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CONTROLLABILITY OF FRACTIONAL STOCHASTIC DELAY

DYNAMICAL SYSTEMS

ARZU AHMADOVA, ISMAIL T. HUSEYNOV, AND NAZIM I. MAHMUDOV

Abstract. In this paper, we consider Caputo type fractional stochas-
tic time-delay system with permutable matrices. We derive stochastic
analogue of variation of constants formula via a newly defined delayed
Mittag-Leffler type matrix function. Thus, we investigate new results
on existence and uniqueness of mild solutions with the help of weighted
maximum norm to fractional stochastic time-delay differential equations
whose coefficients satisfy standard Lipschitz conditions. The main points
in the proof are to apply Ito’s isometry and martingale representation
theorem, and to point out the coincidence between the notion of the
integral equation and the mild solution. Finally, we study complete
controllability results for linear and nonlinear fractional stochastic delay
dynamical systems with Wiener noise.

1. Introduction

Over the years, many results have been investigated on the theory and appli-
cations of stochastic differential equations [27, 10], [28]-[15]. In particular, Frac-
tional stochastic differential equations are a generalization of differential
equations by the use of fractional and stochastic calculus. Recently, fractional
stochastic differential equations are intensively applied to model mathematical
problems in control theory, finance, dynamics of complex systems in engineering,
infectious diseases, and other areas [24, 11]. Most of the results on fractional sto-
chastic dynamical systems are limited to prove existence and uniqueness of mild
solutions using fixed point theorem [3, 21, 1]. Simultaneously, fractional differen-
tial equations has become famous in the last three decades due to its capability
to model mathematical tools efficiently [12, 6, 32]. Thus, fractional-order models
lead to investigation of more accurate solutions in comparison with integer-order
ones. It turns out that the fractional derivatives provide the heritable properties
of different physical processes more precisely. Especially, Bagley-Torvik equations
involving multiple fractional-orders are often applied to the vibration theory and
electric circuit theory to investigate more accurate results [23].

Fractional delay differential equations are differential equations cover-
ing fractional derivatives and time-delays. Delay differential equations with
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fractional-order have achieved a great deal of attention due to their applications
in science, engineering and physics using proper numerical methods and graphical
tools. In recent decades, the theory of fractional delay differential equations is
also well-established by means of analytical methods. Firstly,under the assump-
tions that A and B are permutable matrices, Khusainov et al. [13] provided a
analytical representation of a solution to a linear homogeneous matrix differential
equations with a constant delay in terms of infinite series. Notice that fractional
analogue of the same problem was considered by Li et al. [16] in particular case
of A = Θ. In another paper, Li et al. [18] introduced a concept of delayed
Mittag-Leffler type matrix function via a two-parameter Mittag-Leffler function
and presented finite-time stability results to nonlinear fractional delay differential
equations in the same special case. Mahmudov [20] proposed a newly defined ex-
plicit formula to linear homogeneous and nonhomogeneous fractional time-delay
systems via two-parameter Mittag-Leffler perturbation in the general case (i.e., A
and B are arbitrary constant matrices). Huseynov and Mahmudov [9] provided a
new representation of a solution through a delayed analogue of three-parameter
Mittag-Leffler functions under the assumptions in which A and B are permutable
matrices. Deriving exact solution representation of fractional delay dynamical
system is a way of applying Laplace transform method and variation of constants
formula to study stability, controllability, reachability and stabilizability due to
their applications in control theory, chaos and bioengineering. Numerical meth-
ods for fractional time-delay systems are more intensively studied than analytical
methods. Margado et al. [25] analyzed numerical schemes for factional-order
delay differential equations. Bhalekar et al. used a predictor-corrector scheme
for solving nonlinear delay differential equations of fractional-order. One of nu-
merical methods for fractional delay differential equations was provided by Wang
[35].

The concept of controllability is a qualitative property of dynamical systems
in control theory and an essential structure of applications-oriented mathematics.
In above all, control theory characterize a key role in both deterministic and
stochastic control systems. In the last few years, controllability problems for
different types of linear and nonlinear differential equations in finite and infinite
dimensional spaces have been established in many publications [36, 26, 31, 30].
Sakthivel et al. [33] described a new set of sufficient conditions for approximate
controllability of nonlinear fractional stochastic evolution equation in Hilbert
spaces using some techniques and methods adopted from deterministic control
problems. Rajendran et al.[31] obtained the sufficient conditions for complete
controllability of stochastic fractional neutral systems with Wiener and Lèvy
noise. Meanwhile, Rajendran et al.[30] studied the controllability of linear and
nonlinear stochastic fractional systems with bounded operator having distributed
delay in control. For linear case, necessary and sufficient conditions are obtained.
Moreover, nonlinear system corresponding to linear system was shown under the
sufficient conditions by using Banach contraction mapping principle in [30]. For
more recent research collaborations, relative controllability of systems with pure
delay, control of oscillating systems with a single delay and controllability of
nonlinear fractional delay dynamical systems with prescribed controls one can
refer reader to study [19, 14, 7, 8, 17].
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Very recently, the authors in [1] established new results on the existence and
uniqueness of mild solutions to stochastic neutral differential equations involving
Caputo fractional time derivative operator and derived a stochastic version of
variation of constants formula for Caputo fractional-order differential systems.
On the other hand, a new representation of a solution to linear homogeneous
fractional differential equations with a constant delay using the Laplace integral
transform and variation of constants formula via a newly defined delayed Mittag-
Leffler type matrix function was introduced in terms of a three-parameter Mittag-
Leffler function in [9]. Furthermore, our current work is motivated by above on-
going studies conducted in [1] and [9], in which certain important calculations
involving together delay and stochastic parts are discovered. Although, we can
not apply Laplace transform for stochastic part of fractional delay differential
equations system, a variation of constants formula lead us to define solution of
fractional stochastic delay differential equations by following some results from
[9] and to apply existence and uniqueness results to a class of fractional stochastic
delay differential equations through Banach contraction mapping principle under
similar concepts in [1]. Therefore, the main point in this paper is to find explicit
solution representation of fractional stochastic delay differential equation by fol-
lowing the work of [9] to study complete controllability problems for linear and
nonlinear cases.

The paper includes significant updates in the theory of stochastic fractional
delay differential equations and is organized as follows. Section 2 is a prepara-
tory section where we recall main results from fractional calculus and prove the
powerful lemma which is used throughout the main results. Section 3 is devoted
to present an explicit solutions in terms of three-parameter Mittag-Leffler func-
tions for homogeneous and nonhomogeneous linear fractional delay dynamical
systems involving Caputo fractional derivative by using the method of variation
of constants. In Section 4, we prove the existence and uniqueness of the mild
solution to (4.1) with Lipschitz conditions under the Banach contraction map-
ping principle through the appropriate weighted maximum norm. To do so, we
derive a stochastic analogue of fractional delay differential equations via newly
defined delayed Mittag-Leffler type matrix function in Section 3, and we show
the coincidence between integral equation and mild solution of (4.1). Section 5
is devoted to investigate complete controllability results for linear and nonlinear
fractional stochastic delay differential equations system with Wiener noise. In
Section 6, we provide an outline for our main contributions and show some open
problems in the same vein of this research work.

2. Preliminaries

We assume a filtered probability space (Ω,F,FT ,P) for T > 0, with some
filtration FT := {Ft}t∈[0,T ] satisfying usual conditions, namely it is increasing and

right-continuous while F0 consists of all P-null sets. H2([0, T ],Rn) denote the
space of all FT -measurable processes ξ satisfying

‖ξ‖2H2 := sup
t∈[0,T ]

E‖ξ(t)‖2 <∞,
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where E denotes expectation with respect to probability measure P.
Let Rn be endowed with the standard Euclidean norm and Uad := LF

2([0, T ],Rn)
be a control set.
Now we recall an essential structure of fractional calculus (for the more salient
details on the matter, see [12]-[32].

