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FRACTAL SIMILARITIES BETWEEN THE DISTRIBUTION OF

PRIMES AND NUCLEOTIDES IN DNA

CARLO CATTANI

Abstract. In this paper, a simple method for the analysis of auto-
correlation on symbolic-numerical 1D time series is shortly described.
This method is based on the definition of a suitable indicator matrix (of
correlation) and the corresponding 2D binary image, which is a special
kind of recurrence plot. The main parameters of complexity and multi-
fractality are defined on the binary images and will be used to single out
the main properties of the 1D time series by characterizing the fractal
parameters computed on the corresponding 2D images. The short (win-
dow) wavelet transform will be also discussed by showing that clusters
of wavelet coefficients might be used to single out some more informa-
tion about the existence of possible hidden rule concerning the sequence
distribution. As application of this method, the multifractal analysis of
the prime number distribution and nucleotide distribution in DNA will
be given to single out their fractal nature and the main similarities and
distinctions in between the two.

1. Introduction

In recent years, there has been a rising interest for the statistical analysis of
time series which show some fractal characteristic, such as DNA sequences and
prime number distributions. DNA sequences were studied by using not only
methods from signal analysis and frequency analysis but also based on fractal
analysis [21, 22, 36, 39, 2-5,7-14,30-32,41-44,48-53,59-62,67-74,82-97]. Almost all
these papers are aiming to single out some hidden characteristics of the time
series, mostly related to complexity and multi-fractality, and to visualize the
existence of regular (recursive) patterns in the data distributions (see e.g. [1,
2, 6, 7, 32, 36, 62, 91, 94, 9-12,21-24,41-45,48-52,67-69,82-85]). The existence
of some hidden rules, might be detected by showing the existence of long range
(auto or cross)-correlation on data [3, 5, 8, 11, 13, 14, 30, 31, 50, 59, 60, 61,
73, 74, 88, 89, 90, 91, 95, 97]. However, this method depends on the numerical
representation (with or without redundancy), on the length of the sequence, and
on the intrinsic nature of data as well. Therefore, some interesting attempts
to add more information about data distributions and the existence of patterns
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might be given also by the fractal and wavelet analysis (see e.g. [2, 5, 6, 7, 36,
71, 86, 20-24]). Wavelet theory (see e.g. [18, 33, 75, 92]), due to the localization
properties of wavelets, is a powerful method for the local analysis of signals thus
being an expedient tool for singling out the dependence of each term of the time
series with their closest. Also multifractal nature of the time series [56, 57, 58]
can be easily detected by wavelet analysis [92].

An alternative original method for the analysis of time series is to convert
the 1D signal into a suitable corresponding 2D image, which preserves the au-
tocorrelation of the elements. It was originally suggested by Eckmann et Al.
[37, 40, 65, 66] for the analysis of nonlinear dynamical systems by the so-called
recurrence plots. A recurrence plot is simple the graphical representation of a
binary map which show the relation (auto-correlation) among elements. On this
plot the main parameters of complexity and multi-fractality can be computed
and they will be taken as measure of the complexity of the original 1D image.
Frequency analysis, it is used to easily visualize some correlations. By using the
frequency we can define, for large sequences, same complexity parameters like
randomness, fractal dimension, complexity, entropy. These parameters enable us
to classify sequences when we compare one to another. Wavelet analysis as well
can be done on the 2D image and the qualitative results obtained on this image
can be also used to classify the original 1D time-series. The main advantage of
this method is that, in the 2D image, there surprisingly appear some typical tex-
tures corresponding to each complexity state: chaotic, trend, periodic, disrupted
state. Wavelet analysis, due to its localization property, will be used to show that
some intrinsic properties of the sequence can be better singled out by analyzing
the short wavelet transform coefficients. Some unexpected characteristic of the
1D sequence will become more evident by clustering the wavelet coefficients of
2D representation. We will see that by using fractal analysis (mainly based on
the computation of the fractal dimension) and wavelet analysis of the 2D binary
images we can obtain some interesting results for time-series, whose behavior
and auto-correlation is still unknown such as the prime number distribution and
nucleotide distribution in DNA.

This paper is organized as follows: the binary map is defined in section 2 while
the main parameters for measuring the complexity of fractal sets will be defined
in section 3. Section 4 resumes some fundamentals remarks on wavelet analysis
and the segmented wavelet analysis. Binary plots on dynamical systems will be
discussed in section 5. Section 6 shows the application of the fractal analysis
on the prime number distribution and their representation with Ulam method
is given in 7. The fractal analysis of DNA and the distribution of nucleotides is
described in section 8. Random walks are discussed in section 9. In the conclusion
some comments on future perspectives are given.

2. Indicator function

The existence of patterns or typical distributions in a time series can be singled
out by the existence of some auto-correlation among the elements of the sequence.
The auto-correlation can be computed by some classical methods and it measures
the relationship of an element with the remaining elements of the sequence. A
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simple method to visualize the auto-correlation is based on the indicator function
and the corresponding correlation matrix as follows.

Let S = {xk}k=1,...,N , T = {yk}k=1,...,N be two given sequences and R a binary
relation, such that

xhRyk = TRUE ∨ FALSE (h, k = 1, ..., N) ,

the indicator function (map) is the binary map

u : S × T → {0 , 1}

such that for xh ∈ S, yk ∈ T ,

uRh,k
def
= uR(xh, yk) =

{
1 if xhRyk = TRUE

0 if xhRyk = FALSE
. (2.1)

We call uR(h, k) the cross-correlation matrix, auto-correlation matrix when
T = S.

In this case, the indicator function is the symmetric map

u : S × S → {0 , 1}

such that for h ∈ S, k ∈ S

uhk
def
= u(h, k) =

{
1 if xhRxk = TRUE

0 if xhRxk = FALSE
. (2.2)

According to (2.2), the indicator of a N -length sequence can be easily repre-
sented by the N ×N sparse symmetric matrix {uhk} of binary values {0, 1}, as
the following table, where the relation R is the following

xhRxk = TRUE iff xh is a prime ∧ xk is a prime

so that for the first 11 numbers we have the table

...
...

...
...

