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ON SOME PROPERTIES OF LIMIT CYCLES OF THE

BIRYUKOV EQUATION

YUSIF S. GASIMOV, SHARIF E. GUSEYNOV, AND JUAN E. NÁPOLES VALDÉS

Abstract. The present paper is the first of a series of works planned
by the authors to study some qualitative properties of Liénard type
equations solutions with derivatives of both natural and fractional order.
In the present paper, we investigate the behaviour of limit cycles of
the Biryukov equation, which is an important from the applicability
standpoint special case of the classical Liénard equation.

1. Introduction

The classic Liénard equation concerning an unknown function x = x (t) 6≡
const is called the equation

ẍ+ f (x) ẋ+ g (x) = 0, (1.1)

where f ∈ C1
{
R1
}
, g ∈ C1

{
R1
}
, at that f (−x) = f (x) and g (−x) = −g (x)

for ∀x ∈ R1.
Let us consider (1.1) in the segment [α1, α2] , boundaries of which will be spec-

ified later for one particular case – for the Biryukov equation (looking ahead, we

clarify that α1 = −2
√

C
L , α2 = 2

√
C
L ). Then, by the Weierstrass approximation

theorem (for instance, see [55]), instead of the original equation (1.1), we can
consider the equation

ẍ+ F2n (x) ẋ+G2m−1 (x) = 0, (1.2)

where F2n (x) and G2m−1 (x) are the polynomials of degree 2n, n ∈ N ∪ {0} and

2m− 1, m ∈ N, respectively: F2n (x) =
n∑
k=0

a2kx
2k, G2m−1 (x) =

m∑
k=1

b2k−1x
2k−1,

at that F
(k)
2n (x)

unif.−−−→ f (k) (x) , and G
(k)
2m−1 (x)

unif.−−−→ g(k) (x) for ∀x ∈ [α1, α2] and
∀k = {0; 1} .

The equation (1.2) is a general form for many equations describing some
kinds of the linear or nonlinear oscillatory processes incipient in physics, biol-
ogy, medicine and economics. For example:
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• At n = 0, m = 1, a0 = 2α, b1 = ω2
0 the equation (1.2) is the equation

of shock-excited oscillation of the harmonic oscillator with a dissipation
coefficient α (this coefficient having the dimension of frequency is often
called the attenuation constant) and a proper frequency ω0 (for instance,
see [15]):

ẍ+ 2αẋ+ ω2
0x = 0.

In spite of the fact that this equation describes the simplest oscillatory
systems, it allows one to study such an important phenomenon as res-
onance – the effect of a sharp increase in the amplitude of oscillations
when the frequency of action coincides with the natural frequency of the
system.
• At n = m = 1, a0 = −α, a2 = αβ, b1 = ω2

0 the equation (1.2) presents
the van der Pol tube generator equation, well known in radiophysics (for
instance, see [15], [1]):

ẍ− α
(
1− βx2

)
ẋ+ ω2

0x = 0,

where the parameter α > 0 shows how much the generator is excited; the
parameter β characterizes the amplitudes of the oscillations – as smaller is
β , as greater is the amplitude. The van der Pol generator equation reveals
a universal mechanism for the occurrence of both self-oscillations through
Poincare-Andronov-Hopf bifurcations and quasiharmonic and relaxation
oscillations (for instance, see [15], [1]). Note that the well-known Rayleigh
equation (for instance, see [11], [18], [50], [52])

ẍ+ σ
(
ẋ3 − ẋ

)
+ x = 0

which occurs in hydrodynamics (for example, when studying the hydro-
dynamic stability of the parallel incompressible and inviscid shear flow)
and in acoustics (for example, when studying statistical phenomena in
the propagation of sound in the ocean; when studying the oscillations of
a bubble in the field of acoustic pressure in a liquid, taking into account
the compressibility of the gas inside the bubble; in the study of the forma-
tion and propagation of acoustic waves in an electromagnetic medium),
after differentiation and replacement ẋ 7→ x, is reduced to the equation
of the van der Pol generator, in which α = σ, b = 3, ω0 = 1.
• At n = 0, m = 2, a0 = α, b1 = b3 = ω2

0 the equation (1.2) turns to the
Duffing equation (often called the Duffing oscillator; for instance, see [53],
[49]):

ẍ+ αẋ+ ω2
0

(
1 + x2

)
x = 0,

which, despite being the simplest model of the oscillator with reactive
nonlinearity, allows one to study the effects of nonlinear oscillatory sys-
tems such as nonisochronism, anharmonicity, and multistability.
• At n = 2, m = 1, a0 = λb, a2 = −λc, a4 = λd, b1 = ω2 the equation

(1.2) is the mathematical model for the colorectal myoelectrical activity
in humans, offered in [37] in the form of the following highly excited
oscillator, turning on at low values of the initial state and returning to
the zero state – to its equilibrium point:

ẍ+ ε
(
b− cx2 + dx4

)
ẋ+ ω2x = 0,
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where x characterizes the fluctuations of the transmembrane potential,
the frequency of which is determined by the quantity ω and the constants
b, c, d are chosen so that the equation is characterized by the zero stable
state and the unstable limit cycle, i.e. so that there are no oscillations,
and the zero point, corresponding to the zero activity of the oscillator, is
a stable point.