Definition 2.1. [6] The Riemann-Liouville integral operator of fractional order
0 < α < 1 is defined by

(Iα0+f)(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s) ds, for t > 0, (2.1)

where Γ : ( 0,∞) → R is the well-known Euler’s Gamma function defined as

Γ(α) :=

∫ ∞
0

τα−1 exp(−τ)dτ,

Definition 2.2. [29] The Beta function is defined by the definite integral:

B(a, b) =

∫ 1

0
τa−1(1− τ)b−1dτ, for a > 0, b > 0. (2.2)

Also, the relation between Gamma and Beta function are as follows:

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
, for a > 0, b > 0.

Definition 2.3. [6] The Riemann-Liouville fractional derivative of order 0 < α <
1 for a function f : [0,∞)→ Rn is defined by

(Dα
0+f)(t) =

1

Γ(1− α)

d

dt

∫ t

0
(t− s)−αf(s) ds, for t > 0. (2.3)

Definition 2.4. [12] The Caputo fractional derivative of order 0 < α < 1 for a
function f : [0,∞)→ Rn is defined by

(CDα
0+f)(t) =

1

Γ(1− α)

∫ t

0
(t− s)−αf ′(s) ds, for t > 0, (2.4)

in particular,
(Iα0+

CDα
0+)f(t) = f(t)− f(0). (2.5)

The classical matrix Mittag-Leffler function, defined as :

Eα(Atα) =
∞∑
k=0

Ak
tkα

Γ(kα+ 1)
, α ∈ R+, t ∈ R, A ∈ Rn×n, (2.6)

has been extended and generalized in different ways, with functions denoted
by ”two-parameter” Eα,β(Atα) and ”three-parameter” Eδα,β(Atα) matrix Mittag-
Leffler functions.

Eα,β(Atα) =

∞∑
k=0

Ak
tkα

Γ(kα+ β)
, α, β ∈ R+, t ∈ R, A ∈ Rn×n, (2.7)

Eδα,β(Atα) =

∞∑
k=0

Ak
(δ)k

Γ(kα+ β)

tkα

k!
, α, β, δ ∈ R+, t ∈ R, A ∈ Rn×n, (2.8)
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where (δ)k is the Pochhammer symbol [29].
The following lemma is powerful tool to obtain certain estimations in the main

results of the theory.

Lemma 2.1. For all γ, t > 0, we have

γ

Γ(2α− 1)

∫ t

0
(t− s)2α−2E2α−1(γs2α−1)ds ≤ E2α−1(γt2α−1).

Proof.

γ

Γ(2α− 1)

∫ t

0
(t− s)2α−2E2α−1(γs2α−1)ds

=
γ

Γ(2α− 1)

∞∑
i=0

γi

Γ(i(2α− 1) + 1)

∫ t

0
(t− s)2α−2si(2α−1)ds

=

∞∑
i=0

γi+1t(i+1)(2α−1)

Γ(2α− 1)Γ(i(2α− 1) + 1)
B(2α− 1, i(2α− 1) + 1)

=

∞∑
i=0

γi+1t(i+1)(2α−1)

Γ((i+ 1)(2α− 1) + 1)
=

∞∑
i=1

γiti(2α−1)

Γ(i(2α− 1) + 1)

= E2α−1(γt2α−1)− 1 ≤ E2α−1(γt2α−1),

where B is a Beta function. �

3. Deterministic analogue of a fractional stochastic time-delay
system

We consider linear homogeneous fractional time-delay system with a single
constant delay:

{
(CDα

0+x)(t) = Ax(t) +Bx(t− h), x(t) ∈ Rn, t ∈ (0, T ], h > 0,

x(t) = φ(t), −h ≤ t ≤ 0.
(3.1)

where A,B ∈ Rn×n are permutable matrices, i.e., AB = BA and φ : [−h, 0]→ Rn
is an arbitrary differentiable vector function, i.e.,φ ∈ C1([−h, 0],Rn), and T = nh
for a fixed natural number n.

The following definitions and theorems, which are provided in [9], are im-
portant results to derive stochastic version of variation of constants formula for
fractional delay differential equations in the next section.
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Definition 3.1. Delayed classical Mittag-Leffler type matrix function of three

parameters EA,Bh,α : R→ Rn×n is defined by

EA,Bh,α (t) =



Θ, −∞ < t < −h,
I, −h ≤ t ≤ 0,

I + tαE1
α,α+1(Atα)(A+B) + (t− h)2αBE2

α,2α+1(A(t− h)α)(A+B)

+ · · ·+ (t− (n− 1)h)nαBn−1Enα,nα+1(A(t− (n− 1)h)α)(A+B),

(n− 1)h < t ≤ nh,
(3.2)

where Θ ∈ Rn×n and I ∈ Rn×n denote the zero and identity matrices, respectively.

We denote the matrix function by X(t) that is a solution of the matrix differ-
ential equation:

(CDα
0+X)(t) = AX(t) +BX(t− h), t > 0, (3.3)

with the unit initial conditions:

X(t) =

{
I, −h ≤ t ≤ 0,

Θ, t < −h.
(3.4)

Theorem 3.1. The solution of equation (3.3) satisfying initial conditions (3.4)
has the form:

X(t) = I +

n−1∑
k=0

ϕk(t), if (n− 1)h < t ≤ nh,

ϕk(t) = (t− kh)(k+1)α
∞∑
i=0

(
k + i
i

)
Ai

(t− kh)iα

Γ((k + i+ 1)α+ 1)
Bk(A+B)

= (t− kh)(k+1)αEk+1
α,(k+1)α+1(A(t− kh)α)Bk(A+B), t > kh,

where (
k + i
i

)
=

(k + 1)i
i!

.

EA,Bh,α (t) which is stated in the following theorem coincides with X(t) that is

introduced in Theorem 3.1.

Theorem 3.2. For a delayed Mittag-Leffler type matrix function of three-parameters

EA,Bh,α : R→ Rn×n, one has

(CDα
0+E

A,B
h,α )(t) = AEA,Bh,α (t) +BEA,Bh,α (t− h), (3.5)

i.e., EA,Bh,α is a solution of matrix fractional differential equation:

(CDα
0+X)(t) = AX(t) +BX(t− h) (3.6)

which satisfies unit initial conditions EA,Bh,α (t) = I,−h ≤ t ≤ 0 and EA,Bh,α (t) =

Θ, t < −h.
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Theorem 3.3. A solution x ∈ C([−h, T ],Rn) of (3.1) can be represented by the
following formula:

x(t) = EA,Bh,α (t)φ(−h) +

∫ 0

−h
EA,Bh,α (t− h− r)φ′(r)dr. (3.7)

Now, we consider nonhomogeneous case of fractional delay differential system
according to (3.1) in the following form:{

(CDα
0+x)(t) = Ax(t) +Bx(t− h) + f(t), t ∈ (0, T ], h > 0,

x(t) = ϕ(t),−h ≤ t ≤ 0,
(3.8)

where f ∈ C([0, T ],Rn) is a nonlinear perturbation.

Definition 3.2. Delayed perturbation of three-parameter Mittag-Leffler type

matrix function EA,Bh,α,β : R→ Rn×n is defined by

EA,Bh,α,β(t) =



Θ, −∞ < t ≤ −h,
(t+ h)β−1E1

α,β(A(t+ h)α), −h < t ≤ 0,

(t+ h)β−1E1
α,β(A(t+ h)α) + tα+β−1BE2

α,α+β(Atα)

+ · · ·+ (t− (n− 2)h)(n−1)α+β−1Bn−1Enα,(n−1)α+β(A(t− (n− 2)h)α)

+(t− (n− 1)h)nα+β−1BnEn+1
α,nα+β(A(t− (n− 1)h)α),

(n− 1)h < t ≤ nh,
(3.9)

where Θ ∈ Rn×n and I ∈ Rn×n denote the zero and identity matrices, respectively.