...
...

...
...

...
...

... . .
.

11 1 1 0 1 0 1 0 0 0 1 . . .
10 0 0 0 0 0 0 0 0 0 0 . . .
9 0 0 0 0 0 0 0 0 0 0 . . .
8 0 0 0 0 0 0 0 0 0 0 . . .
7 1 1 0 1 0 1 0 0 0 1 . . .
6 0 0 0 0 0 0 0 0 0 0 . . .
5 1 1 0 1 0 1 0 0 0 1 . . .
4 0 0 0 0 0 0 0 0 0 0 . . .
3 1 1 0 1 0 1 0 0 0 1 . . .
2 1 1 0 1 0 1 0 0 0 1 . . .
uhk 2 3 4 5 6 7 8 9 10 11 . . .

where both on bottom and on left there is the sequence S, and the composition
table is done according to the indicator values uhk.

This table (2.2) can be plot in 2 dimensions (Fig. 1) by putting a dot where
uhk = 1 and white blank when uhk = 0 thus giving rise to the so-called dot-
plots, recurrence plots [37, 40], binary images (see e.g. [17, 26, 28] and references
therein). Our aim is to characterize the intrinsic properties of the original time
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series by analysing the map (2.2), through some parameters of complexity-multi-
fractality computed on the binary image Fig. 1. .
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Figure 1. Indicator matrix with n ≤ 10, n ≤ 20 (top) and n ≤
50, n ≤ 100 (bottom) on the distribution of primes.

3. Parameters of complexity and fractality

In this section, will be reviewed some of the most popular parameters based
on frequency distribution, which can measure the complexity of a sequence, (see
e.g. [24] and references therein). Their computation can be simplified if done on
the binary image thus enabling also the measure of fractality as ratio of filling a
2D space domain.

Let vx(n) the frequency of the element x among the first n elements of the
N -length sequence S, with n ≤ N and px(n) the corresponding probability, i.e.
px(n) = vx(n)/n. The probability and the frequency count can be extended to a
set of points in R2 by the ratio

p1(r) = v1(r)/r
2

being r the size of a gliding square.
In particular, for a given n-length sequence, the most popular parameters are

as follows (see also [21, 22, 24, 23]).

R: Randomness:

R
def
= 1− σ(ν1(n), ν2(n), . . . , νM`

(n))
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being σ the variance, so that R = 1 for random sequences and R = 0 for
a non-random sequences

K: Complexity:

K =
1

n
log

n!

ν1(n)!ν2(n)! . . . νM`
(n)!

H: Normalized Shannon entropy [81, 96]: is defined, on a numerable finite
set, as

H (n) = − 1

log `

∑
w∈A`

pw (n)×
{

log pw (n) if pw (n) 6= 0
0 if pw (n) = 0

(3.1)

where pw (n) should be computed for large sequences. According to Eq.
(2.2), we will approximate its value with

pw (n) ∼=
1

n

n∑
i=1

uwi, (w ∈ S, 1 ≤ n ≤ N) .

D: Fractal dimension: is computed on the dot-plot, by the box counting al-
gorithm [11, 12], as the average of the number p(n) of 1′s in the randomly
taken n× n minors of the N ×N indicator matrix uhk

D =
1

2N

N∑
n=2

log p(n)

log n
.

D: Lacunarity: is also computed on the dot-plots, and it is the measure
of gaps in the distribution (see e.g. [28] and references therein). It can
be easily computed by the ratio of the second and first moment of the
distribution

Λ (r) =

N∑
k=1

[pr (k)]2[
N∑
k=1

pr (k)

]2
as a function of the gliding box size r on the binary image.

In two dimensions this parameter can be easily computed on the binary
image, by using the indicator function on a squared gliding box with r-
length side, so that let uhk (h, k = 1, ...N) be the indicator matrix which
gives rise to the binary plot. On the binary image we take a squared
gliding box with r-length side, so that

µr (h, k) =

h+r−1∑
s=h

k+r−1∑
t=k

ust

is the frequency of “1” within the box. In other words in each square
we compute the number of “1”. The corresponding probability is

pr (h, k) =
1

r2

h+r−1∑
s=h

k+r−1∑
t=k

ust
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Then the box moves over the binary image in order to cover different
pieces of the image and to obtain the probability distribution

{pr (h, k)} h,k=1,..,N

As before the lacunarity is defined as a function of the square side, by
the ratio of the second and first moment of the distribution

Λ (r) =
σ2 [pr (h, k)][
pr (h, k)

]2 + 1

D: Succolarity: is computed on the dot-plot, by the box counting algorithm
[11, 12], as the average of the number p(n) of 1′s in the randomly taken
n× n minors of the N ×N indicator matrix uhk.

The succolarity of a fractal set is a parameter which quantifies the
capacity of flooding through the set. Thus, succolarity depends on the
obstacles along a fixed direction. The succolarity as a fractal measure
in image analysis has found some interesting applications [34, 35]. In
particular, it gives a simple algorithm to evaluate the succolarity on a
binary image.

Following the method suggested in [34, 35] the algorithm is based on
the box counting method. However, in order to take into account the
physical concept of flow and the corresponding, the pixels of the images
have to be rearranged. The image is divided into equal box sizes BS(k)

of side length k. The succolarity, along a given direction ~d, then is the
product of the percentage of the occupied box OP by the pressure PR
[34, 35], that is

SU
(
BS (k) , ~d

)
=

n∑
k=1

OP (BS (k)) PR (BS (k) , pc)

n∑
k=1

PR (BS (k) , pc)

(3.2)

where, OP is the occupation percentage, with respect the full image,
k is an index ranging from 1 to n, which corresponds to the number
of box. The occupation percentage of the k-th box is OP (BS(k)) and
PR(BS(k), pc) is the pressure applied on the centroid of the k-th box,
being pc the centroid of the box.

Example: For the computation of the succolarity we apply the algo-
rithm (3.2) on the following indicator matrix:

...
...

...
...

...
... . .

.