It should also be noted that some well-known non-linear equations or systems
of equations (for example, system of coupled nonlinear oscillators of van der
Pol, see [28], [3], [2]) describing various important from a practical point of view
processes (for instance, see [4], [12], [17] and respective references given there), can
be reduced to the equation of the form (1.1) (namely, to the equation of the form
(1.1), and not to the Liénard equation (1.1), since the conditions f (−x) = f (x) ,
g (−x) = −g (x) may not hold) and, therefore, to the equation of the form (1.2),
if only the process under consideration allows one to consider (for example, if
the process under consideration is periodic process: such process is, for example,
bipedal locomotor, i.e. bipedal musculoskeletal system of human, animal or robot
(see [4], [12] and respective references given there)). For example, the equation
of motion for a relativistic harmonic oscillator

ẍ+
(
1− ẋ2

) 3
2x = 0,

that firstly was suggested in [4] (see also [39] and [13]), is reduced to the equation

ẍ+
(

1 + 3x2
√

1− x2
)
ẋ+

(
1− x2

) 3
2 = 0,

i.e. to the equation of the form (1.1) with the functions f (x) =
(

1 + 3x2
√

1− x2
)
,

g (x) =
(
1− x2

) 3
2 (it is obvious that f (−x) 6= f (x) , g (−x) 6= −g (x) , therefore,

the reduced equation is not a Liénard equation). In [39], the problem of finding
the periodic solutions of the equation

y

(1− y2)
3
2

dy + xdx = 0

is investigated. This equation characterizes the trajectories of the solutions of
the original equation of motion for a relativistic harmonic oscillator in the phase
space (x, y = ẋ) with “strip” structure:

{
(x, y) : x ∈ R1, |y| < 1

}
. In [13], an

interesting approximate iterative algorithm, first proposed in [10], which, in our
opinion, is very promising, is applied to the original equation rather than to the
reduced equation of the form (1.1) motion for the relativistic harmonic oscillator
approach in the sense that it can be modified for the “peculiar demand” of many
of the higher order nonlinear ordinary differential equations.

In the general case, the equation (1.1) cannot be solved by the analytical meth-
ods: even for most of the above equations, which are not the most complicated
particular cases of the equation (1.1), no analytical solutions were found. Cur-
rently, there are many numerical methods for solving nonlinear equations and
systems of equations, in particular, equations of the form (1.1) and (1.2) (for in-
stance, see [8], [7], [33], [23], [24]; see also the fundamental textbooks [26] and [47]
on the theory and applications of nonlinear ordinary differential equations), which
have significantly different accuracy, stability, convergence rate, complexity. As
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shown in [45], questions of accuracy, stability, and complexity when choosing one
or another numerical method are especially relevant when conducting numerical
analysis of the self-oscillating circuits in the time domain: equations and sys-
tems of equations describing such schemes are almost always simultaneously are
oscillating and rigid, and, therefore, the effectiveness of the selected numerical
method for solving such equations requires additional research. Despite the fact
that there are many software packages for solving rigid and non-rigid systems of
ordinary differential equations (for instance, see [8], [7], [33], [23], [24]), each of
which contains one or more schemes and strategies for choosing a step and, most
likely, strategies for choosing the scheme itself, reliable theoretical comparison of
these packages is very difficult, since reliable theoretical comparison should take
into account the order of accuracy, A- and L-stability (for instance, see [24]), com-
plexity, etc. but high order requirements and, good stability and a small amount
of calculations for the same schemes often contradict each other, and a priori
impossible to say which is better – a high order of accuracy or a good resistance.
A theoretical comparison of step selection strategies is even less obvious.

In the next two sections, some properties of limit cycles of the Biryukov equa-
tion is investigated. The Biryukov equation is a special case of the classical
Liénard equation having inportant significance from the standpoint of its appli-
cation in the self-oscillating circuits’ systems in the time domain.

2. The Biryukov equation (Biryukov oscillator)

One of the special cases of the Liénard equation (1.1) is the Biryukov equa-
tion [5]), sometimes called the Biryukov oscillator, or simply the LC-oscillator
(inductance-capacitance oscillator), which describes the auto-oscillations and used
to model damped oscillators:

ẍ+
1

C

dR

dx
ẋ+

1

LC
x = 0, (2.1)

where the function x = x (t) characterizes the voltage on the capacitance of the
oscillator; by C = const > 0 is denoted the indicated linear capacitance of the
oscillator; L = const > 0 denotes the linear inductance of the oscillator; the
function R = R (x) describes the current-voltage characteristic of the nonlinear
resistive element of the oscillator, and it is required fulfillment of the condition

2R (0) = R (x) +R (−x) . (2.2)

The Biryukov equation (2.1) directly follows from the system of equations of
self-oscillation for the variable states of the oscillator (for instance, see [46]):{

−Cẋ = R+ Icurrent,

Lİcurrent = x,

where the function Icurrent = Icurrent (t) characterizes the inductance current.
Note that the equation (2.1) is not a special case of the Liénard equation (1.1)

if the condition (2.2) is not satisfied.
If in the equation (2.1) the conductivity function dR

dx takes a negative value
at any segment of the current-voltage characteristic of the nonlinear resistive
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element of the oscillator, it is quite possible that self-oscillations will occur in the
LC circuit of the oscillator.

If in the equation (2.1) approximate the current-voltage characteristic of the
nonlinear resistive element of the oscillator by the third power polynomial R (x) =

3∑
k=0

akx
k, where a0 = R (0) and a2 = 0, then the equation (2.1) will turn to the van

der Pol equation, the analytical solution of which cannot be obtained in explicit
form (only for the steady-state regime its analytical solutions are known, see [13]),
and only the educational-benchmark numerical solutions specially calculated with
high accuracy for some parameters of the equation (2.1) and the initial data (see
[5], [19]), and these training-reference numerical solutions were found at certain
points, which does not allow the acceptable calculation of the error rates. It
should be noted that even an exact solution of the equation (2.1) with a cubic
approximation of the function R = R (x) would not have any practical value,
since the accuracy of the approximation itself is insufficient.