Theorem 3.4. A solution x̃ ∈ C([−h, T ],Rn) of (3.8) satisfying zero initial
condition x(t) ≡ 0, t ∈ [−h, 0] has the following form

x̃(t) =

∫ t

0
EA,Bh,α,α(t− h− r)f(r)dr, t > 0. (3.10)

The following corollary present the construction of formula of solutions to (3.8)
. The proof is straightway, so we pass over it here.

Theorem 3.5. The solution x ∈ C([−h, T ],Rn) of (3.8) has a form

x(t) = EA,Bh,α (t)φ(−h) +

∫ 0

−h
EA,Bh,α (t− h− r)φ′(r)dr +

∫ t

0
EA,Bh,α,α(t− h− r)f(r)dr.

The following lemma is a necessary tool on certain calculations in the main
results of the theory.

Lemma 3.1. For any permutable matrices A,B ∈ Rn×n, we have,

‖EA,Bh,α,β(t)‖ ≤
n∑
k=0

tkα+β−1‖B‖kEk+1
α,kα+β(‖A‖tα), (n− 1)h < t ≤ nh, n ∈ N.

(3.11)
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Proof. We estimate EA,Bh,α,β as follows:

‖EA,Bh,α,β(t)‖ = ‖
n∑
k=0

(t− (k − 1)h)kα+β−1BkEk+1
α,kα+β(A(t− (k − 1)h)α)‖

≤ ‖tβ−1E1
α,β(Atα) + tα+β−1BE2

α,α+β(Atα)

+ · · ·+ tnα+β−1BnEn+1
α,nα+β(Atα)‖

≤ tβ−1E1
α,β(‖A‖tα) + tα+β−1‖B‖E2

α,α+β(‖A‖tα)

+ · · ·+ tnα+β−1‖B‖nEn+1
α,nα+β(‖A‖tα)

=
n∑
k=0

tkα+β−1‖B‖kEk+1
α,kα+β(‖A‖tα), for any (n− 1)h < t ≤ nh, n ∈ N.

�

4. Main results

In this section, we derive stochastic version of variation of constants formula
for fractional delay differential equations via newly defined delayed analogue of
three-parameter Mittag-Leffler type matrix function in Section 3. Then, we study
the global existence and uniqueness of a mild solution to a stochastic fractional
delay differential equations system. The main part here is to use the weighted
maximum norm and to prove a coincidence between the notion of the integral
equation of (4.3) and mild solution of (4.4).

Consider a Caputo type fractional stochastic delay differential equations sys-
tem of order α ∈ (1

2 , 1) on a bounded interval [0, T ] of the following form:{
(CDα

0+x)(t) = Ax(t) +Bx(t− h) + ∆(t)dW (t)
dt , h > 0

x(t) = φ(t), t ∈ [−h, 0],
(4.1)

where A,B ∈ Rn×n are permutable matrices, x(t) ∈ Rn, ∆ ∈ C([0, T ],Rn),
(W (t))t≥0 is a standard Brownian motion on a complete probability space (Ω,FT ,P)
and the initial condition φ : [−h, 0] → Rn is an arbitrary differentiable vector
function, i.e., φ(·) ∈ C1([−h, 0],Rn) .
The corresponding nonlinear system to (4.1):{

(CDα
0+x)(t) = Ax(t) +Bx(t− h) + ∆(t, x(t))dW (t)

dt , h > 0

x(t) = φ(t), t ∈ [−h, 0],
(4.2)

where ∆ : [0, T ] × Rn → Rn is measurable and bounded function satisfying
following conditions:
(A1) There exists L∆ > 0 such that for all x, y ∈ Rn, t ∈ [0, T ] ,

‖∆(t.x)−∆(t, y)‖ ≤ L∆‖x− y‖,
(A2) ess supt∈[0,T ] ‖∆(t, 0)‖ <∞.

Definition 4.1. A stochastic process {x(t), t ∈ [0, T ]} is called a mild solution
of (4.2) if
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• x(t) is adapted to {Ft}t≥0 with
∫ T

0 ‖x(t)‖2H2dt <∞ a.s.;

• x ∈ H2([0, T ],Rn) has continuous path on [0, T ] a.s. and for each t ∈
[0, T ], x(t) satisfies the following integral equation:

x(t) = φ(0) +
1

Γ(α)

∫ t

0
(t− r)α−1 [Ax(r) +Bx(r − h)] dr

+
1

Γ(α)

∫ t

0
(t− r)α−1∆(r, x(r))dW (r). (4.3)

Theorem 4.1 (A variation of constants formula for Caputo fractional stochastic
delay differential equations). The unique mild solution x ∈ H2([0, T ],Rn) of (4.2)
with initial condition x(t) = φ(t), t ∈ [−h, 0], has the following form:

x(t) = EA,Bh,α (t)φ(−h) +

∫ 0

−h
EA,Bh,α (t− h− r)φ′(r)dr

+

∫ t

0
EA,Bh,α,α(t− h− r)∆(r, x(r))dW (r). (4.4)

Theorem 4.2. Suppose that hypotheses (A1) and (A2) hold. Then, the unique
mild solution y(t) of (4.2) satisfying y(t) = φ(t), t ∈ [−h, 0] can be expressed in
the following form:

y(t) = EA,Bh,α (t)φ(−h) +

∫ 0

−h
EA,Bh,α (t− h− r)φ′(r)dr

+

∫ t

0
EA,Bh,α,α(t− h− r)∆(r, y(r))dW (r). (4.5)

Proof. To introduce a fixed point theorem associated with (4.2), we define the
operator T : H2([0, T ],Rn)→ H2([0, T ],Rn) by

(Ty)(t) = EA,Bh,α (t)φ(−h) +

∫ 0

−h
EA,Bh,α (t− h− r)φ′(r)dr

+

∫ t

0
EA,Bh,α,α(t− h− r)∆(r, y(r))dW (r). (4.6)

It follows that T is well-defined. Let H2([0, T ],Rn) be endowed with the weighted
maximum norm ‖ · ‖γ , where γ > 0, defined as

‖ξ‖2γ := sup
t∈[0,T ]

E‖ξ(t)‖2

E2α−1(γt2α−1)
, for all ξ ∈ H2([0, T ],Rn). (4.7)

Apparently, (H2([0, T ],Rn), ‖ · ‖H2) is a Banach space. Since two norms ‖ · ‖H2

and ‖ · ‖γ are equivalent, (H2([0, T ],Rn), ‖ · ‖γ) is also Banach space. Therefore,

it is complete. For simplicity, take Mk := maxt∈[0,T ]E
k+1
α,(k+1)α(‖A‖tα), for k =

0, 1, ..., n. Choose and fix a positive γ such that

L2
∆λT
γ

< 1, (4.8)

where λT := Γ(2α− 1)
∑n

k=0M
2
k‖B‖2kT 2k.
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By assumption of (A1), definition of Mk, k = 0, 1, ..., n, using Lemma 3.1 and
Itô’s isometry, we have

E‖(Tx)(t)− (Ty)(t)‖2 = E‖
∫ t

0
EA,Bh,α,α(t− h− r) [∆(r, x(r))−∆(r, y(r))] dW (r)‖2

= E

∫ t

0
‖EA,Bh,α,α(t− h− r) [∆(r, x(r))−∆(r, y(r))] ‖2dr

≤ L2
∆

∫ t

0
‖

n∑
k=0

Bk(t− h− r)(k+1)α−1Ek+1
α,(k+1)α(A(t− h− r)α)‖2E‖x(r)− y(r)‖2dr

≤ L2
∆

∫ t

0
‖

n∑
k=0

Bk(t− r)(k+1)α−1Ek+1
α,(k+1)α(A(t− r)α)‖2E‖x(r)− y(r)‖2dr

≤ L2
∆

n∑
k=0

‖B‖2kt2k‖Ek+1
α,(k+1)α(Atα)‖2

∫ t

0
(t− r)2α−2E‖x(r)− y(r)‖2dr

≤ L2
∆

n∑
k=0

‖B‖2kt2k
(
Ek+1
α,(k+1)α(‖A‖tα)

)2
∫ t

0
(t− r)2α−2E‖x(r)− y(r)‖2dr

≤ L2
∆

n∑
k=0

M2
k‖B‖2kT 2k

∫ t

0
(t− r)2α−2E‖x(r)− y(r)‖2dr.