0 0 0 0 0 1 . . .
1 0 1 0 1 0 . . .
0 0 0 1 0 0 . . .
1 0 1 0 1 0 . . .
0 1 0 0 0 0 . . .
1 0 1 0 1 0 . . .
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The flow along the direction from top left corner to bottom right corner
changes the previous matrix into the follwoing (only two barriers are
shown) 

0 0 0
... 0

... . .
.

0 0 0 0 0 1 . . .
111 0 1 0 111 0 . . .
0 111 0 1 0 111 . . .
1 0 111 0 1 0 . . .
0 1 0 111 0 1 . . .
1 0 1 0 111 0 . . .


so that the pressure is 6. While the flow along the direction of the main
diagonal (i.e. bottom left corner to the top right corner), changes the
indicator matrix into (only two barriers are shown)

...
... 111

... 1
... 111

0 111 0 1 0 111 . . .
111 0 1 0 111 0 1
0 1 0 111 0 1 . . .
1 0 111 0 1 0 1
0 111 0 1 0 1 . . .
111 0 1 0 1 0 . . .


where the pressure is 5 .

The bolded font shows the direction of flow (the first from top to bottom
and the second one from bottom to top). From the definition of succolarity
we expect that this parameter tends to zero when n largely increases, in
fact the flow tends to zero by increasing the number of barriers .

4. Wavelet Analysis

Another expedient method for the analysis of auto-correlation in a sequence is
the Wavelet analysis. Focusing on the discrete wavelet transform, this method is
based on the interpretation of the variability of wavelet coefficients. These coeffi-
cients, in fact, give a description of local abrupt changes and variance. However,
since their value decay to zero quite rapidly as the scale factor goes to infin-
ity, it has been proposed a short (window) discrete wavelet transform, where
only the first 4 coef-ficients are taken into consideration. Wavelet analysis has
been already extensively applied to the analysis of biological signals [5, 7, 60, 97]
focussing on the complexity and heterogeneity.

We will consider in the following the Haar wavelet basis (see e.g. [21, 22, 24])
made by the so-called scaling functions:

ϕnk(x)
def
= 2n/2ϕ(2nx− k) , (0 ≤ n , 0 ≤ k ≤ 2n − 1) ,

ϕ(2nx− k) =

 1 , x ∈ Ωn
k , Ωn

k
def
=

[
k

2n
,
k + 1

2n

)
,

0 , x 6∈ Ωn
k ,

(4.1)
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and by the Haar wavelets:

ψnk (x)
def
= 2n/2ψ(2nx− k) , ||ψnk (x)||L2 = 1 ,

ψ(2nx− k)
def
=


−1 , x ∈

[
k

2n
,
k + 1/2

2n

)
,

1 , x ∈
[
k + 1/2

2n
,
k + 1

2n

)
, (0 ≤ n , 0 ≤ k ≤ 2n − 1) ,

0 , elsewhere .
(4.2)

The discrete Haar wavelet transform is the N × N matrix WN : KN ⊂ `2 →
KN ⊂ `2 which maps the time series YYY into the vector of wavelet coefficients
βββN = {α , βnk }:

WNYYY = βββN

βββN
def
= {α, β00 , . . . , βM−12M−1−1} ,

YYY
def
= {Y0, Y1, . . . , YN−1} , (2M = N) .

(4.3)

The matrix WN can be easily computed by some recursive product [15, 16, 21,
22, 24] so that with N = 4 ,M = 2, we have [21, 22, 24]

W4 =



1

2

1

2

1

2

1

2

−1

2
−1

2

1

2

1

2

− 1√
2

1√
2

0 0

0 0 − 1√
2

1√
2


. (4.4)

From Eq. (4.3) with M = 2, N = 4, by explicit computation, we have

α =
1

4
(Y0 + Y1 + Y2 + Y3)

and [19, 20, 21] 

β00 =
1

2
(Y2 − Y0 + Y3 − Y1)

β10 =
1√
2

(Y0 − Y1) ,

β11 =
1√
2

(Y3 − Y2) .

So that the first wavelet coefficient α represents the average value of the se-
quence and the other coefficients β, also called detail coefficients, are strictly
connected with the first order properties (jumps and variance) of the discrete
time-series.
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This analysis, performed in 1D-sequences can be extended to 2D-sequences
as follows. Let XXX,YYY , be two N -length 1D sequences and let us define the p-
parameter short wavelet transform which consists in the subdivision of the given
sequence into p-length segments and apply the wavelet transform to each segment
[19, 20, 21, 22, 23, 24]. With p = 4, from the N = 2M -length complex vector
YYY , which is subdivided into 2M−2 segments, the 4-parameter short Haar wavelet
transform, locally performed by the matrix (4.4), gives the complex vector

W4(YYY ) = βββ + iβββ∗

with

βββ = W4<(YYY ) =
(
α , β00 , β

1
0 , β

1
1

)
, βββ∗ = W4=(YYY ) =

(
α∗ , β∗00 , β

∗1
0 , β

∗1
1

)
.

From there we obtain the cluster of points

(W4<(YYY s),W4=(YYY s)) , s = 0, . . . , 2M − 2

in the 4-dimensional space

(α , α∗)×
(
β00 , β

∗0
0

)
×
(
β10 , β

∗1
0

)
×
(
β11 , β

∗1
1

)
.

This algorithm enables us to construct clusters of wavelet coefficients and to
study the correlation between the real and imaginary coefficients [21, 22, 24].

5. Recurrence plots for dynamical systems

In the qualitative analysis of a dynamical system a major roe is played by the
computation of some physically meaningful statistical parameters such as the in-
formation dimension, entropy, Liapunov parameters and some more parameters
related to complexity. These parameters might give some characterizing proper-
ties of the dynamical system that can help to classify the nature of the dynamical
system. In [37] it was shown that this characterization can be realized by a sim-
ple binary plot (recurrence plot) associated with the orbit which describes the
dynamical system. In doing so the analysis of the orbit (one-dimensional time
series) is transferred into the analysis of a two-dimensional binary image. As
stated in [37] “the information obtained from recurrence plots is often surprising,
and not easily obtainable by other methods”

Let us assume, without restrictions, that the dynamical system is a one-
dimensional system so that the solution is the n-length sequence S = {xk}k=1,...,n

representing the solution x(t) at time t = k, (k = 1, . . . , n < ∞). For a given
distance δ we can define the boolean operator (indicator function)

uδ : S × S → {0 , 1} , δ > 0

such that for xh ∈ S, xk ∈ S

uδhk
def
= uδ(xh, xk) =

{
1 , if |xh − xk| ≤ δ

0 , if |xh − xk| > δ .
(5.1)

Since h, k correspond to two time instances, the recurrence plots are somehow
a visualization of the auto-correlation in time of the sequence values.