In the work of [45], a rather deep comparative analysis of several basic modern
numerical methods was carried out (their effectiveness was also evaluated) to solve
the Biryukov equation (2.1) with piecewise-linear approximation of the current-
voltage characteristic of the nonlinear resistive element of the oscillator: the
obtained simple model allows firstly, to reduce the approximation error of the
current-voltage characteristics, and, secondly, to obtain the exact solution for the
stationary mode, which is the most important mode for practice (see [5]). Below
we will study some properties of the limit cycles of the equation (2.1) regardless
of the fulfillment or non-fulfillment of the condition (2.2) (as mentioned above,
in the Biryukov equation (2.1), the condition (2.2) is mandatory; if the condition
(2.2) is not satisfied, then the equation (2.1), which in itself is an important
equation from the point of view of application, ceases to be a particular case of
the Liénard equation and, therefore, is not the Biryukov equation).

3. Behavior of the limit cycles of the Biryukov equation

In this section, some properties of limit cycles of the Biryukov equation (3)
will be studying. For this purpose, in the equation (2.1) we pass to the polar
coordinate system introducing the designations ẋ = r sin (ϕ) , where r = r (t) > 0,
ϕ = ϕ (t) ∈ [0, 2π) (or, it is the same, ϕ = ϕ (t) ∈ (−π, π] ; for instance, see [51]).
Then instead of the equation (2.1) we get the following system:

cos (ϕ) ṙ − r sin (ϕ) ϕ̇ = r sin (ϕ) ,

sin (ϕ) ṙ + r cos (ϕ) ϕ̇ =
1

C

(
∂R (r cos (ϕ))

∂ϕ

−r tan (ϕ)
∂R (r cos (ϕ))

∂r
− 1

L
r cos (ϕ)

)
,

from which it is easy to find expressions for ṙ and ϕ̇ :

ṙ =
1

LC

(
L

1

r

∂R (r cos (ϕ))

∂ϕ
− L tan (ϕ)

∂R (r cos (ϕ))

∂r

− (1− LC) cos (ϕ)) r sin (ϕ) ,
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ϕ̇ =
1

LC

(
L cos (ϕ)

1

r

∂R (r cos (ϕ))

∂ϕ
− L sin (ϕ)

∂R (r cos (ϕ))

∂r

+ (1− LC) sin2 (ϕ)− 1
)
.

The obtained expressions allow us to rewrite the equation (2.1) in the following
equivalent form:

dr

dϕ
=
rP1 (r, ϕ)

P2 (r, ϕ)
, (3.1)

where

P1 (r, ϕ) =

(
L tan (ϕ)

∂R (r cos (ϕ))

∂r
+ (1− LC) cos (ϕ)

)
r

−L∂R (r cos (ϕ))

∂ϕ
,

P2 (r, ϕ) =

(
L
∂R (r cos (ϕ))

∂r
− (1− LC) sin (ϕ) +

1

sin (ϕ)

)
r

−L cot (ϕ)
∂R (r cos (ϕ))

∂ϕ
.

The functions P1 (r, ϕ) and P2 (r, ϕ) have the following representations:

P1 (r, ϕ) = A (r, ϕ) sin (ϕ) +B (r, ϕ) cos (ϕ) ,

P2 (r, ϕ) = A (r, ϕ) cos (ϕ)−B (r, ϕ) sin (ϕ) ,

in which the essence of the functions A (r, ϕ) and B (r, ϕ) is quite obvious:

A (r, ϕ) = A (x, ẋ)|x=r cos(ϕ); ẋ=r sin(ϕ)

def
≡
(
L
dR (x)

dx
ẋ+ x

)∣∣∣∣
x=r cos(ϕ); ẋ=r sin(ϕ)

,

B (r, ϕ) = A (x, ẋ)|x=r cos(ϕ); ẋ=r sin(ϕ)

def
≡ −LC ẋ|ẋ=r sin(ϕ).

If we assume that the equation (3.1) has a closed periodic trajectory (limit
cycle) containing the origin, then it is possible (its occurrence depends on the
concrete expression of the functionR (r, ϕ)) that the solution r (ϕ) of the equation
(3.1) will be a single-valued function of the variable ϕ, for which dr

dϕ does not

tend to infinity for any value of the argument ϕ. Then the solution r (ϕ) will be
a periodic function of the period 2π, and therefore, we can write:

r (ϕ) =
α0

2
+

+∞∑
k=1

(αk cos (kϕ) + βk sin (kϕ)),

where {αk}k∈N∪{0} and {βk}k∈N are the Fourier coefficients, or in the equivalent

form:

r (ϕ) =

+∞∑
k=−∞

rke
ikϕ, (3.2)

where i is an imaginary unit; r0 = α0
2 ; rk =

α|k|−sgn(k)β|k|i

2 , k ∈ Z\ {0} .
Introducing the notation y = eiϕ, we obtain that the denominator and numer-

ator of the right hand side of the equation (3.1) are polynomials with respect to
variables r and y (more precisely, they are power series that we can cut off with
any desired accuracy – the conditions we are considering allow this to be done),
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and the solution (3.2) which now takes the form (as the Laurent series about the
origin)

r (y) =
+∞∑

k=−∞
rky

k, (3.3)

is a single-valued function that can have essential singularity at points y = 0 and
y =∞. Then, by virtue of the fact (for instance, see [16]), that any single-valued
integral of the differential equation

dr

dy
=
P̃1 (r, y)

P̃2 (r, y)
,

where P̃1 (r, y) and P̃2 (r, y) are polynomials, r (y) is a rational function, unless
the differential equation under consideration is a Riccati equation. This means
that on the right-hand side of (3.3) only a finite number of coefficients are nonzero

and, moreover, the solution of (3.3) takes the following form: r (y) = Q2N (y)
yN