Hence, by definition of ‖ · ‖γ and Lemma 2.1, we derive the following expression:

E‖(Tx)(t)− (Ty)(t)‖2

E2α−1(γt2α−1)
≤ L2

∆

n∑
k=0

M2
k‖B‖2kT 2k 1

E2α−1(γt2α−1)

×
∫ t

0
(t− r)2α−2E2α−1(γr2α−1)

E2α−1(γr2α−1)
E‖x(r)− y(r)‖2dr

≤ L2
∆

Γ(2α− 1)

γ

n∑
k=0

M2
k‖B‖2kT 2k‖x− y‖2γ .

Using weighted maximum norm (4.7), we achieve

‖Tx− Ty‖2γ ≤ L2
∆

Γ(2α− 1)

γ

n∑
k=0

M2
k‖B‖2kT 2k‖x− y‖2γ .

Therefore,

‖Tx− Ty‖2γ ≤
L2

∆λT
γ
‖x− y‖2γ , (4.9)

which together with (4.8) implies that T is contraction on H2([0, T ],Rn). By
contraction mapping principle, T has a unique fixed point and the proof is com-
plete. �

Using the martingale representation theorem for any function f ∈ L2(Ω,FT ,Rn),
there exists a unique adapted process Θ ∈ H2([0, T ],Rn) such that

f = Ef +

∫ T

0
Θ(r)dW (r).
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It is clear that

f =

n∑
k=1

fkek, fk = Efk +

∫ T

0
θk(r)dW (r), fk ∈ L2(Ω,FT ,R).

For (4.3) and (4.5), it is sufficient to show that

x(t) = y(t). (4.10)

To show (4.10), it is enough to prove that for any f ∈ L2(Ω,FT ,Rn),

E〈x(t), f〉 = E〈y(t), f〉.
In other words,

E〈x(t)− y(t), f〉 =

n∑
k=1

E〈(x(t)− y(t))fk, ek〉.

It follows that

|E〈x(t)− y(t), f〉|2 ≤
( n∑
k=1

‖E(x(t)− y(t))fk‖
)2
≤ n

n∑
k=1

‖E(x(t)− y(t))fk‖2.

Before estimating |E〈x(t)− y(t), f〉|, define the following functions:

χk(t) = Ex(t)fk, χ̃k(t) = Ey(t)fk,

χk(t− h) = Ex(t− h)fk, χ̃k(t− h) = Ey(t− h)fk.

Remark 4.1. Since x(t), y(t) ∈ H2([0, T ],Rn), the functions
χk(t), χk(t− h), χ̃k(t), χ̃k(t− h) are measurable and bounded on [0, T ].

Lemma 4.1. For all t ∈ [0, T ] and c ∈ Rn, the following statements hold:

χk(t) = cEφ(0) +
1

Γ(α)

∫ t

0
(t− r)α−1 (4.11)

× [Aχk(r) +Bχk(r − h) + Eθk(r)∆(r, x(r))] dr,

χ̃k(t) = cEA,Bh,α (t)φ(−h) +

∫ 0

−h
EA,Bh,α (t− h− r)φ′(r)dr

+

∫ t

0
EA,Bh,α,α(t− h− r)Eθk(r)∆(r, y(r))dr. (4.12)

Proof. Taking product of both sides of (4.3) with fk and then taking expectation
of both sides give that

χk(t) = cEφ(0) +
1

Γ(α)

∫ t

0
(t− r)α−1 [Aχk(r) +Bχk(r − h)] dr

+
1

Γ(α)
E
(∫ t

0
(t− r)α−1∆(r, x(r))dW (r)

)∫ T

0
θk(r)dW (r).

Using Itô’s representation theorem, we attain

χk(t) = cEφ(0)+
1

Γ(α)

∫ t

0
(t−r)α−1 [Aχk(r) +Bχk(r − h) + Eθk(r)∆(r, x(r))] dr



CONTROLLABILITY OF FRACTIONAL STOCHASTIC DELAY . . . 305

such that χk(t) is a solution of the following fractional delay differential equation:

(CDα
0+x)(t) = Ax(t) +Bx(t− h) + Eθk(t)∆(t, x(t)),

x(t) = cEφ(t), t ∈ [−h, 0].

Then, by means of Remark 4.1, (4.11) is proved.

Similarly, by taking product of both sides of (4.5) with fk and expectation of
both sides yield that

χ̃k(t) = cEA,Bh,α (t)Eφ(−h) +

∫ 0

−h
EA,Bh,α (t− h− r)Efkφ′(r)dr

+ E
(∫ t

0
EA,Bh,α,α(t− h− r)∆(r, y(r))dW (r)

)∫ T

0
θk(r)dW (r).

Then, using Itô’s isometry theorem, we achieve (4.12) such that χ̃k(t) is a solution
of the following fractional delay differential equation:

(CDα
0+y)(t) = Ay(t) +By(t− h) + Eθk(t)∆(t, y(t)),

y(t) = cEφ(t), t ∈ [−h, 0].

The proof is complete. �

Remark 4.2. For any f ∈ L2(Ω,FT ,Rn), we have

|E〈x(t)− y(t), f〉|2 ≤ nN2L2
∆

∫ t

0
E‖x(r)− y(r)‖2drE‖f‖2. (4.13)

Proof. Starting with

|〈x(t)− y(t), f〉| ≤

√√√√n

n∑
k=1

|〈xk(t)− yk(t), fk〉|2

≤

√√√√n
n∑
k=1

‖E(xk(t)− yk(t))fk‖2 =

√√√√n
n∑
k=1

‖χk(t)− χ̃k(t)‖2,

(4.14)

estimate ‖χk(t)− χ̃k(t)‖ by using Hölder’s inequality and taking

N := supt∈[0,T ] ‖E
A,B
h,α,α(t)‖:

‖χk(t)− χ̃k(t)‖ ≤ NL∆

(∫ t

0
E‖θk(r)‖2

) 1
2
(∫ t

0
E‖x(r)− y(r)‖2dr

) 1
2
.

Plugging above inequality into (4.14), we deduce the desired result (4.13). The
proof is complete. �

Proof of Theorem 4.1. Let T ∗ = inf {t ∈ [0, T ];x(t) 6= y(t)}. Then it is
sufficient to show that T ∗ = T .
Suppose the contrary : T ∗ < T . Choose and fix an arbitrary δ > 0 satisfying the
following expression:

nN2L2
∆δ < 1. (4.15)
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To lead contradiction, we show that x(t) = y(t) for all t ∈ [T ∗, T ∗ + δ]. Using
Ito’s representation, there exists a unique f ∈ H2([0, T ],Rn) such that x(t) −
y(t) = f . Therefore, we have

E‖x(t)− y(t)‖2 = E‖f‖2.

Using Remark 4.2, we attain

E‖x(t)− y(t)‖2 ≤ nN2L2
∆

∫ t

T ∗
E‖x(r)− y(r)‖2dr.

As a consequence,

sup
t∈[T ∗,T ∗+δ]

E‖x(t)− y(t)‖2 ≤ nN2L2
∆δ sup

t∈[T ∗,T ∗+δ]
E‖x(t)− y(t)‖2.

By selecting δ as in (4.15), we have supt∈[T ∗,T ∗+δ] E‖x(t) − y(t)‖2 = 0. This
leads to a contradiction and the proof is complete. �

5. Controllability results

We shall prove controllability results for linear and nonlinear stochastic delay
dynamical systems with fractional-order. First, we present necessary and suf-
ficient conditions for the complete controllability of linear fractional stochastic
delay system through perturbed controllability matrix and rank condition using
the rank correlation of the Cayley-Hamilton theorem. Thereafter, sufficient con-
ditions are derived for complete controllability of nonlinear fractional stochastic
delay differential equations system using Banach’s fixed point theorem.