Matrix (5.1) can be plotted in 2 dimensions (Fig. 1) by putting a dot where
uhk = 1 and white spot when uhk = 0.
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5.1. Example. For instance for the classical Cauchy problems of the elastic
vibrations 

d2x

dt2
+ x = 0

x|t=0 = 3 ,
dx

dt

∣∣∣∣
t=0

= 1

and vibrations with damping
d2x

dt2
+ 0.08

dx

dt
+ x = 0

x|t=0 = 3 ,
dx

dt

∣∣∣∣
t=0

= 1

with
n = 100 , δ = 0.2

we have the orbits and recurrence plots of Figure 2

a) b)

c) d)

Figure 2. Orbits (left column) and recurrence plots (right col-
umn) with δ = 0.02 for the free vibration system a), b) and vibra-
tion with damping c), d).

It can be seen that the free-vibration recurrence plot shows the periodic behav-
ior while the recurrence plot for the vibration with damping shows the existence
of the so-called trend [37, 40].

More in general some special textures have been identified and taken for com-
paring the behavior of other dynamical systems (Fig. 3).
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a) b)

1 50

50

h2

c) d)

Figure 3. Typical textures in recurrence plots: a) homogenous,
b) periodic, c) disrupted and d) drift.

6. Prime number distribution

In this section the binary map and binary plots will be defined for the distri-
bution of primes. On the binary plots the main parameters of complexity and
multifractality will be computed to show the fractal nature of primes.

6.1. Preliminary remarks on Primes. Given two positive integers a and n
we say that a divides n (n is divisible by a) if and only if there exists a positive
integer b such that

n = ab .

In other words, given two positive integers a, n ∈ N

a|n⇔ ∃ b ∈ N : n = ab ,

in this case it is said that a is a divisor of n (or a divides n).
Let

Div(n)
def
= {m ∈ N : m|n}

be the set of positive divisors of n and |Div(n)| the cardinality of the set, we say
that a positive integer p is a prime if |Div(p)| = 2, so that an integer p is a prime
if its only positive divisors are 1 and p. The set of all primes is

P def
= {p ∈ N : |Div(p)| = 2}

and a fundamental elementary theorem of Arithmetic states that every integer
larger than 1 can be expressed as a product of primes, so that any positive integer
has a unique prime factorization (up to a suitable ordering), and primes play the
role of atoms for the positive integers.
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It was known, already by Euclid’s time, that the number of primes is infinite,
i.e. |P| =∞, however it is still unknown how they are distributed within N.

If we define the counting function, π(x) : R⇒ N, as

π(x) = |Px| , Px
def
= {p ∈ P : p ≤ x} , Px ⊆ P

it has been conjectured by Gauss that π(x) asymptotically tends to x/ log x, i.e.

π(x) ∼ x/ log x (6.1)

so that the prime number theorem

lim
x→∞

π(x)

x/ log x
= 1

holds.

6.2. Global fractal estimate by the correlation matrix. Let us define the
binary map on prime distribution as follow:

uhk
def
= u(h, k) =

{
1 if {h ∈ P} ∧ {k ∈ P} = TRUE

0 if {h ∈ P} ∧ {k ∈ P} = FALSE
, (h, k ∈ N) , (6.2)

and let p(x), x ∈ R be the probability to find a prime at the natural number x.
For large values of x it is

p(x) ∼=
π(x)

x

(6.1)
=

1

log x

So that, according to Gauss conjecture, the possibility to find some primes is
vanishing for higher values of x, so that for higher values of n we find much more
primes, but this probability reduces to zero

Let us compute the number of 1 in the minor 2m−n× 2m−n of the indicator
matrix 2m × 2m.

If we count the number of 1 in the n × n indicator matrix as a function of n
we have the plot of frequencies (Fig. 4) which is similar to a Cantor function,
thus suggesting us that the primes are distributed (within the indicator matrix)
as fractals.

100 200 300

2000

4000

Figure 4. Frequencies of 1 in the indicator matrix (n ≤ 350).
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The binary plot of prime distribution (see Fig. 1) looks like the Cantor dust.
So that we can assume that the binary plot of the distribution of primes is similar
to a Cantor dust. We can compute the fractal dimension of the binary plot of
primes and show that

Theorem 6.1. The fractal dimension of the binary plot for the distribution of
primes is

√
2.

Proof: By using the indicator matrix it is possible to give a simple formula
which enables us to estimate the fractal dimension as the average of the number
p(n) of 1 in the randomly taken n × n minors of the N × N correlation matrix
uhk

D =
1

N

N∑
n=2

log p(n)

log n
. (6.3)

By a direct computation we obtain that the fractal dimension of the primes
distribution in the binary matrix (binary plots of Fig. 1) is roughly

√
2. �

From this theorem there folows and interesting functional equation for the
primes counting function π(x):

Theorem 6.2. The primes counting function fulfills the equation

π(x) + π(x)
1√
2 = 1 , (x→∞, x ∈ N) (6.4)

Proof: Taking into account the definition of the fractal dimension (6.3), if we
count the number of zeroes and the number of ones in the indicator matrix we
have as a ratio

log[1− p(n)]

log p(n)
∼=

1√
2

which is equivalent to

log[1− π(x)]

log π(x)
=

1√
2

.

from where (6.4) follows.
�

6.3. Complexity. The existence of repeating motifs, periodicity and patchiness
can be considered as a simple behavior of sequence. While non-repetitiveness or
singularity might be taken as a characteristic feature of complexity. In order to
have a measure of complexity, for an n-lenght sequence, it has been proposed [10]
the following

K = log Ω1/n

with

Ω =
n!