,

where N is some integer. Therefore, having performed the inverse transformation

(r, y) 7→ (r, ϕ) , we obtain a trigonometric polynomial r (ϕ) =
N∑
k=0

rke
ikϕ, i.e. we

obtained that the closed trajectory of the equation (3.1) (or the original equation
(2.1), what is the same) is an algebraic curve if only the function R (r, ϕ) (or the
function R (x) in the original equation (2.1)) is such that

P1 (r, ϕ) 6=
(
U1 (ϕ) r + U2 (ϕ)

1

r
+ U3 (ϕ)

)
P2 (r, ϕ) ,

where Uj (ϕ) , j = 1, 3 are some functions of the argument ϕ.
Investigation of the case, when

P1 (r, ϕ) =

(
U1 (ϕ) r + U2 (ϕ)

1

r
+ U3 (ϕ)

)
P2 (r, ϕ) , (3.4)

i.e. when the equation is a Riccati equation, will not be carried out in this paper,
however, it should be noted that if the case (3.4) holds, then either all solutions
of the equation (3.1) are periodic or the number of periodic solutions, if any, is at
most two (in other words, either all solutions of the equation (2.1) are closed or
the equation (2.1) can have no more than two limit cycles); and if the equation
(3.1) has at least one periodic solution, then the original equation (2.1) has only
one singular point. It is appropriate to note here that in the fundamental work
[35] (see short notes [44], [36], in which the matter is the made some errors and
the ways to correct them) it was proved that the number of limit cycle of the
equation

ẋ =
P (x, t)

Q (x, t)
, (3.5)

where P (x, t) and Q (x, t) are polynomials of degree no higher than n, does not
exceed the number

6n3 − 7n2 + g (n)

2
, (3.6)
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where

g (n) =

{
16− 11n if n is an odd integer,

n+ 4 if n is an even integer.

It should be noted that the majorant estimate (3.6) is too rough (exaggerated)
estimate. The truth of the above follows, for example, from the well-known fact
(see [43]) that one can construct an equation of the form (3.5), which is asymp-
totically close to the differential equation of one-parameter family of concentric
circles

xdt+ tdt = 0

and which has exactly n2+5n−14
2 , n ≥ 3 limit cycles (i.e. there is an equation of

the form (3.5), having: for n = 3 exactly 5 limit cycles, for n = 4 exactly 11 limit
cycles, for n = 5 exactly 18 limit cycles, and so on).

The truth of this remark also follows from the fact proved in the underlying
paper [34] (using the results of this article should also be taken into account the
short notes [44], [36]) that, if P (x, t) and Q (x, t) are polynomials of the second
degree, then the equation (3.5) cannot have more than three limit cycles.

The Fig. 1 contains a printout of a program in Mathcad, version 14.0.0.163,
that implements the formula (3.6) for n = 1, 20. As can be seen from the Fig. 1,
when n = 2, i.e. when P (x, t) and Q (x, t) are polynomials of the second degree,
the upper bound (3.6) of the number of possible limit cycles of the equation (3.5)
is 13 (which is more than 4 times greater than the permissible value of 3).

Finally, we note that if in the equation (3.5) the condition

P (x, t) 6=
(
U1 (t)x2 + U2 (t)x+ U3 (t)

)
Q (x, t) (3.7)

is satisfied, where Uj (t) , j = 1, 3 are some functions of the argument t, and if
its reduced equation

dr

dϕ
=
rP̃ (r, ϕ)

Q̃ (r, ϕ)
,

where

P̃ (r, ϕ) = P (r cos (ϕ) , r sin (ϕ)) sin (ϕ) +Q (r cos (ϕ) , r sin (ϕ)) cos (ϕ) ,

Q̃ (r, ϕ) = P (r cos (ϕ) , r sin (ϕ)) cos (ϕ)−Q (r cos (ϕ) , r sin (ϕ)) sin (ϕ) ,

takes place the representation

P̃ (r, ϕ)

Q̃ (r, ϕ)
= Ũ1 (ϕ) r + Ũ2 (ϕ)

1

r
+ Ũ3 (ϕ) , (3.8)

where Ũj (ϕ) , j = 1, 3 are some functions of the argument ϕ, then the equation
(3.5) can have a countable number of periodic solutions that are not trigonometric
polynomials (but are reduced to them) (for instance, see [30], [25]). For example,
the next two equations:

ẋ =
Pex. 1 (x, t)

Qex. 1 (x, t)
and

ẋ =
Pex. 2 (x, t)

Qex. 2 (x, t)
, ,

where
Pex. 1 (x, t) = x3 − tx2 − t2x− t3,



ON SOME PROPERTIES OF LIMIT CYCLES OF THE BIRYUKOV EQUATION 329

Pex. 2 (x, t) = (1 + t)x2 + tx+ t3,

Qex. 1 (x, t) = x3 − tx2 + t2x− t3,

Qex. 2 (x, t) = x3 + t (1− t)x+ t2,

for which the condition (3.7) is satisfied, have the following reduced equations,
respectively:

dr

dϕ
= r cos (2ϕ) ,

dr

dϕ
= cos (ϕ) + sin (ϕ) ,

for which, obviously, (3.8) holds. The integral curves of the both equations are
shown in Fig. 2 and Fig. 3, respectively (implemented on Mathcad, version
14.0.0.163).

Now we consider the equation (2.1) taking into account the condition (2.2),
i.e. we consider the Biryukov equation, which, as already mentioned above, is
a special case of the Liénard equation. Above, starting from the place, where
the transition to the polar coordinate system was made in the equation (2.1), we
repeatedly proceeded from the fact that current-voltage characteristic of nonlin-
ear resistive element of the damped oscillator (2.1) possesses the properties we
need – mainly those or other quantitative properties (at the same time, it was
not required to satisfy the condition (2.2)).