Definition 5.1. The fractional stochastic delay system is said to be complete
controllable on [0, T ], if for every initial condition φ(t) and x1 ∈ L2(Ω,FT ,Rn),
there exists a control u ∈ Uad, such that the solution x(t) satisfies x(T ) = x1.

5.1. Linear case. Consider the linear fractional stochastic delay dynamical sys-
tem on [0, T ] of the form :

{
(CDα

0+x)(t) = Ax(t) +Bx(t− h) + Cu(t) + ∆(t)dW (t)
dt , h > 0,

x(t) = φ(t), t ∈ [−h, 0],
(5.1)

where A,B ∈ Rn×n are permutable matrices, and C ∈ Rn×m with n > m,
the transposes of A,B and C are denoted by A∗, B∗ and C∗, respectively; ∆ ∈
C([0, T ],Rn×n), x(t) ∈ L2(Ω,FT ,Rn), control function u ∈ Uad, (W (t))t≥0 is a
standard Brownian motion on a complete probability space (Ω,FT ,P) for T > 0.

The solution of (5.1) can be expressed in the following form of

x(t) = EA,Bh,α (t)φ(−h) +

∫ 0

−h
EA,Bh,α (t− h− r)φ′(r)dr

+

∫ t

0
EA,Bh,α,α(t− h− r)Cu(r)dr

+

∫ t

0
EA,Bh,α,α(t− h− r)∆(r)dW (r). (5.2)
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Define a controllability Grammian matrix WT : L2(Ω,FT ,Rn) → L2(Ω,FT ,Rn)
as:

WT =

∫ T

0
EA,Bh,α,α(T − h− r)CC∗EA

∗,B∗

h,α,α (T − h− r)E {·|Fr} dr. (5.3)

Theorem 5.1. The system (5.1) is completely controllable on [0, T ] if and only
if WT is positive.

Proof. Sufficiency: Suppose thatWT is positive, then its inverse is well-defined.
For all φ(t), there exists the control function u(t) defined by:

u(t) = C∗EA
∗,B∗

h,α,α (T − h− t)E

{
(WT )−1

(
x1 − EA,Bh,α (T )φ(−h) (5.4)

−
∫ 0

−h
EA,Bh,α (T − h− r)φ′(r)dr

−
∫ T

0
EA,Bh,α,α(T − h− r)∆(r)dW (r)

)
|Ft

}
.

Letting t = T in (5.2) and substituting (5.4) into (5.2), we get:

x(T ) = EA,Bh,α (T )φ(−h) +

∫ 0

−h
EA,Bh,α (T − h− r)φ′(r)dr

+

∫ T

0
EA,Bh,α,α(T − h− r)CC∗EA

∗,B∗

h,α,α (T − h− r)

×E

{
(WT )−1

(
x1 − EA,Bh,α (T )φ(−h)−

∫ 0

−h
EA,Bh,α (T − h− r)φ′(r)dr

−
∫ T

0
EA,Bh,α,α(T − h− r)∆(r)dW (r)

)
|Fr

}
dr

+

∫ T

0
EA,Bh,α,α(T − h− r)∆(r)dW (r)

= EA,Bh,α (T )φ(−h) +

∫ 0

−h
EA,Bh,α (T − h− r)φ′(r)dr

+WT (WT )−1

{
x1 − EA,Bh,α (T )φ(−h)−

∫ 0

−h
EA,Bh,α (T − h− r)φ′(r)dr

−
∫ T

0
EA,Bh,α,α(T − h− r)∆(r)dW (r)

}

+

∫ T

0
EA,Bh,α,α(T − h− r)∆(r)dW (r) = x1.

Hence, x(T ) = x1. Thus, (5.1) is completely controllable.



308 ARZU AHMADOVA, ISMAIL T. HUSEYNOV, AND NAZIM I. MAHMUDOV

Necessity: Assume that (5.1) is completely controllable on [0, T ]. We have
to prove that WT is positive. Assume the contrary, there exists a vector y 6= 0
such that

E {y∗WT y} = 0, y ∈ L2(Ω,FT ,Rn),

i.e.,

E

{∫ T

0
y∗EA,Bh,α,α(T − h− r)CC∗EA

∗,B∗

h,α,α (T − h− r)E {y|Fr} dr
}

= 0.

Then, it follows that

E
{
y∗EA,Bh,α,α(T − h− t)C|Ft

}
= 0,∀t ∈ [0, T ]. (5.5)

Since the system (5.1) is completely controllable, there exist control functions
u1(t) and u2(t) such that

EA,Bh,α (T )φ1(−h) +

∫ 0

−h
EA,Bh,α (T − h− r)φ′1(r)dr

+

∫ T

0
EA,Bh,α,α(T − h− r)Cu1(r)dr

+

∫ T

0
EA,Bh,α,α(T − h− r)∆(r)dW (r) = x1, (5.6)

and

EA,Bh,α (T )φ2(−h) +

∫ 0

−h
EA,Bh,α (T − h− r)φ′2(r)dr

+

∫ T

0
EA,Bh,α,α(T − h− r)Cu2(r)dr

+

∫ T

0
EA,Bh,α,α(T − h− r)∆(r)dW (r) = x1. (5.7)

From (5.6) and (5.7), we obtain the following expression:∫ T

0
EA,Bh,α,α(T − h− r)C [u2(r)− u1(r)] dr = y, (5.8)

where

y := EA,Bh,α (T ) [φ1(−h)− φ2(−h)] +

∫ 0

−h
EA,Bh,α (T − h− r)

[
φ′1(r)− φ′2(r)

]
dr 6= 0.

Multiplying by E {y∗} on both side of (5.8), we have

E

{∫ T

0
y∗EA,Bh,α,α(T − h− r)C [u2(r)− u1(r)] dr

}
= 0.

By (5.5), we acquire Ey∗y = 0, which is contradiction to y 6= 0. The proof is
complete. �
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Furthermore, we prove the complete controllability results in the following
theorem by using the rank correlation of the Cayley-Hamilton theorem. In this
case, we need to formulate an algebraic condition equivalent to controllability.
For matrices A,B ∈ Rn×n and C ∈ Rn×m denote by Hn, where the matrix

Hn :=

{
C|AC| · · · |An−1C|BC|ABC|

· · · |An−1BC| · · · |Bn−1C|ABn−1C| · · · |An−1Bn−1C

}
,

which consists of consecutively written columns of matrices
C,AC, · · · , An−1Bn−1C.

Theorem 5.2. The following statements are equivalent:
(i) System (5.1) is completely controllable ;
(ii) System (5.1) is completely controllable at a given time T ≥ (n− 1)h ;
(iii) Grammian matrix WT is positive for an arbitrary T > 0;
(iv) rankHn = n.

Condition (iv) is called theKalman rank condition. To apply Cayley-Hamilton
theorem, first, we define the characteristic polynomial p(·) of a matrix A ∈ Rn×n
which is defined by:

p(λ) = det[λI −A], λ ∈ C, (5.9)

where I ∈ Rn×n is the identity matrix. Let

p(λ) = λn + a1λ
n−1 + · · ·+ an, λ ∈ C. (5.10)

The Cayley-Hamilton theorem has the following formulation in the next theorem
[5].

Theorem 5.3 (Cayley-Hamilton). For arbitrary A ∈ Rn×n, with the character-
istic polynomial (5.10),

An + a1A
n−1 + · · ·+ anI = 0. (5.11)

Symbolically, p(A) = 0.

