 0 1
0 1 −𝑟(𝑡)

⎞⎠, 𝑓(𝑡, 𝑥)=

⎛⎝ −𝜙𝐿(𝑥1)
𝐼(𝑡)

𝑈(𝑡)+𝜙(𝑥3)

⎞⎠. (6.4)

It is assumed that 𝐴,𝐵 ∈ 𝐶1([𝑡+,∞), 𝐿(R3)), 𝑓 ∈ 𝐶([𝑡+,∞) × R3,R3)
and 𝜕

𝜕𝑥𝑓 ∈ 𝐶([𝑡+,∞) × R3, 𝐿(R3)), i.e., 𝐿, 𝑟, 𝑟𝐿 ∈ 𝐶1([𝑡+,∞),R),
𝐼, 𝑈 ∈ 𝐶([𝑡+,∞),R) and 𝜙, 𝜙𝐿 ∈ 𝐶1(R).



268 MARIA S. FILIPKOVSKA (FILIPKOVSKAYA)

Let 𝐿(𝑡) ̸= 0 for all 𝑡 ∈ [𝑡+,∞), and 𝜆𝐿(𝑡) + 𝑟𝐿(𝑡) + 𝑟(𝑡) ̸= 0 for sufficiently
large |𝜆| such that |𝜆| ≥ 1

|𝐿(𝑡)| and all 𝑡 ∈ [𝑡+,∞). Then there exists the resolvent
of the pencil 𝜆𝐴(𝑡) + 𝐵(𝑡):

𝑅(𝜆, 𝑡) =
1

𝜆𝐿(𝑡) + 𝑟𝐿(𝑡) + 𝑟(𝑡)

⎛⎝ 1 𝑟(𝑡) 1
−𝑟(𝑡) [𝜆𝐿(𝑡) + 𝑟𝐿(𝑡)]𝑟(𝑡) 𝜆𝐿(𝑡) + 𝑟𝐿(𝑡)
−1 𝜆𝐿(𝑡) + 𝑟𝐿(𝑡) −1

⎞⎠ ,

and it satisfies the estimate (2.1), where 𝐶2(𝑡) = 1
|𝐿(𝑡)| ∈ 𝐶1([𝑡+,∞), (0,∞)) and

𝐿(𝑡) is either positive or negative for all 𝑡 ∈ [𝑡+,∞). It is natural to take 𝐿(𝑡) > 0
(𝑡 ∈ [𝑡+,∞)) from the point of view of physics.

The projection matrices 𝑃𝑖(𝑡), 𝑄𝑖(𝑡) (see (2.2)) have the form

𝑃1(𝑡) =

⎛⎝ 1 0 0
−𝑟(𝑡) 0 0
−1 0 0

⎞⎠, 𝑃2(𝑡) =

⎛⎝ 0 0 0
𝑟(𝑡) 1 0

1 0 1

⎞⎠, 𝑄1(𝑡) =

⎛⎝1 𝑟(𝑡) 1
0 0 0
0 0 0

⎞⎠,

𝑄2(𝑡) =

⎛⎝0 −𝑟(𝑡) −1
0 1 0
0 0 1

⎞⎠.

The vector 𝑥 has the projections 𝑥𝑝1(𝑡) = 𝑃1(𝑡)𝑥 = (𝑥1,−𝑟(𝑡)𝑥1,−𝑥1)
𝑇 ,

𝑥𝑝2(𝑡) = 𝑃2(𝑡)𝑥 = (0, 𝑟(𝑡)𝑥1 + 𝑥2, 𝑥1 + 𝑥3)
𝑇 . Denote 𝑎 = 𝑥1, 𝑏(𝑡) = 𝑟(𝑡)𝑥1 + 𝑥2,