π(n)!

Thus we can show the following

Theorem 6.3. The complexity for prime distribution is K =
1

3
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Proof: By using a sliding n-window [10] over the full sequence v(k) one can
visualize the distribution of complexity on partial fragment of the sequence. It
is interesting to notice that although there is an increasing complexity, for the
first numbers of the sequence n ≤ 400 there is a constant trend to complexity
K ∼= 0.3333... which is given by the least square fit (Fig. 5). �

100 200 300 400

50

100

Figure 5. Complexity for the first 400 primes and its correspond-
ing least square fit.

7. Statistics on Ulam Spiral

In this section we consider a 2D distribution of primes according to the so-
called Ulam spiral [87]. In order to find some patterns in prime distribution
integer can be arragend along a rectangular spiral. This is equivalent to map the
1D sequence of integers into a 2D sequence as follows (see Fig 6):

1 {0, 0}
2 {1, 0}
3 {1, 1}
4 {0, 1}
5 {−1, 1}
6 {−1, 0}
7 {−1,−1}
8 {0,−1}
9 {1,−1}
10 {2,−1}
11 {2, 0}
...

...

If we select from the above sequence only the prime numbers we obtain the so-
called Ulam spiral (Fig. 6) so that primes seem to be distributed along some
straight (mostly diagonal) lines in the plane.
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Figure 6. Primes distribution on a rectangular spiral: first 87
primes (left) and 853 (right).

It should be noticed that along the Ulam spiral, there is a ono-to-one map λ
between N and the points of the spiral (with integer coordinates) in <2

λ : N 7→ γ ⊂ <×<
so that

λ(n) = (a, b) , (n ∈ N; (a, b) ∈ γ ⊂ <×<; a ∈ Z, b ∈ Z)

and
λ−1(a, b) = n .

This bijective map can be considered also between N and the complex space
C so that each natural number corresponds to a complex number (with integer
coefficients)

λ(n) = z
def
= a+ ib , (n ∈ N; a, b ∈ Z; z ∈ C) . (7.1)

It has been observed that since primes are odd numbers (except 2) they are
distributed (in the plane) along some alternate diagonal lines. However, it is still
unclear how they are distributed along these lines. Some information, about the
distribution of primes, can be obtained by the following theorem

Theorem 7.1. In the Ulam spiral, if n is a prime number the remainder on
division of |λ(n)2| by 2 is 0, i.e.

Mod [|λ(n)2|, 2] = 0 , n > 2 (7.2)

so that, according to (7.1)

a2 + b2 = 2k , (k ∈ N; a, b ∈ Z) (7.3)

Proof: It can be easily obtain by recursion. Let ns define the set of primes
belonging to the s-th spiral so that

λ(ns)
def
= {λ(n)} , (n ∈ s− th spiral)

It can be easily show that

n ∈ ns ⇐⇒ |<[λ(n)]| ∨ |=[λ(n)]| = s .
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In particular it is

n1 = {2, 3, 5, 7}
and

λ(n1)
def
= {λ(2), λ(3), λ(5), λ(7)} .

Let us show that when s = 1, the primes on the first circle of the Ulam spiral,
but 2, fulfill (7.3). By a direct computation it can be seen that

λ(3) = {1, 1}, λ(5) = {−1, 1}, λ(7) = {−1,−1}}
so that Eq. (7.2) is true , being

a2 + b2 = 2⇒ a = ±1, b = ±1 .

Assume that Eq. (7.2) holds for the s-th spiral and show that it is true also for
the (s+ 1)-th spiral. It is enough to show it for n+ 1 ∈ ns+1 and n ∈ ns:

λ(n+ 1) = a± 1 + i(b± 1) = a+ ib± (1 + i)

that is

λ(n+ 1) = λ(n) + λ(1)

�
As a consequence, the following theorem holds:

Theorem 7.2. In the Ulam spiral, if n is an even number the remainder on
division of |λ(n)2| by 2 is 1, i.e.

Mod [|λ(n)2|, 2] = 1 , n > 2 (7.4)

so that, according to (7.1)

a2 + b2 = 2k + 1 , (k ∈ N; a, b ∈ Z) (7.5)

Proof: Let n be an odd number for which Eq. (7.3) holds true and show
that n + 1 (which is even number) fulfill Eq. (7.5). From λ(n) = (a, b) it is
λ(n + 1) = (a ± 1, b) or λ(n + 1) = (a, b ± 1). It is enough to show that these
values fulfill (7.5). For instance, it is

(a± 1)2 + b2 = 2k + 1

i.e.

a2 + b2 = 2k ∓ 2a

which is true according to (7.3).
�

Equation (7.3) is a necessary condition for a primality test, let us check on a
few examples:

• [k = 1] Eq. (7.3) becomes

a2 + b2 = 2

and the integer solutions are

a = ±1 , b = ±1

The corresponding points are

z1 = (−1,−1) , z2 = (−1, 1) , z3 = (1,−1) , z4 = (1, 1) .
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By the inverse map we get the numbers of the first spiral (s = 1) among
which there are prime numbers:

λ−1(z1) = 7 , λ−1(z2) = 5 , λ−1(z3) = 9 , λ−1(z4) = 3 ,

In this case the inverse map gives all primes of the first spiral together
with 9 (which is not prime).
• [k = 2] Eq. (7.3) becomes

a2 + b2 = 4

and the integer solutions are

a = ±2 , b = 0

and

a = 0 , b = ±2 .

The corresponding points are

z1 = (−2, 0) , z2 = (2, 0) , z3 = (0,−2) , z4 = (0, 2)

by the inverse map we get the prime numbers

λ−1(z1) = 19 , λ−1(z2) = 11 , λ−1(z3) = 23

and the integer (not prime) λ−1(z4) = 15.
• [k = 3] Eq. (7.3) becomes

a2 + b2 = 6

there not exist integer solutions for a and b.
• [k = 4] Eq. (7.3) becomes

a2 + b2 = 8

and the integer solutions are

a = ±2 , b = ±2 .