Proof of Theorem 5.2. Equivalencies of (i)-(iii) follow from the proof of
Theorem 5.1 and the following identity for LT : Uad → L2(Ω,FT ,Rn),

x(T ) = LTu+ G, (5.12)

where

x(T ) = EA,Bh,α (T )φ(−h) +

∫ 0

−h
EA,Bh,α (T − h− r)φ′(r)dr

+

∫ T

0
EA,Bh,α,α(T − h− r)Cu(r)dr

+

∫ T

0
EA,Bh,α,α(T − h− r)∆(r)dW (r),
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and

G = EA,Bh,α (T )φ(−h) +

∫ 0

−h
EA,Bh,α (T − h− r)φ′(r)dr

+

∫ T

0
EA,Bh,α,α(T − h− r)∆(r)dW (r).

From (5.12), by change of variable T − h− r = µ, we have

LTu = x(T )−G =

∫ T

0
EA,Bh,α,α(T − h− r)Cu(r)dr (5.13)

=

∫ T−h

−h
EA,Bh,α,α(µ)Cu(T − h− µ)dµ

=

∫ 0

−h
(µ+ h)α−1

[
I

1

Γ(α)
+A

(µ+ h)α

Γ(2α)
+ · · ·+Al−1 (µ+ h)(l−1)α

Γ(lα)

]
× Cu(T − h− µ)dµ

+

∫ h

0

[
(µ+ h)α−1

(
I

1

Γ(α)
+A

(µ+ h)α

Γ(2α)

+ · · ·+Al−1 (µ+ h)(l−1)α

Γ(lα)

)
+ µ2α−1

(
B

1

Γ(2α)
+AB

2µα

Γ(3α)
+ · · ·+Al−1B

lµ(l−1)α

Γ((l + 1)α)

)]
Cu(T − h− µ)dµ

+ · · ·+
∫ T−h

(l−2)h

[
(µ+ h)α−1

(
I

1

Γ(α)
+A

(µ+ h)α

Γ(2α)
+ · · ·+Al−1 (µ+ h)(l−1)α

Γ(lα)

)
+ µ2α−1

(
B

1

Γ(2α)
+AB

2µα

Γ(3α)
+ · · ·+Al−1B

lµ(l−1)α

Γ((l + 1)α)

)
+ · · ·+ (µ− (l − 2)h)lα−1

(
Bl−1 1

Γ(lα)
+ABl−1

(
l
1

)
(µ− (l − 2)h)α

Γ((l + 1)α)

+ · · ·+Al−1Bl−1

(
2l − 2
l − 1

)
(µ− (l − 2)h)(l−1)α

Γ((2l − 1)α)

)]
Cu(T − h− µ)dµ

=

∫ 0

−h

[
I

(µ+ h)α−1

Γ(α)
+A

(µ+ h)2α−1

Γ(2α)

+ · · ·+Al−1 (µ+ h)lα−1

Γ(lα)

]
Cu(T − h− µ)dµ

+

∫ h

0

[
I

(µ+ h)α−1

Γ(α)
+A

(µ+ h)2α−1

Γ(2α)
+ · · ·+Al−1 (µ+ h)lα−1

Γ(lα)

+B
µ2α−1

Γ(2α)
+AB

2µ3α−1

Γ(3α)
+ · · ·+Al−1B

lµ(l+1)α−1

Γ((l + 1)α)

]
Cu(T − h− µ)dµ

+ · · ·+
∫ T−h

(l−2)h

[
I

(µ+ h)α−1

Γ(α)
+A

(µ+ h)2α−1

Γ(2α)
+ · · ·+Al−1 (µ+ h)lα−1

Γ(lα)

+B
µ2α−1

Γ(2α)
+AB

2µ3α−1

Γ(3α)
+ · · ·+Al−1B

lµ(l+1)α−1

Γ((l + 1)α)
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+ · · ·+Bl−1 (µ− (l − 2)h)lα−1

Γ(lα)
+ABl−1

(
l
1

)
(µ− (l − 2)h)(l+1)α−1

Γ((l + 1)α)

+ · · ·+Al−1Bl−1

(
2l − 2
l − 1

)
(µ− (l − 2)h)(2l−1)α

Γ((2l − 1)α− 1)

]
Cu(T − h− µ)dµ.

If we denote

Ψ11(T ) =

∫ T−h

−h

(µ+ h)α−1

Γ(α)
u(T − h− µ)dµ,

Ψ21(T ) =

∫ T−h

−h

(µ+ h)2α−1

Γ(2α)
u(T − h− µ)dµ,

· · ·

Ψm1(T ) =

∫ T−h

−h

(µ+ h)lα−1

Γ(lα)
u(T − h− µ)dµ;

Ψ12(T ) =

∫ T−h

0

µ2α−1

Γ(2α)
u(T − h− µ)dµ,

Ψ22(T ) =

∫ T−h

0

2µ3α−1

Γ(3α)
u(T − h− µ)dµ,

· · ·

Ψm2(T ) =

∫ T−h

0

lµ(l+1)α−1

Γ((l + 1)α)
u(T − h− µ)dµ; (5.14)

· · ·

Ψ1l(T ) =

∫ T−h

(l−2)h

(µ− (l − 2)h)lα−1

Γ(kα)
u(T − h− µ)dµ,

Ψ2l(T ) =

∫ T−h

(l−2)h

(
l
1

)
(µ− (l − 2)h)(l+1)α−1

Γ((l + 1)α)
u(T − h− µ)dµ,

· · ·

Ψml(T ) =

∫ T−h

(l−2)h

(
2l − 2
l − 1

)
(µ− (l − 2)h)(2l−1)α−1

Γ((2l − 1)α)
u(T − h− µ)dµ.

Then, using (5.14), (5.13) can be written as below:

CΨ11(T ) +BCΨ12(T ) + · · ·+Bl−1CΨ1l(T ) +ACΨ21(T ) (5.15)

+ABCΨ22(T ) + · · ·+ABl−1CΨ2l(T ) +A2CΨ31(T )

+A2BCΨ32(T ) + · · ·+Al−1CΨm1(T )

+Al−1BCΨm2(T ) + · · ·+Al−1Bl−1CΨml(T ) = LTu.

Because the linear system (5.1) is completely controllable, then (5.15) has a
solution for an arbitrary vector ν. If l < n, then the system is overdetermined and
does not always have a solution. Therefore, for the system (5.1) to be completely
controllable, it is necessary that T > (l − 1)h ≥ (n− 1)h.
To show equivalencies for condition (iv), it is convenient to introduce a linear
mapping Ln from L2(Ω,FT ,Rm) into L2(Ω,FT ,Rn) according to the relation
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(5.15)

Ln(u0, u1, · · · , un−1) =
n−1∑
j=0

Aj(I +B + · · ·+Bn−1)Cuj

=

n−1∑
j=0

AjCuj +

n−1∑
j=0

AjBCuj

+ · · ·+
n−1∑
j=0

AjBn−1Cuj , uj ∈ L2(Ω,FT ,Rn), j = 0, ..., n− 1.

We need to prove first the following lemma.

Lemma 5.1. The transformation LT , T > 0, has the same image as Ln. In
particular, LT is onto if and only if Ln is onto.

Proof. For arbitrary v ∈ L2(Ω,FT ,Rn), u ∈ Uad,
ui ∈ L2(Ω,FT ,Rm), i = 0, 1, · · · , n− 1,

E〈LTu, v〉 = E

∫ T

0
〈u(r), C∗EA

∗,B∗

h,α,α (T − h− r)v(r)〉dr,

E〈Ln(u0, u1, · · · , un−1), v〉 = E〈u0, C
∗v〉+ E〈u0, C

∗A∗v〉
+ · · ·+ E〈u0, C

∗(A∗)n−1v〉+ E〈u1, C
∗B∗v〉+ E〈u1, C

∗B∗A∗v〉
+ · · ·+ E〈u1, C

∗B∗(A∗)n−1v〉
+ · · ·+ E〈un−1, C

∗(B∗)n−1v〉+ · · ·+ E〈un−1, C
∗(B∗)n−1(A∗)n−1v〉.

Assume that E〈Ln(u0, u1, · · · , un−1), v〉 = 0 for arbitrary u0, u1, · · · , un−1 ∈
L2(Ω,FT ,Rn). Then,

C∗v = 0, C∗A∗v = 0, C∗(A∗)n−1v = 0, C∗B∗v = 0, C∗B∗A∗v = 0, · · · ,
C∗B∗(A∗)n−1v = 0, · · · , C∗(B∗)n−1v = 0, · · · , C∗(B∗)n−1(A∗)n−1v = 0.