𝑐 = 𝑥1 + 𝑥3, then 𝑥𝑝1(𝑡) = 𝑎(1,−𝑟(𝑡),−1)𝑇 , 𝑥𝑝2(𝑡) = (0, 𝑏(𝑡), 𝑐)𝑇 .
The consistency condition (𝑡, 𝑥) ∈ 𝐿𝑡+ is satisfied if (𝑡, 𝑥) satisfies the algebraic

equations (6.2), (6.3). Using the notation introduced above, the system (6.2),
(6.3) can be rewritten as

𝑐 = 𝐼(𝑡), (6.5)
𝑏(𝑡) = 𝑈(𝑡) + 𝑟(𝑡)𝐼(𝑡) + 𝜙(𝐼(𝑡) − 𝑎). (6.6)

Obviously, for each 𝑡 ∈ [𝑡+,∞) and each 𝑥1 ∈ R there exist unique 𝑥2 ∈ R and
𝑥3 ∈ R such that the equalities (6.2), (6.3) hold, or for each 𝑡 ∈ [𝑡+,∞) and each
𝑎 ∈ R there exist unique 𝑐 ∈ R and 𝑏(𝑡) ∈ R such that the equalities (6.5), (6.6)
hold. Consequently, the condition 1) of Theorem 3.1 is satisfied. It is clear that
the condition 1) of Theorem 3.2 is also satisfied.

Take any fixed 𝑡*, 𝑥*𝑝1(𝑡*) = 𝑥*1(1,−𝑟(𝑡*),−1)𝑇 = 𝑎*(1,−𝑟(𝑡*),−1)𝑇 , 𝑥*𝑝2(𝑡*) =

(0, 𝑟(𝑡*)𝑥
*
1 + 𝑥*2, 𝑥

*
1 + 𝑥*3)

𝑇 = (0, 𝑏(𝑡*), 𝑐*)
𝑇 such that (𝑡*, 𝑥

*
𝑝1(𝑡*) + 𝑥*𝑝2(𝑡*)) ∈ 𝐿𝑡+

(i.e., (𝑡*, 𝑥
*
𝑝1(𝑡*)+𝑥*𝑝2(𝑡*)) satisfies (6.2), (6.3) or (6.5), (6.6)). Consider the opera-

tor ̂︀Φ𝑡*,𝑥*
𝑝1

(𝑡*),𝑥*
𝑝2

(𝑡*) =
[︀

𝜕
𝜕𝑥

[︀
𝑄2(𝑡*)𝑓(𝑡*, 𝑥

*
𝑝1(𝑡*) + 𝑥*𝑝2(𝑡*))

]︀
−𝐵(𝑡*)

]︀
𝑃2(𝑡*) : R3 →

𝑌2(𝑡*) and the operator Φ𝑡*,𝑥*
𝑝1

(𝑡*),𝑥*
𝑝2

(𝑡*) = ̂︀Φ⃒⃒⃒
𝑋2(𝑡*)

: 𝑋2(𝑡*) → 𝑌2(𝑡*) defined in

(3.2). With respect to the standard basis in R3, the matrix

̂︀Φ𝑡*,𝑥*
𝑝1

(𝑡*),𝑥*
𝑝2

(𝑡*) =

⎛⎝𝑟(𝑡*) − 𝜙′(𝑥*3) 1 −𝜙′(𝑥*3)
−1 0 −1

𝜙′(𝑥*3) −1 𝑟(𝑡*) + 𝜙′(𝑥*3)

⎞⎠ =

=

⎛⎝𝑟(𝑡*) − 𝜙′(𝐼(𝑡*) − 𝑎*) 1 −𝜙′(𝐼(𝑡*) − 𝑎*)
−1 0 −1

𝜙′(𝐼(𝑡*) − 𝑎*) −1 𝑟(𝑡*) + 𝜙′(𝐼(𝑡*) − 𝑎*)

⎞⎠ = ̃︀Φ𝑡*,𝑎* (6.7)
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correspond to the operator ̂︀Φ𝑡*,𝑥*
𝑝1