The corresponding point are

z1 = (−2,−2) , z2 = (−2, 2) , z3 = (2,−2) , z4 = (2, 2)

by the inverse map we get the prime numbers

λ−1(z2) = 7 , λ−1(z4) = 13

and the integer (not prime) λ−1(z1) = 21, λ−1(z3) = 25.

A general solution of (7.3) can be found in some special cases:

• [a = b , k = c2] The solution is

a = b = ±h , c ∈ N .

• [2k = c2] We have a Pythagorean triple so that the solution is

a = 2k(m2 − n2) , b = 4kmn , c = 2k(m2 + n2) , (m > n , k ∈ N)

where m and n are coprime and exactly one of them is even.
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Equation (7.3) can be used to test that to a given point in the plane doesn’t
correspond a prime and to find primes. For instance the number

z0 = (10, −13)

doesn’t correspond to a prime, in fact the sum

102 + 132 = 269

is not an even number. In fact, by the inverse map we have

λ−1(z0) = 726 ,

which is not a prime.
Analogously, given an even number e.g. 648 let us find a couple of integers so

that they sum up to 648
a2 + b2 = 648 .

We have as solution

z1 = (−18, 18), z2 = (−18, −18), z3 = (18, −18), z4 = (18, 18) .

By the inverse map we get
λ−1(z1) = 1297

which is a prime, while the others are not

λ−1(z2) = 1333, λ−1(z3) = 1369, λ−1(z4) = 1261,

It should be noticed that since primes are distributed along some spirals, the
absolute value of z grows within some fixed range (Fig. 7).
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Figure 7. On top, real (left) and imaginary (right) coefficients
of λ(p) along the first 30 spirals; on bottom, |λ(p)2| (left) and on
the right the ratio of the number of primes within the max-min
absolute value and those on the parabola x = |√y| along the first
30 spirals (corresponding to the first 522 primes)
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It can be also easily shown by a direct computation that if z = λ(n) is a prime
belonging to the ns spiral then (Fig. 8)

2k |zz|1/4 = ns , (k ∈ N) .

100 300 500 700 900

ns

20

40

Figure 8. Distribution of primes along the spirals

7.1. Cluster analysis of the wavelet coefficients of the complex primes
distribution. In this section the clusters of wavelet coefficients for the complex
representation of primes (along the Ulam spiral) will be analized.

The cluster algorithm will be applied to the complex representation sequence
of primes λ(p) , p ∈ Π, which is in the form

1, 1 + i,−1 + i,−1− i, 2, 2 + 2 i,−2 + 2 i,−2,−2 i, 3 + i, 3 + 3 i,−3 + 3 i,−3− i, . . .

and to the random walk on λ(p) (Fig. 9):∑
i

λ(pi) , (pii ∈ P) .

that is the sequence

1, 2 + i, 1 + 2 i, i, 2 + i, 4 + 3 i, 2 + 5 i, 5 i, 3 i, 3 + 4 i, 6 + 7 i, 3 + 10 i, 9 i,−3 + 6 i, . . .

For each complex representation of primes, along the spiral, there are 2 sets of
wavelet coefficients which correspond to the real and complex coefficient of the
complex values λ(n). If we consider the first 4263 primes of the spiral and com-
pute the 4-parameters discrete Haar wavelet transform, with the above clustering
algorithm we have the patterns of Fig. 10. In Fig. 11 the 8-parameters transform
is given.

It should be noticed that at the highest frequencies (Figs. 10,c,d , 11,f,g,h) the
wavelet coefficients are distributed along the axes. In other words the difference
between close complex numbers of the spiral ( corresponding to prime numbers)
is either real or pure imaginary. At the lower frequencies the wavelet coefficients
have discrete values bounded by∣∣β00 ± β∗00∣∣ ≤ π log2 n .
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8. Fractal analysis of DNA sequences

In this section the fractal analysis of DNA will be given. A DNA sequence is a
double strand helix, where the nucleotide on each strand is paired with the other
according to some complementary chemical rules. When one of the two strands
is linearly stretched we have a sequence of symbols as

{A, , C, A, T, G,A , T, .....}
Since there exist 3-length subsequences (codons) having some chemical -biological
meaning (related with proteins and then functionality) one of the main problem is
to understand if there exist an underlying rule for the distribution of nucleotides.
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The simplest analysis of DNA is based on the 4-alphabet of nucleotides

A1
def
= {A ,C ,G , T} (8.1)

being the nucleotides (nucleic acids): adenine (A), cytosine (C), guanine (G),
thymine (T), (see e.g. [24, 23]) and their corresponding complex numerical rep-
resentation [21, 22, 24, 23].
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Let SN be a N -length ordered linear sequence of nucleotides (8.1) the indicator
function is defined as [21, 22, 24, 23])

u : (SN )× (SN )→ {0 , 1} (8.2)

such that

u(xh, xk)
def
=

{
1 if xh = xk

0 if xh 6= xk
, (xh ∈ (SN ) , xk ∈ (SN )) , (8.3)

The indicator matrix ([21, 22, 27, 24, 23]), defined as uhk
def
= u(xh, xk) can be

used to obtain the two dimensional dot-plot (see e.g. Fig. 13).
Then the frequency of each symbol at the position k in the sequence can be

computed as the marginal frequency

νh(k)
def
=

1

k

k∑
j=1

u∗hj , (8.4)

so that
M∑̀
h=1

νh(k) = 1

As approximated value of probability to find the nucleotide A, C, G, T at the
position k in the sequence D`(SN ), can be taken the following

ph(k) ∼= νh(k) . (8.5)

It can be noticed that DNA sequences of a living organism resemble (Fig. 13)
random sequences, with some short range influence, built on the same alpha-
bet. This has been taken as an axiom of nucleotides distribution, so that DNA
sequences are often considered as Markov chain [83]. However, there are some
hidden rules in combining the nucleotides and these rules lead, during the evo-
lution, to a steady distribution. In fact, the more primitive is the sequence the
more randomly distributed are the nucleotides. It seems that, as a consequence
of the evolution, nucleotides move from a disordered aggregation toward a more
organized structure, shown by the growing islands in the dot plot. The biological
evolution is such that the challenge for the self organization might follow from
random permutations of a primitive disordered sequence so that the organiza-
tion, i.e. the complexity, is only the result of many arbitrary permutations of
randomness. During the challenge for complexity, DNA sequence becomes “less
random” and it looses some kind of energy.