From Theorem 5.3, applied to matrix A∗, it follows that for some constants
c0, c1, · · · , cn−1 :

(A∗)n =
n−1∑
m=0

cm(A∗)m.

Thus, by induction, for arbitrary p = 0, 1, 2, ... there exist constants
cp,0, cp,1, · · · , cp,n−1 such that

(A∗)n+p =

n−1∑
m=0

cp,m(A∗)m.

Therefore, C∗(A∗)mv = 0, C∗B∗(A∗)mv = 0, · · · , C∗(B∗)n−1(A∗)mv = 0 for
m = 0, 1, 2, ... . Taking into account

C∗EA
∗,B∗

h,α,α (t)v =

n−1∑
i=0

(t− (i− 1)h)(i+1)α−1C∗(B∗)iEi+1
α,(i+1)α(A(t− (i− 1)h)α)v
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= (t+ h)α−1C∗E1
α,α(A∗(t+ h)α)v + t2α−1C∗B∗E2

α,2α(A∗tα)v

+ · · ·+ (t− (n− 2)h)nα−1C∗(B∗)n−1Enα,nα(A∗(t− (n− 2)h)α)v

= 0.

We deduce that for an arbitrary T > 0 and t ∈ [0, T ],

C∗EA
∗,B∗

h,α,α (t)v = 0,

so, E〈LTu, v〉 = 0 for arbitrary u ∈ Uad. Suppose, conversely, that for arbitrary

u ∈ Uad, E〈LTu, v〉 = 0. Then C∗EA
∗,B∗

h,α,α (t)v = 0 for t ∈ [0, T ]. Caputo type

differentiating (k + 1)α− 1,(k + 2)α− 1,· · · ,(k + n)α− 1-times for k = 0, 1, 2, ...
the following identity

n−1∑
i=0

(t− (i− 1)h)(i+1)α−1C∗(B∗)iEi+1
α,(i+1)α(A∗(t− (i− 1)h)α)v = 0, t ∈ [0, T ],

where

Ei+1
α,(i+1)α(A∗(t− (i− 1)h)α) =

∞∑
k=0

(
k + i
k

)
(A∗)k(t− (i− 1)h)kα

Γ((i+ k + 1)α)

and inserting each time t = 0, we attain that

C∗(A∗)mv = 0, C∗B∗(A∗)mv = 0, · · · , C∗(B∗)n−1(A∗)mv = 0, m = 0, 1, 2, ..., n−1.

Therefore,

〈Ln(u0, u1, · · · , un−1), v〉 = 0, ∀u0, u1, ..., un−1 ∈ L2(Ω,FT ,Rn).

�

Assume that (5.1) is complete controllable.Then the transformation LT is onto
Rn for arbitrary T > 0 and by above lemma, the matrix Hn has rank n. In
contrast, if the rank of Hn is n, then the mapping Ln is onto Rn and also, the
transformation LT is onto Rn, thus the controllability of (5.1) follows. Proof is
complete. �

5.2. Nonlinear case. Consider nonlinear system corresponding to (5.1) on [0, T ]:{
(CDα

0+x)(t) = Ax(t) +Bx(t− h) + Cu(t) + ∆(t, x(t))dW (t)
dt , h > 0,

x(t) = φ(t), t ∈ [−h, 0],

(5.16)
where ∆ ∈ [0, T ]× Rn → Rn is measurable and bounded function.

The solution of (5.16) can be expressed in the following form of

x(t) = EA,Bh,α (t)φ(−h) +

∫ 0

−h
EA,Bh,α (t− h− r)φ′(r)dr

+

∫ t

0
EA,Bh,α,α(t− h− r)Cu(r)dr

+

∫ t

0
EA,Bh,α,α(t− h− r)∆(r, x(r))dW (r). (5.17)
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Define the operator LT : L2(Ω,FT ,Rn)→ L2(Ω,FT ,Rn) as

LTu =

∫ T

0
EA,Bh,α,α(T − h− r)Cu(r)dr. (5.18)

Clearly, the adjoint operator L∗T of LT satisfying L∗T ∈ L(L2,L2) is obtained as
below:

(L∗Tx)(t) = C∗EA
∗,B∗

h,α,α (T − h− t)E {x|Ft} .

Definition 5.2. The controllability Grammian operator WT : L2(Ω,FT ,Rn) →
L2(Ω,FT ,Rn) is defined by

WT z =

∫ T

0
EA,Bh,α,α(T − h− r)CC∗EA

∗,B∗

h,α,α (T − h− r)E {z|Ft} dr. (5.19)

The corresponding deterministic operator ΓT−r : Rn → Rn is given by

ΓT−rx =

∫ T

r
EA,Bh,α,α(T − h− r)CC∗EA

∗,B∗

h,α,α (T − h− r)xdr.

Theorem 5.4. The fractional stochastic system (5.1) is completely controllable
on [0, T ] if and only if for some γ > 0

E〈WTx, x〉 ≥ γE‖x‖2,∀x ∈ L2(Ω,FT ,Rn). (5.20)

Lemma 5.2. For every z ∈ L2(Ω,FT ,Rn), there exists a predictable L2 process
ϕ(·) such that

(i) z = Ez +
∫ T

0 ϕ(r)dW (r),

(ii) WT z = ΓTEz +
∫ T

0 ΓT−rϕ(r)dW (r).

Proof. The proof of (i) can be found in [22].
(ii) Let z ∈ L2(Ω,FT ,Rn), then we have

E {z|Ft} = Ez +

∫ t

0
ϕ(r)dW (r).

The definition of deterministic operator and stochastic Fubini’s theorem lead to
the desired representation:

WT z =

∫ T

0
EA,Bh,α,α(T − h− t)CC∗EA

∗,B∗

h,α,α (T − h− t)E {z|Ft} dt

=

∫ T

0
EA,Bh,α,α(T − h− t)CC∗EA

∗,B∗

h,α,α (T − h− t)
[
Ez +

∫ t

0
ϕ(r)dW (r)

]
dt

=

∫ T

0
EA,Bh,α,α(T − h− t)CC∗EA

∗,B∗

h,α,α (T − h− t)Ezdt

+

∫ T

0

∫ T

r
EA,Bh,α,α(T − h− t)CC∗EA

∗,B∗

h,α,α (T − h− t)ϕ(r)dtdW (r)

= ΓTEz +

∫ T

0
ΓT−rϕ(r)dW (r).

This completes the proof of lemma. �
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Using representation of (i) and (ii) of above lemma, we write E〈WT z, z〉 in
terms of 〈ΓTEz,Ez〉 and using inequality (5.20) and scalar product of stochastic
integral to show coercivity of WT , for all z ∈ L2(Ω,FT ,Rn) [22],

E〈WT z, z〉 = E
〈

ΓTEz +

∫ T

0
ΓT−rϕ(r)dW (r),Ez +

∫ T

0
ϕ(r)dW (r)

〉
= 〈ΓTEz,Ez〉+ E

∫ T

0
〈ΓT−rϕ(r), ϕ(r)〉dr

≥ γ
(
‖Ez‖2 + E

∫ T

0
‖ϕ(r)‖2dr

)
= γ‖z‖2.

We set following hypotheses to derive sufficient conditions for stochastic con-
trolability of nonlinear system (5.16).
(H1) Controllability operator WT has its inverse (WT )−1. Then we take

k1 = E‖(WT )−1‖2.

(H2) There exists L∆ > 0 such that for all x, y ∈ Rn, t ∈ [0, T ],

‖∆(t.x)−∆(t, y)‖2 ≤ L∆‖x− y‖2,

(H3) Let λ := 16N2‖C‖2‖L∗T ‖2k1 be such that 0 ≤ λ < 1, and let C1 and C2 be
such that,
C1 := M2(4 + λ)(1 +K2)E‖φ(−h)‖2 and C2 := N2L2

∆(4 + λK2)T ,
(H4) Let ρ = N2L2

∆T be such that 0 ≤ ρ < 1.