(𝑡*),𝑥*
𝑝2

(𝑡*). It is easy to verify that from̂︀Φ𝑡*,𝑥*
𝑝1

(𝑡*),𝑥*
𝑝2

(𝑡*) 𝑥𝑝2(𝑡) = 0 it follows that 𝑥𝑝2(𝑡) = 0 for any 𝑡, and consequently
there exists an inverse operator Φ−1

𝑡*,𝑥*
𝑝1

(𝑡*),𝑥*
𝑝2

(𝑡*)
∈ 𝐿(𝑌2(𝑡*), 𝑋2(𝑡*)). Thus, the

condition 2) of Theorem 3.1 is fulfilled.
Take any fixed 𝑡* ∈ [𝑡+,∞), 𝑥*𝑝1(𝑡*) ∈ 𝑋1(𝑡*), 𝑥𝑖𝑝2(𝑡*) ∈ 𝑋2(𝑡*) such that

(𝑡*, 𝑥
*
𝑝1(𝑡*) + 𝑥𝑖𝑝2(𝑡*)) ∈ 𝐿𝑡+ , 𝑖 = 1, 2, i.e., any fixed 𝑡*, 𝑎*, 𝑐𝑖*, 𝑏𝑖(𝑡*), 𝑖 = 1, 2,

such that the equalities (6.5), (6.6) hold. Since it follows from (6.5) that
𝑐1* = 𝑐2* = 𝐼(𝑡*), then 𝑐 = 𝐼(𝑡*) for any 𝑐 ∈ [𝑐1*, 𝑐

2
*]. Take the projectors

Θ𝑘(𝑡*) ∈ 𝐿(R3, 𝑌2(𝑡*)) (𝑘 = 1, 2, Θ𝑖(𝑡*) Θ𝑗(𝑡*) = 𝛿𝑖𝑗 Θ𝑖(𝑡*),
2∑︀

𝑘=1

Θ𝑘(𝑡*) = 𝑄2(𝑡*))

to which the matrices Θ1(𝑡*) =

⎛⎝0 −𝑟(𝑡) 0
0 1 0
0 0 0

⎞⎠, Θ2(𝑡*) =

⎛⎝0 0 −1
0 0 0
0 0 1

⎞⎠ corre-

spond with respect to the standard basis in R3. Then the system of the projectors{︀
Θ̃𝑘(𝑡*) = Θ𝑘(𝑡*)

⃒⃒
𝑌2(𝑡*)

}︀2

𝑘=1
is an additive resolution of the identity 𝑄2(𝑡*)|𝑌2(𝑡*)

in 𝑌2(𝑡*). Consider the operator function ̂︀Φ𝑡*,𝑥*
𝑝1

(𝑡*) : 𝑋2(𝑡*) → 𝐿(R3, 𝑌2(𝑡*)),̂︀Φ𝑡*,𝑥*
𝑝1

(𝑡*)(𝑥𝑝2(𝑡*)) =
[︀

𝜕
𝜕𝑥

[︀
𝑄2(𝑡*)𝑓(𝑡*, 𝑥

*
𝑝1(𝑡*) + 𝑥𝑝2(𝑡*))

]︀
−𝐵(𝑡*)

]︀
𝑃2(𝑡*), and the

operator function Φ𝑡*,𝑥*
𝑝1

(𝑡*) = ̂︀Φ𝑡*,𝑥*
𝑝1

(𝑡*)

⃒⃒⃒
𝑋2(𝑡*)

: 𝑋2(𝑡*) → 𝐿(𝑋2(𝑡*), 𝑌2(𝑡*))

defined in (3.17). With respect to the standard basis in R3, the ma-
trix ̂︀Φ𝑡*,𝑥*

𝑝1
(𝑡*)(𝑥𝑝2(𝑡*)) = ̃︀Φ𝑡*,𝑎* , where ̃︀Φ𝑡*,𝑎* is introduced in (6.7), cor-

respond to the operator function ̂︀Φ𝑡*,𝑥*
𝑝1

(𝑡*)(𝑥𝑝2(𝑡*)). Consider the operator

Λ = ̂︀Λ⃒⃒⃒
𝑋2(𝑡*)