Now, under the assumption that the condition (2.2) is satisfied in the equation
(2.1), we will try to find simple qualitative conditions for the conductivity function
dR
dx , the fulfillment of which ensures the uniqueness of the solution of the Biryukov
equation (2.1). To do this, we consider the equation of the curve P2 (r, ϕ) = 0,
whose left-hand side is the denominator of the right-hand side of the equation
(3.1), which is the reduced equation for the original equation (2.1).

The curve P2 (r, ϕ) = 0 (more precisely, the curve P̃2 (r, ϕ) = 0, where

P̃2 (r, ϕ) = 1
r sin (ϕ)P2 (r, ϕ)) can be interpreted as the intersection of the sur-

faces z1 (r, ϕ) and z2 (r, ϕ) , given by the formulas

z1 (r, ϕ) =
L

cos (ϕ)

∂R (r cos (ϕ))

∂r
− L

r sin (ϕ)

∂R (r cos (ϕ))

∂ϕ
,

z2 (r, ϕ) = (1− LC) tan (ϕ)− 2

sin (2ϕ)
.

Thus, let us consider the curve

P̃2 (r, ϕ)
def
≡ L sin (ϕ)

∂R (r cos (ϕ))

∂r
− L cos (ϕ)

1

r

∂R (r cos (ϕ))

∂ϕ

− (1− LC) sin2 (ϕ) + 1 = 0.

(3.9)

First of all, we note that from the equation (3.9) it immediately follows that
ϕ 6= πk

2 , k ∈ Z (since in this work we assume ϕ ∈ [0, 2π) , fulfilment of the

condition ϕ 6= πk
2 , k = 0, 3 is enough for us). We will call this the first fact. In

view of this fact, we will try to find conditions under which on each connected
component of the curve (3.9) the mapping r = r (ϕ) : [0, 2π) \

{
πk
2 , k = 0, 3

}
→

(0, +∞) is defined as a single-valued function of variable ϕ.
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Multiplying (3.9) by r2 and making replacement x = r cos (ϕ) in the obtained
expression, we come to the quadratic equation

LCy2 +

(
Lx

dR (x)

dx

)
y + x2 = 0, (3.10)

existence of real solution of which is ensured by the condition

dR (x)

dx
∈

(
−∞, −2

√
C

L

]
∪

[
2

√
C

L
, +∞

)
, (3.11)

ensuing from non-negativity of the discriminant of the equation (3.10). We will
call this the second fact.

Obviously, at dR(x)
dx ∈

(
−2
√

C
L , 2

√
C
L

)
the equation (3.10) has no real roots

and, therefore, the curve (3.9) has no connected components. From this, taking

into account ϕ̇ = − 1
LC P̃2 (r, ϕ) , it follows that ϕ̇ preserves its sign, i.e. ϕ = ϕ (t)

is a strictly monotone function in the case of dR(x)
dx ∈

(
−2
√

C
L , 2

√
C
L

)
.

To reason in a similar way, it is easy to verify that in this case ṙ also preserves
its sign (it has a negative sign for ϕ ∈

(
πk, π2 + πk

)
, k = {0; 1} and has a

positive sign for ϕ ∈
(
−π

2 + πk, πk
)
, k = {1; 2}).

From the condition (3.11) follows that the function R (x), which is the current-
voltage characteristic of the nonlinear resistive element of the damped oscillator

(2.1), should be a strictly monotonic function outside the interval

(
−2
√

C
L , 2

√
C
L

)
once R (x) is considered in R1, namely, R (x) strictly increases on the infinite right

half-interval

[
2
√

C
L , +∞

)
and strictly decreases on the infinite left half-interval(

−∞, −2
√

C
L

]
.

Thus, taking into account the above two facts, we can state that for the con-
nected components of the curve (3.9) we have the inequality
z1 (r, ϕ) ≥ 2

√
C

L3
, (r; ϕ) =

(
r > 0; ϕ ∈ [0, 2π) \

{
πk

2
, k = 0, 3

})
,

z1 (r, ϕ) ≤ −2

√
C

L3
, (r; ϕ) =

(
r > 0; ϕ ∈ [0, 2π) \

{
πk

2
, k = 0, 3

})
.

(3.12)

Now, let us assume ∃ϕ∗ ∈ [0, 2π) \
{
πk
2 , k = 0, 3

}
such that on the same con-

nected component of the curve (3.9) there are two different points (r1, ϕ
∗) and

(r2, ϕ
∗) , r1 6= r2, lying on the ray ϕ = ϕ∗. Then from (3.9) considering (3.12) we

obtain the identity equality

cos (ϕ∗)

(
∂R (r cos (ϕ∗))

∂r

∣∣∣∣
r=r1

− ∂R (r cos (ϕ∗))

∂r

∣∣∣∣
r=r2

)

= sin (ϕ∗)

((
1

r

∂R (r cos (ϕ∗))

∂r

)∣∣∣∣
r=r1

−
(

1

r

∂R (r cos (ϕ∗))

∂r

)∣∣∣∣
r=r1

)
,
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from which after the replacement x = r cos (ϕ∗) follows

dR (x)

dx

∣∣∣∣
x1=r1 cos(ϕ∗)

=
dR (x)

dx

∣∣∣∣
x2=r2 cos(ϕ∗)

. (3.13)

Consequently, in order to the curve (3.9) on each of its connected compo-
nent determine r as a single-valued function of the argument ϕ, some condi-
tion/requirement is necessary under which the identity equality (3.13) will not
take place

dR (x)

dx

∣∣∣∣
x1=r1 cos(ϕ∗)

6= dR (x)

dx

∣∣∣∣
x2=r2 cos(ϕ∗)

.