Theorem 5.5. Suppose that hypotheses (H1)-(H4) hold. If the linear fractional
stochastic delay system (5.1) is completely controllable, then the nonlinear frac-
tional stochastic delay system (5.16) is completely controllable.

Proof. Let x1 be an arbitrary random variable in L2(Ω,FT ,Rn). We focus on
theoretical results to a stochastic controllability of fractional delay system via
fixed point technique. Define an operator Φ : H2 → H2 by

(Φx)(t) = EA,Bh,α (t)φ(−h) +

∫ 0

−h
EA,Bh,α (t− h− r)φ′(r)dr

+

∫ t

0
EA,Bh,α,α(t− h− r)Cu(r)dr (5.21)

+

∫ t

0
EA,Bh,α,α(t− h− r)∆(r, x(r))dW (r).

Since the linear system (5.1) is controllable, we have that WT is invertible. We
define control function u as

u(t) = C∗EA
∗,B∗

h,α,α (T − h− t)E

{
(WT )−1

(
x1 − EA,Bh,α (T )φ(−h)

−
∫ 0

−h
EA,Bh,α (T − h− r)φ′(r)dr (5.22)
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−
∫ T

0
EA,Bh,α,α(T − h− r)∆(r, x(r))dW (r)

)
|Ft

}
.

Now, we need to show that Φ has a fixed point. This fixed point is a solution of
control problem. Clearly, Φ(x(T )) = x1, which means that the control u steers
the nonlinear system from initial state x0 to x1 in the time T , provided that we
can obtain a fixed point of nonlinear operator Φ. To verify the conditions for
Banach contraction principle, we divide our proof into two steps.

Step 1. First, we prove that Φ maps from H2 into itself. Using hypotheses
(H1)-(H3), we have

E‖(Φx)(t)‖2 = 4E‖EA,Bh,α (t)φ(−h)‖2 + 4E‖
∫ 0

−h
EA,Bh,α (t− h− r)φ′(r)dr‖2

+ 4E‖
∫ t

0
EA,Bh,α,α(t− h− r)Cu(r)dr‖2 (5.23)

+ 4E‖
∫ t

0
EA,Bh,α,α(t− h− r)∆(r, x(r))dW (r)‖2

:= 4(I1 + I2 + I3 + I4).

For convenience, let us introduce following constants:

M = sup
t∈[0,T ]

‖EA,Bh,α (t)‖; N = sup
t∈[0,T ]

‖EA,Bh,α,α(t)‖. (5.24)

There exists K > 0,

E‖φ(0)− φ(−h)‖2 ≤ K2E‖φ(−h)‖2. (5.25)

We impose standard computations by taking into (5.24) and (5.25) account in a
following order:

I1 := E‖EA,Bh,α (t)φ(−h)‖2 ≤M2E‖φ(−h)‖2, (5.26)

I2 := E‖
∫ 0

−h
EA,Bh,α (t− h− r)φ′(r)dr‖2

≤M2E‖φ(0)− φ(−h)‖2

≤M2K2E‖φ(−h)‖2. (5.27)

Applying hypotheses (H1) and (H2), we define u(t) as follows :

‖u(t)‖2 ≤ ‖C∗EA,Bh,α,α(T − h− t)E

{
(WT )−1

(
x1 − EA,Bh,α (T )φ(−h)

−
∫ 0

−h
EA,Bh,α (T − h− r)φ′(r)dr

−
∫ T

0
EA,Bh,α,α(T − h− r)∆(r, x(r))dW (r)

)
|Ft

}
‖2

≤ 4‖C‖2N2E‖(WT )−1‖2
[
E‖x1‖2 +M2E‖φ(−h)‖2
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+M2

∫ 0

−h
E‖φ′(r)‖2dr +N2

∫ T

0
E‖∆(r, x(r))‖2dr

]
≤ 4‖C‖2N2k1

[
E‖x1‖2 +M2E‖φ(−h)‖2

+M2K2E‖φ(−h)‖2 +N2K2L2
∆TE‖x‖2

]
.

Using the definition of operator LT , we have

I3 := E‖LTu‖2 = E‖
∫ t

0
EA,Bh,α,α(t− h− r)Cu(r)dr‖2

≤ 4N2‖C‖2‖L∗T ‖2k1 ×
[
E‖x1‖2 +M2E‖φ(−h)‖2

+M2K2E‖φ(−h)‖2 +N2K2L2
∆TE‖x‖2

]
. (5.28)

Using Itô’s isometry, we attain

I4 := E‖
∫ t

0
EA,Bh,α,α(t− h− r)∆(r, x(r))dW (r)‖2

≤ N2

∫ T

0
E‖∆(r, x(r))‖2dr

≤ N2L2
∆TE‖x‖2. (5.29)

Substituting (5.26)-(5.29) into (5.23) and using standard computations, we have

E‖(Φx)(t)‖2 ≤ 4M2E‖φ(−h)‖2 + 4M2K2E‖φ(−h)‖2

+ 16N2‖C‖2‖L∗T ‖2k1E‖x1‖2

+ 16N2‖C‖2‖L∗T ‖2k1M
2(1 +K2)E‖φ(−h)‖2 (5.30)

+ 16N2‖C‖2‖L∗T ‖2k1N
2K2L2

∆TE‖x‖2

+ 4N2L2
∆TE‖x‖2.

From (5.30) and hypothesis (H3), it follows that there exists 0 ≤ λ < 1 and
C1, C2 > 0 such that

E‖(Φx)(t)‖2 ≤ C1 + λE‖x1‖2 + C2E‖x‖2.

Taking supremum over [0, T ] and considering Φ(x(T )) = x1, we get

sup
t∈[0,T ]

E‖(Φx)(t)‖2 ≤ C1

1− λ
+

C2

1− λ
E‖x‖2. (5.31)

Obviously, λ 6= 1 and this implies that Φ maps from H2 into itself.

Step 2. Now, we prove that Φ is a contraction mapping. Let x, y ∈ Rn for
each t ∈ [0, T ], we have

E‖(Φx)(t)− (Φy)(t)‖2

≤ E‖
∫ t

0
EA,Bh,α,α(t− h− r) [∆(r, x(r))−∆(r, y(r))] dW (r)‖2



318 ARZU AHMADOVA, ISMAIL T. HUSEYNOV, AND NAZIM I. MAHMUDOV

≤ N2

∫ t

0
E‖∆(r, x(r))−∆(r, y(r))‖2dr

≤ N2L2
∆TE‖x− y‖2

≤ ρE‖x− y‖2,

which together with (H4) implies that Φ is a contractive mapping on H2 and
Φ has a unique fixed point x(·) ∈ H2 with initial condition x(t) = φ(t) for
t ∈ [−h, 0]. Thus, the system (4.2) is controllable on [0, T ]. This completes the
proof. �

6. Discussion and future work

The main contributions of this paper are as follows:

• introducing a new delayed Mittag-Leffler type function with permutable
matrices by means of three-parameter Mittag-Leffler functions;
• deriving stochastic version of variation of constants formula using the

delayed Mittag-Leffler type matrix function;
• proving existence and uniqueness results of mild solution and showing

coincidence between the integral equation and mild solution of fractional
stochastic delay differential equations system;
• studying complete controllability results for linear and nonlinear frac-

tional stochastic delay dynamical systems with Wiener noise under cer-
tain assumptions.

The advantage of such results is that we have opened the possibility for a coop-
erative investigation to solve several issues, for instance, combining the methods
of this paper to study the control theory, one may solve stability results such
as finite time and Ulam-Hyers stability in a similar way considered in [2], and
null controllability analogue for linear and nonlinear case of the results of this
paper to hold for a class of problems governed by fractional stochastic time-delay
differential equations in finite dimensional spaces. On the other hand, we plan
to extend our results to a Caputo type time-delay system of fractional stochastic
differential equations with nonpermutable matrices in the forthcoming paper.
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