∈ 𝐿(𝑋2(𝑡*), 𝑌2(𝑡*)), where ̂︀Λ = Θ1(𝑡*)̂︀Φ𝑡*,𝑥*
𝑝1

(𝑡*)(𝑥𝑝2,1(𝑡*)) +

Θ2(𝑡*)̂︀Φ𝑡*,𝑥*
𝑝1

(𝑡*)(𝑥𝑝2,2(𝑡*)) = Θ1(𝑡*)̃︀Φ𝑡*,𝑎* + Θ2(𝑡*)̃︀Φ𝑡*,𝑎* = ̃︀Φ𝑡*,𝑎* for any
𝑥𝑝2,𝑘(𝑡*) ∈ [𝑥1𝑝2(𝑡*), 𝑥

2
𝑝2(𝑡*)], 𝑘 = 1, 2. Since the operator Λ is invertible, then

the condition 2) of Theorem 3.2 is also fulfilled.

Choose 𝐻(𝑡) =

⎛⎝𝐿(𝑡) 0 0
0 𝐿(𝑡) 0
0 0 𝐿(𝑡)

⎞⎠, 𝑡 ∈ [𝑡+,∞). Let 𝐿(𝑡) ≥ 𝐿0 = 𝑐𝑜𝑛𝑠𝑡 > 0

for all 𝑡 ∈ [𝑡+,∞). Then 𝐻(𝑡) ∈ 𝐿(R3) is a positive definite operator. Let there
exist a number 𝑅 > 0 such that

[𝜙𝐿(𝑥1)−𝜙(𝐼(𝑡)− 𝑥1)− 𝑟(𝑡)𝐼(𝑡)−𝑈(𝑡)]𝑥1 + [𝐿′(𝑡)/2 + 𝑟𝐿(𝑡) + 𝑟(𝑡)]𝑥21 ≥ 0 (6.8)

for all 𝑡 ∈ [𝑡+,∞), ‖𝑥𝑝1(𝑡)‖ = |𝑥1|‖(1,−𝑟(𝑡),−1)𝑇 ‖ ≥ 𝑅. Then the condition 3)
from Theorems 3.1, 3.2, where 𝑘(𝑡) = |𝑟′(𝑡)/𝑟(𝑡)| and 𝑈(𝑣) = 𝑣, is fulfilled.

Thus, by Theorem 3.1 as well as by Theorem 3.2, for each initial point
(𝑡0, 𝑥

0) ∈ [𝑡+,∞)×R3, where 𝑥0 = (𝑥01, 𝑥
0
2, 𝑥

0
3)

𝑇 , which satisfies (6.2), (6.3), where
𝑡 = 𝑡0, 𝑥𝑖 = 𝑥0𝑖 , 𝑖 = 1, 2, 3, there exists a unique global solution 𝑥(𝑡) of the equa-
tion (1.1) satisfying the initial condition 𝑥(𝑡0) = 𝑥0 if 𝐿, 𝑟, 𝑟𝐿 ∈ 𝐶1([𝑡+,∞),R),
𝐼, 𝑈 ∈ 𝐶([𝑡+,∞),R), 𝜙, 𝜙𝐿 ∈ 𝐶1(R) and the following requirements are fulfilled:
𝐿(𝑡) ≥ 𝐿0 > 0 for all 𝑡 ∈ [𝑡+,∞); 𝜆𝐿(𝑡) + 𝑟𝐿(𝑡) + 𝑟(𝑡) ̸= 0 for sufficiently large |𝜆|
such that |𝜆| ≥ 𝐿−1

0 and all 𝑡 ∈ [𝑡+,∞); there exists a number 𝑅 > 0 such that
(6.8) holds for all 𝑡 ∈ [𝑡+,∞), ‖𝑥𝑝1(𝑡)‖ = |𝑥1|‖(1,−𝑟(𝑡),−1)𝑇 ‖ ≥ 𝑅.
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