By a random permutation of the nucleotides form each sequence we can obtain
a “new” sequence which has the same nucleotides but located in different places.
It can be easily seen by a direct computation that

Theorem 8.1. The fractal dimension computed on the binary image is invariant
for random permutation of nucleotides.

8.1. Spiral plot. Like for the distribution of primes, we can also visualize the
distribution of nucleotides by mapping each sequence into the integer points of a
spiral (Fig. 12) in R2, as the Ulam spiral [87]:

(SN ) 7→ (x, y) , (x, y ∈ Z)
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Figure 12. Distribution of nucleotides on a rectangular spiral.

8.2. Test Sequences. In the following, in order to single out the main features
of biological sequences, we can compare the DNA sequence with some test se-
quences. Let A` = {A, C, G, T} be the alphabet, we have the following recursive
sequences built on the alphabet

1.: Pseudo-randomN -length sequence of nucleotides is the sequence {Ri}`i=1,...,N

where ri is a symbol randomly chosen in the alphabet A`, like e.g. (` = 1):

{A, C, A, G, T, A, T, G, G, A, T, T, A, C, C, ,G . . .}

2.: Pseudo-periodic N -sequence of nucleotides with period π is the direct
sum of a given π-length pseudo-random sequence , such thatN = kπ, (k ∈
N) and Ri = Ri+π, e.g.

{A, C, A, G, A, C, A, G, A, C, A, G, A, C, A, G, . . .} , (π = 4)

When π = 1 we have a pseudo-random sequence.
3.: Recursive sequence with highest dispersion. At each step, taken 4 nu-

cleotides between each couple of nucletides are added the remaining, so
that at the 2nd step we have:

AAA CCC GGG TTT
AAA G T CCC A T GGG A C TTT

4.: Cantor sequence, is a recursive sequences as given in the previous item,
where the middle pair is removed, that is

AAA CCC GGG TTT
AAA G T CCC GGG A C TTT
AAA T C GGG TTT A G CCC GGG C T AAA CCC G A TTT
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5.: Cantor sequence, filled with random sequence. It is a Cantor sequences
as given in the previous item, where the middle part is filled with a random
sequence, that is

AAA CCC GGG TTT
AAA G T CCC C . . . A GGG A C TTT

Alternatively the filled part can be sequences of repeats.
6.: Fibonacci sequence. If we define the sum of words on the `-alphabet
{a0, a1, . . . , a`−1} as

ai + aj = a[i+j,|A`|], i, j = 0, 1, . . . , |A`| − 1

being [i + j, |A`|] the remainder of the division by |A`|, we can define as
Fibonacci sequence the following:

x1 = ai , x2 = aj , xn+2 = xn+1 + xn , (n ≥ 1 ; 0 ≤ i, j ≤ |A`| − 1) (8.6)

On the `-alphabet of words we can choose the initial pair of values
x1, x2, independently of their order, among 2-combinations with repeti-
tions on a set of |A`| elements, for a total of(

|A`|+ 1
2

)
pairs.

Example 1.
On the 4-alphabet of nucleotides

a0 = A , a1 = C , a2 = G , a3 = T

we can choose the initial pair among 10 multi-combinations. In this way
we obtain some repeat sequences, as follows:

x1 = a0 = A , x2 = a1 = C
000, 111, 1, 2, 3, 1,000, 111, 1, 2, 3, 1,000, 111 . . .

AAA, CCC, C, G, T, C, AAA, CCC C, G, T, C, . . .

or
x1 = a1 = C , x2 = a3 = T

111,333, 0, 3, 3, 2,111,333, 0, 3, 3, 2,111,333, . . .
CCC, TTT , A, T, T, G, CCC, TTT , A, T, T, G, . . .

Example 2.
On the 20-alphabet of amino-acids

a0 = M , a1 = E , . . . , a19 = W

we can choose the initial pair among 210 multi-combinations.
For instance with

x1 = a0 = M , x2 = a19 = W

the first 30 terms of the Fibonacci sequence are

0, 19, 19, 18, 17, 15, 12, 7, 19, 6, 5, 11, 16, 7, 3,
10, 13, 3, 16, 19, 15, 14, 9, 3, 12, 15, 7, 2, 9, 11, . . .
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that is

M, W, W, Y, K, C, P, H, W, N, T, S, A, H, D,
L, F, D, A, W, C, I, G, D, P, C, H, Q, G, S, . . .

Another sequence is as follows:

x1 = a0 = M , x2 = a18 = Y

the first 30 terms of the Fibonacci sequence are

0, 18, 18, 16, 14, 10, 4, 14, 18, 12, 10, 2, 12, 14, 6,
0, 6, 6, 12, 18, 10, 8, 18, 6, 4, 10, 14, 4, 18, 2, . . .

that is

M, Y, Y, A, I, L, R, I, Y, P, L, Q, P, I, N,
M, N, N, P, Y, L, V, Y, N, R, L, I, R, Y, Q, . . .

As last example we consider the sequence :

x1 = a6 = N , x2 = a12 = P

the first 30 terms of the Fibonacci sequence are

6, 12, 18, 10, 8, 18, 6, 4, 10, 14, 4, 18, 2, 0, 2,
2, 4, 6, 10, 16, 6, 2, 8, 10, 18, 8, 6, 14, 0, 14 . . .

that is

N, P, Y, L, V, Y, N, R, L, I, R, Y, Q, M, Q,
Q, R, N, L, A, N, Q, V, L, Y, V, N, I, M, I . . .