A sufficient condition/requirement of such kind is, for example, the requirement

of strict monotonicity of the conductivity function dR(x)
dx . However, it must be

emphasized that this requirement (i.e. strict monotonicity of dR(x)
dx ) is not the

unique condition sufficient for the single-value property of the function. One can
find weaker quantitative and/or qualitative ones instead of this requirement for
dR(x)
dx .
Now, let us try to find out the nature of the connected components of the curve

(3.9). To do this, we return to the equation (3.10), the solution of which is

y1, 2 =
−LxdR(x)

dx ±
√(

LxdR(x)
dx

)2
− 4LCx2

2LC
.

Four cases are possible here:{
x ≥ 0;

dR (x)

dx
∈

[
2

√
C

L
, +∞

)}
;

{
x ≥ 0;

dR (x)

dx
∈

(
−∞, −2

√
C

L

]}
;

{
x ≤ 0;

dR (x)

dx
∈

[
2

√
C

L
, +∞

)}
;

{
x ≤ 0;

dR (x)

dx
∈

(
−∞, −2

√
C

L

]}
.

Before studying these cases, we note that at the “finite boundary points” x = 0

and/or dR(x)
dx = ±2

√
C
L of these cases takes place y1 = y2 = ∓ x√

LC
. Therefore we

consider these cases at “internal points”.

Consider the first case when x > 0 and dR(x)
dx ∈

(
2
√

C
L , +∞

)
. For this case

we have y1 > − x√
LC

and y2 < − x√
LC
, which are obtained using the following two

chains of simple arithmetic operations, respectively:

dR (x)

dx
> 2

√
C

L
⇔ −4

√
L

C

dR (x)

dx
< −8⇔
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√
LC

(√
L

C

dR (x)

dx
− 2

)
x <
√
LCx

√√√√(√L

C

dR (x)

dx

)2

− 4, ∀x > 0⇔

−LxdR(x)
dx +

√(
LxdR(x)

dx

)2
− 4LCx2

2LC︸ ︷︷ ︸
y1

> − x√
LC

;

dR (x)

dx
> 2

√
C

L
⇔

√
LCx

(
2−

√
L

C

dR (x)

dx

)
︸ ︷︷ ︸

negative for ∀x>0

<
√
LCx

√√√√(√L

C

dR (x)

dx

)2

− 4︸ ︷︷ ︸
positive for ∀x>0

⇔

−LxdR(x)
dx −

√(
LxdR(x)

dx

)2
− 4LCx2

2LC︸ ︷︷ ︸
y2

< − x√
LC

.

For the second case when x > 0 and dR(x)
dx ∈

(
−∞, −2

√
C
L

]
from the expres-

sion for y1 immediately follows that y1 >
x√
LC
. Using the following chain of the

simple arithmetic operations, we obtain the estimate y2 <
x√
LC

:

dR (x)

dx
< −2

√
C

L
⇔(

L
dR (x)

dx

)2

+ 4L
√
LC

dR (x)

dx
+ 4LC <

(
L
dR (x)

dx

)2

− 4LC ⇔

⇒

√(
L
dR (x)

dx
+ 2
√
LC

)2

︸ ︷︷ ︸
=−

(
L
dR (x)

dx
+ 2
√
LC

)
︸ ︷︷ ︸

negative

<

√(
L
dR (x)

dx

)2

− 4LC

−x
(
L
dR (x)

dx
+ 2
√
LC

)
< x

√(LdR (x)

dx

)2

− 4LC

 , ∀x > 0⇔

−LxdR(x)
dx −

√(
LxdR(x)

dx

)2
− 4LCx2

2LC︸ ︷︷ ︸
y2

<
x√
LC

.

Consideration of the cases{
x < 0;

dR (x)

dx
∈

(
2

√
C

L
, +∞

)}
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and {
x < 0;

dR (x)

dx
∈

(
−∞, −2

√
C

L

)}
gives us exactly the same results as the results of the first two cases considered

above: if

{
x < 0; dR(x)

dx ∈
(

2
√

C
L , +∞

)}
then y1 > − x√

LC
and y2 < − x√

LC
; if{

x < 0; dR(x)
dx ∈

(
−∞, −2

√
C
L

)}
then y1 >

x√
LC

and y2 <
x√
LC
.

Putting together the results obtained regarding all four cases, we can write:

– if x = 0 and/or dR(x)
dx = ±2

√
C
L , then y1 = y2 = ∓ x√

LC
takes place;

– if dR(x)
dx ∈

(
2
√

C
L , +∞

)
and if x > 0 or x < 0, then the inequalities y1 >

− x√
LC

and y2 < − x√
LC

are take place the sense of which is quite obvious: straight

lines, which are parallel to the abscissa axis, intersect the curve (3.9) at no more
than two points, which are located on the opposite sides of the ray y = − x√

LC
of

the quadrantal angles II and IV;

– if dR(x)
dx ∈

(
−∞, −2

√
C
L

)
and if x > 0 or x < 0, then the inequalities

y1 > x√
LC

and y2 < x√
LC

are take place the sense of which is quite obvious:

straight lines, which are parallel to the abscissa axis, intersect the curve (3.9)
at no more than two points, which are located on the opposite sides of the ray
y = x√

LC
of the quadrantal angles I and III.

So, the results obtained allow us to formulate the following theorem.

Theorem 3.1. (I) If the current-voltage characteristic R (x) of the nonlinear
resistive element of the Biryukov damped oscillator (2.1) (regardless of the ful-
filment or non-fulfilment of the condition (2.2)) is such that the correspond-

ing reduced equation (3.1) is not the Riccati equation (i.e. dr
dϕ = rP1(r, ϕ)

P2(r, ϕ) 6=
U1 (ϕ) r + U2 (ϕ) 1

r + U3 (ϕ) , where Uj (ϕ) , j = 1, 3 are some functions of an
argument ϕ ), then the limit cycles of the Biryukov equation (2.1) (with or with-
out condition (2.2)), if any, represent an algebraic curve on the coordinate plane
xOẋ.

(II) If the current-voltage characteristic R (x) of the nonlinear resistive ele-
ment of the Biryukov damped oscillator (2.1) (with condition (2.2)) is such that

the values range of the conductivity function dR(x)
dx is the interval

(
−2
√

C
L , 2

√
C
L

)
,

then the curve P̃2 (r, ϕ)
def
≡ 1

r sin (ϕ)P2 (r, ϕ) = 0, where P2 (r, ϕ) is a denomina-
tor of the right-hand side of the reduced equation (3.1), has no connected compo-

nent; if the values range of the conductivity function is the region

(
−∞, −2

√
C
L

]
∪[

2
√

C
L , +∞

)
, on the left ray of which the conductivity function dR(x)

dx strictly de-

creases, and in the right ray – strictly increases, then the curve P̃2 (r, ϕ) = 0 has
connected components having the following properties: firstly, on each connected
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component, a function r (ϕ) :
{(

0, π2
)
∪
(
π
2 , π

)
∪
(
π, 3π

2

)
∪
(

3π
2 , 2π

)}
→ (0, +∞)

is a one-valued function; secondly,

• at dR(x)
dx = ±2

√
C
L there is x (t) = Ae

∓ t√
LC , ∀A ≡ const, i.e. ẋ± x√

LC
=

0;

• at dR(x)
dx ∈

(
−∞, −2

√
C
L

)
and x ∈ (0, +∞) (or at x ∈ (−∞, 0) ),

straight lines x = A ≡ const and the curve P̃2 (r, ϕ) = 0 cannot intersect
at more than two points, and these points can only located on the opposite
sides of the ray ẋ = x√

LC
of the coordinate angle I (respectively, of the

coordinate angle III for x ∈ (−∞, 0) ) of the plane xOẋ, i.e. there are

x1 (t) > A1e
t√
LC and x2 (t) < A2e

t√
LC , where A1 and A2 are arbitrary

constants.

• at dR(x)
dx ∈

(
2
√

C
L , +∞

)
and x ∈ (0, +∞) (or at x ∈ (−∞, 0) ), straight

lines x = A ≡ const and the curve P̃2 (r, ϕ) = 0 cannot intersect at more
than two points, and these points can only located on the opposite sides of
the ray ẋ = − x√

LC
of coordinate angle IV (respectively, coordinate angle

II for x ∈ (−∞, 0) ) of the plane xOẋ, i.e. there are x1 (t) > A1e
− t√

LC

and x2 (t) < A2e
− t√

LC , where A1 and A2 are arbitrary constants;

Now we give two real physical examples that illustrate part (II) of the Theo-

rem 3.1 (i.e. when the curve P̃2 (r, ϕ) has no connected components).
Example 1. Let us consider the system{

ẍ− ωB ẏ = 0,

ÿ + ωBẋ = ωE ,
(3.14)

which describes (in a first-order approximation) in R3 motion of charged particles
with mass m and charge q in a crossed electromagnetic field, where the electric

field
−→
E directed along the axis

−−→
OY (i.e.

−→
E = (0, E, 0)T , dimE = V ·m−1) is

oriented perpendicularly to the magnetic field
−→
B directed along the axis

−→
OZ (i.e.

−→
B = (0, 0, B)T , dimB = T ).

In (3.14), ϑ0 is the initial velocity of the particle (i.e.
−→
ϑ (t) = (ϑ0, 0, 0)T ,

dimϑ0 ∼ m · s−1) which is considered to be constant and to lie in the XOY
plane (obviously, in this case particles’ trajectories also lie in the XOY plane);

ωE = qE
m ; ωB = qB

m .
It is easy to verify that after transition to a new coordinate system moving with

some constant speed ϑnew relative to the original coordinate system the system
(3.14) transforms into {

ẍ− ωB ẏ = 0,

ÿ + ωBẋ = ωE − ωBϑnew,
which, setting ϑnew = ωE

ωB
, easily transforms into the Biryukov equation (2.1)

(condition (2.2) is satisfied) with ωB = 1√
LC
, R (x) = − t

Lx (t) + R̃ (t) , where

R̃ (t) is any function independent of x, for example, R̃ (t) ≡ 0. Under initial
conditions x (0 + 0) = 0, ẋ (0 + 0) = ϑ0, y (0 + 0) = 0, ẏ (0 + 0) = 0 the following
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functions are the solution of (3.14): x (t) = −ϑnew−ϑ0
ωB

sin (ωBt) + ϑnewt, y (t) =
ϑnew−ϑ0

ωB
(1− cos (ωBt)) .

In Fig. 4 one can see dynamics of trajectory of the above-described charged
particles on the phase plane (implemented in Mathcad, version 14.0.0.163).

Example 2. Now, consider another simple example – dynamics of a nonhar-
monic oscillator of arbitrary amplitude (not necessarily small oscillations) with
damping λ and restoring force sin (ωx (t)) . Then, denoting by x (t) the angle of

deviation of the oscillator from the vertical axis
−→
OZ, we will get the equation

ẍ−λẋ+ω2 sin (ωx) = 0, which, obviously, is a special case of the classic Liénard
equation (1.1) with f (x) = −λ ≡ const and g (x) = ω2 sin (ωx) . In Fig. 5 one
can see integral curves of the considered nonharmonic oscillator with damping
values λ going from 0 to 5 with a step of 1 (implemented in Mathcad, version
14.0.0.163).