8.3. Fractal analysis on binay plots. In this section we consider the dot-plots
of some DNA sequnces.

If we plot the indicator matrix of some bacteria and compare it with a pseudo-
random and periodic sequence, we can see that (Fig. 13)

(1) the main diagonal is a symmetry axis for the plot
(2) there are some motifs which are repeated at different scales like in a

fractal;
(3) periodicity is detected by parallel lines to the main diagonal (Fig. 13, a2)
(4) empty spaces are more distributed than filled spaces, in the sense that

the matrix uhk is a sparse matrix (having more 0’s than 1’s);
(5) it seems that there are some square-like islands where black spots are

more concentrated; these islands show the persistence of a nucleotide
(Fig. 13,a2 and b1)

(6) the dot plot of archaea is very similar to the dot plot of a random sequence
(Fig. 13, a1 and h3)

It can be noticed that DNA sequences of a living organism resemble (Fig. 13)
random sequences, with some short range influence, built on the same alpha-
bet. This has been taken as an axiom of nucleotides distribution, so that DNA
sequences are often considered as Markov chain [83]. However, there are some
hidden rules in combining the nucleotides and these rules lead, during the evo-
lution, to a steady distribution. In fact, the more primitive is the sequence the
more randomly distributed are the nucleotides. It seems that, as a consequence
of the evolution, nucleotides move from a disordered aggregation toward a more



FRACTAL SIMILARITIES BETWEEN THE DISTRIBUTION OF PRIMES AND . . . 385

1 50

50

a3

1 50

50

a6

1 50

50

a2

1 50

50

a5

1 50

50

a1

1 50

50

a4

Figure 13. Indicator matrix for: a1) pseudo-random 70-length
sequence; a2) pseudo-periodic 70-length sequence with period π =
35; b1) 70-length Dna sequence of Mycoplasma KS1 bacter; h3)
70-length Dna sequence of Acidilobus Archaea.

organized structure, shown by the growing islands in the dot plot. The biological
evolution is such that the challenge for the self organization might follow from
random permutations of a primitive disordered sequence so that the organiza-
tion, i.e. the complexity, is only the result of many arbitrary permutations of
randomness. During the challenge for complexity, DNA sequence becomes “less
random” and it looses some kind of energy.
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From the graphical representation of the indicator matrix for bacteria and
amino acids we can see a more sparse matrix, but with some typical plots (Fig.
13)

These plots can immediately visualize the different distribution of nucleotide,
for instance in b1, there is a major distribution of A, T while on the contrary in
h3, the higher frequency belongs to C, G.

There is also another feature of these plots: they can be considered as a first
attempt to give some 2D representation of the DNA sequence, thus opening new
perspectives in a dynamical model representation of DNA. In the following section
will be considered some 2D phase plots of DNA thus enabling us to define the
recurrence plots as usually done with dynamical systems.

9. Random walks

In order to improve our analysis of correlation in DNA, we have to introduce
a digitalization of the symbolic alphabet and apply the usual methods of signal
analysis. In this section, the complex roots representation is proposed .

9.1. Complex Root Representation. The complex (digital) representation
of a DNA sequence of words is the map of the symbolic sequence of words into a
set of complex numbers and it is defined as

D`(SN )
ρ−→ C

such that for each xh ∈ D`(SN ) it is ρ(xh) ∈ C. The complex root representation
of D`(SN ) is the sequence of complex numbers YM`

= {yh}h=1,...,M`
defined as

yh = ρ(xh)
def
= e2πi(j−1)/|A`| , (j = 1, . . . , |A`|, h = 1, . . . ,M`) (9.1)

with i =
√
−1 the imaginary unit and M` = |A`|. There follows that, indepen-

dently on the alphabet, it is

|yh| = |e2πi(j−1)/|A`|| = 1 , (∀ `; h = 1, . . . ,M`)

being all complex roots, of the unit, located on the unit circle of the complex
plane C1. Therefore the complex representation of a DNA sequence is a sequence
of complex numbers

yh = ξh + ηhi , ξh = <(yh) , ηh = =(yh)

with yh given by (9.1).

9.2. Random walks. Random walk on the complex sequence YN is defined as
the series ZN = {zn}n=1,...,N

zn
def
=

∑
k=1,...,n

yk , n = 1, ..., N (9.2)

which is the cumulative sum{
y1 , y1 + y2 , . . . ,

n∑
s=1

ys . . . ,
N∑
s=1

ys

}
.

When yk = ρ(xk) with Xk ∈ D(SN ) we will properly call these walks as DNA
walk. When the yk are randomly generated we will call them random walks.
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It has been observed that DNA walks have the typical shape of fractals (see
Fig. 14).
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Figure 14. Walks on the first 200 nucleotides: b1) Mycoplasma
putrefaciens , b2) Mortierella verticillata , b3) Blattabacterium ,
h1) Aeropyrum pernix , h2) Acidianus hospitalis , h3) Acidilobus
saccharovorans.

9.3. Wavelet analysis on complex representation. As can be seen from
Fig. 14, random walks and random sequences have a very special patterns.

The cluster algorithm for wavelet coefficients applied to the DNA walks, shows
that the values of the wavelet coefficients belong to some discrete finite sets (Fig.
15). However, it should be noticed that this symmetry on detail coefficients is
lost for wavelet transform on longer segments. There follows that DNA sequences
have to be considered as a chain with short range dependence, in other words
any acid nucleic is attached to the chain on the base of a (short) correlation with
the previous acid nucleic.

The cluster algorithm applied to the DNA walks, shows that the values of
the wavelet coefficients belong to some discrete finite sets (Fig. 15). However,
it should be noticed that this symmetry on detail coefficients is lost for wavelet
transform on longer segments. There follows that DNA sequences have to be
considered as short range dependence, in other words any acid nucleic is attached
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to the chain on the base of a correlation of the previous acid nucleic. In other
words, if we look for a dependence rule on the DNA nucleotides this dependence
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might be summarized by a function as

xn+1 = f(xn) , (n = 1, . . . , N) .

It can be seen that the wavelet transform of h3 and its random permutation show
that there are some similarities only at the level of detail coefficients however the
more evolved sequences show a less energy.

10. Conclusions

In this paper some of the most popular methods of signal analysis for the anal-
ysis of complexity and multi-fractality of sequences have been shortly analyzed.
They are particularly efficient for the analysis of binary images, by showing some
properties that are difficult to single out on 1D sequences. Together with the
clustering of wavelet coefficients this method has enabled us for the first time to
characterize prime number distribution and nucleotide distribution.
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