4. Briefly on the announced in the abstract a series of works on
fractional order Liénard type equations planned by the

authors

As it was mentioned in the Section 2 of the present paper, the Biryukov equa-
tion (2.1) (all the more the Liénard equation) cannot be solved by analytical
methods, and existing numerical methods have significantly different accuracy,
stability, convergence rate, and complexity. Therefore, the question arises of
choosing a more efficient numerical method. However, evaluating the effective-
ness of a concrete numerical method is an independent non-trivial problem that
requires complex additional theoretical studies, and a comparative analysis of
the effectiveness of several numerical methods for solving (2.1) is an even more
complex problem.

Incommensurably more complex difficulties have to be dealt with when study-
ing nonlinear differential equations with fractional order derivatives, in particular,
Liénard-type equations with fractional derivatives. Currently, such kind of equa-
tions are quite relevant in connection with their widespread use as mathematical
models for studying various processes with anomalous kinetics (for instance, see
[38], [54]). It should be emphasized here that, unlike the classical derivative
of an integer order, for differential equations with fractional order derivatives
there are many non-identical definitions (for instance, see [48], [31], [40], [27],
[32], [29], [20]), and these non-identical definitions generate classes of differential
equations with fractional order derivatives, in particular, of equations of Liénard-
type, which are close in form, but are significantly different in properties. Most
often, in practice, the concepts of left-side fractional derivatives of order α > 0
in the sense of Riemann-Liouville (for instance, see [48])

RL
c Dα

t x
def
≡ 1

Γ (n− α)

dn

dtn

t∫
c

x (τ) dτ

(t− τ)α−n+1 ,



336 YUSIF S. GASIMOV, SHARIF E. GUSEYNOV, AND JUAN E. NÁPOLES VALDÉS

in the sense of Caputo (for instance, see [9] as well as [31])

C
c D

α
t x

def
≡ 1

Γ (n− α)

t∫
c

x(n) (τ) dτ

(t− τ)α−n+1 ,

or in the sense of Hadamard (for instance, see [22] as well as [48])

H
c D

α
t x

def
≡ α

Γ (n− α)

t∫
c

(
log

t

τ

)n−α−1x (τ)

τ
dτ

are used. Here n = [α] + 1 if α /∈ N, and n = α if α ∈ N; Γ (. . .) is the
gamma function that is known as the Euler integral of the second kind: Γ (z) =
∞∫
0

τ z−1e−τdτ, Re (z) > 0.

In the general case, the solution of a differential equation with fractional order
derivative in the sense of Riemann-Liouville can contain an integrable singularity
of order at most (1− α) at the point t = c, while the existence of derivative
in the sense of Riemann-Liouville implies the boundedness of the solution at
this point. It is known (for instance, see [31]) that if there exists a finite limit
lim
t→c+0

x (t) = x (c) , then derivatives in the sense of Riemann-Liouville and in the

sense of Caputo are related by

RL
c Dα

t x = C
c D

α
t x+

1

Γ (1− α)

x (c)

(t− c)α
.

In the work [6] some well-known methods for constructing point groups of
transformations were modified and evolved for differential equations with frac-
tional order derivatives, understood both in the sense of Riemann-Liouville and
in the sense of Caputo.

It is important to note that all definitions including foregoing satisfy the prop-
erty that the fractional derivative is linear. This is the only property inherited
from the first derivative by all of the definitions: many of these definitions do
not satisfy the well-known rules and properties of derivatives of the natural order,
such as the derivative of the product, the derivative of the quotient, the chain rule,
the semigroup property, etc. A successful attempt to eliminate these drawbacks
is the concept of a local fractional derivative, which arose only in 2014 in [29],
when the definition of “conformable fractional derivative” was introduced, which
is defined in terms of a certain quotient incremental, in consequence of which a
local fractional derivative appears: the “conformable fractional derivative” of a
function x (t) of order α ∈ (0, 1) is the operator Tα defined by

Tαx (t)
def
≡ lim

ε→0

x
(
t+ εt1−α

)
− x (t)

ε
, ∀t ∈ R++.

In 2018 by the works [20], [41] a local fractional derivative of a new type, “non-
conformable fractional derivative”, was introduced. Exactly within the scope of
this concept, the next work of the authors will devoted to the study of some
qualitative properties of the solutions of one hybrid differential-fractional system
of Lienar type obtained from the classical model (see [14], [21], [42]).
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5. Conclusion

In the present paper, the behaviour of limit cycles of the Biryukov equation
(Biryukov oscillator) is investigated. A quantitative condition (in the form of
equality) with respect to the current-voltage characteristic of nonlinear resistive
element of the Biryukov damped oscillator is found, upon fulfilment of which
the closed trajectory of the equation is an algebraic curve, otherwise, either all
solutions of Biryukov equation are periodic or the number of periodic solutions,
if any, is not more than two. In other words, it is shown that either all solutions
of the Biryukov equation are closed or the Biryukov equation can have no more
than two limit cycles. In addition, in this paper, we found a simple sufficient
condition of a qualitative nature with respect to the conductivity function of the
Biryukov oscillator, the fulfilment of which ensures the uniqueness of the solution
of the Biryukov equation: such a sufficient condition is the condition of strict
monotonicity of the current-voltage characteristic of the nonlinear resistive ele-
ment of the Biryukov damped oscillator outside a certain interval, the boundaries
of which also identified.
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Figure 1. Listing of MathCad 14 Program realizing the upper
bound of the number of limit cycles of the equation (3.5).
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Figure 2. Integral curves of the first reduced equation.



ON SOME PROPERTIES OF LIMIT CYCLES OF THE BIRYUKOV EQUATION 343

Figure 3. Integral curves of the second reduced equation.
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Figure 4. The phase-plane portrait of the dynamics of the trajec-
tory of charged particles with m-mass and q-charging in a crossed
electromagnetic field: x(t) is shown in black, and y(t) is shown in
blue.
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Figure 5. Integral curves of the nonharmonic oscillator from the
illustrative Example 2 (realization listing in Mathcad is included
also).


