
Proceedings of the Institute of Mathematics and Mechanics,
National Academy of Sciences of Azerbaijan
Volume 47, Number 1, 2021, Pages 46–54
https://doi.org/10.30546/2409-4994.47.1.46

BIFURCATION IN NONLINEAR STURM-LIOUVILLE

PROBLEMS WITH INDEFINITE WEIGHT AND SPECTRAL

PARAMETER IN THE BOUNDARY CONDITION

ULKAR V. GURBANOVA

Abstract. In this paper, we consider the nonlinear Sturm-Liouville
problem with an indefinite weight and a spectral parameter in the bound-
ary condition. We establish the existence of four families of global solu-
tions branches bifurcating from the points of the line of trivial solutions
and possessing the usual oscillation properties.

1. Introduction

We consider the nonlinear Sturm-Liouville problem

`y ≡ −(p (x) y′)′ + q(x)y = λr(x) y + g(x, y, y′, λ), x ∈ (0, 1), (1.1)

b0y(0) = d0p(0)y′(0), (1.2)

(a1λ+ b1)y(1) = p(1)y′(1), (1.3)

where
(i) p ∈ C1[0, 1], q, r ∈ C[0, 1], p > 0, q ≥ 0 and r changes sign on [0, 1],
(ii) b0, d0, a1, b1 are real constants such that

|b0|+ |d0| > 0, b0 d0 ≥ 0 and, if b0 = 0, then q 6≡ 0, and a1 > 0, b1 ≤ 0. (1.4)

(iii) g ∈ C
(
[0, 1]× R3

)
and satisfy the following conditions:

ug(x, u, s, 0) ≤ 0, (x, u, s) ∈ [0, 1]× R2; (1.5)

g(x, u, s, λ) = o (|u|+ |s|) as |u|+ |s| → 0, (1.6)

uniformly in (x, λ) ∈ [0, 1]× Λ, for any bounded interval Λ ⊂ R.
Problems of the form (1.1)-(1.3) arise in the study of various problems of

mechanics, physics and biology; for example, problem (1.1)-(1.3) with a1 = 0
arise from a selection-migration model in population genetics (see [10, 12]).

Bifurcation of solutions of nonlinear Sturm-Liouville problems with a definite
weight function was studied in [2, 5, 8, 17-19]. These papers prove the existence
of unbounded global continua of nontrivial solutions that having fixed oscilla-
tion count and emanating from bifurcation points and intervals surrounding the
eigenvalues of the corresponding linear problems. Similar results for nonlinear
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Sturm-Liouville problems with definite weight functions and a spectral parame-
ter in the boundary conditions have been obtained in [2, 6]. In the case when
the weight function changes sign the bifurcation of solutions of nonlinear Sturm-
Liouville problems have been studied in recent works [3, 4, 16] in which shows
the existence of four families of such global continua.

In this paper, we study behavior of global continua of solutions of problem
(1.1)-(1.3) bifurcating from all trivial solutions corresponding to the eigenvalues
of the linear problem obtained from (1.1)-(1.3) by setting nonlinear term g to
zero.

2. Preliminary

We consider the linear Sturm-Liouville problem

(p(x)y′(x))′ + q(x)y(x) = λr(x)y(x), x ∈ (0, 1),
b0y(0) = d0p(0)y′(0), (a1λ+ b1)y(1) = p(1)y′(1).

(2.1)

Remark 2.1. Theorem 3.2 of [7] implies that the spectral problem (2.1) has a two
infinite sequence of real and simple eigenvalues λn±, n = 1, 2, . . . satisfying

0 < λ1+ < λ2+ < . . . < λn+ < . . .

and

0 > λ1− > λ2− > . . . > λn− > . . . .

Moreover, the eigenfunction yn±(x), n ∈ N, corresponding to the eigenvalue λn±
have exactly n− 1 simple zeros in (0, 1).

It is well known that problem (2.1) reduces to the eigenvalue problem for a pair
of linear operators A : D(A) ⊂ H → H and R : H → H, where H = L2(0, 1)⊕C
is a Hilbert space with inner product

(ŷ, v̂) = ({y, α}, {v, β}) =

1∫
0

y(x) v(x) dx+ a−11 α β̄, (2.2)

D(A) = {ŷ = {y, α} ∈ H : y, py′ ∈ AC[0, 1], `(y) ∈ L2(0, 1),
b0y(0) = d0p(0)y′(0), α = a1y(1)},

Aŷ = A{y, α} = {`(y), p(1)y′(1)− b1y(1)},
and

Rŷ = R{y, α} = {ry, α}.
Therefore, problem (1.1)-(1.3) is equivalent to the following spectral problem

Aŷ = λRŷ, ŷ ∈ D(A), (2.3)

i.e., the eigenvalues λn,±, n ∈ N, of problem (2.1) and the operator A coincide,
and between the eigenvectors, there is a one-to-one correspondence

yn,± ↔ ŷn,± = {yn,±, αn,±}, αn,± = a1 yn,±(1).

Since a1 > 0 it follows from [13, 20] that A is a self-adjoint operator on D(A).

Lemma 2.1. The operator A is definite positive on D(A).
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Proof. In view of (1.4), by (2.2) for any ŷ ∈ D(A) we have

(Aŷ, ŷ) =
1∫
0

`(y) (x) y(x) dx+ a−11 (p(1)y′(1)− b1y(1)) a1y(1) =

1∫
0

{
p (x) | y′(x)|2 + q(x)| y (x)|2

}
dx− p (1)y′(1)y(1) + p (0)y′(0)y(0) +

p(1)y′(1)y(1)− b1|y(1)|2 =
1∫
0

{
p (x) | y′(x)|2 + q(x)| y (x)|2

}
dx+

N [y]− b1|y(1)|2 > 0,

where

N [y] = (b0/d0) y
2(0) ≥ 0 for d0 6= 0, N [y] = 0 for d0 = 0. (2.4)

The proof of this lemma is complete.
Along with problem (2.3) we consider the following eigenvalue problem

Aŷ − λRŷ = µŷ, ŷ ∈ D(A), (2.5)

which is equivalent to the regular Sturm-Liouville problem with a spectral pa-
rameter in boundary condition:

(p(x)y′(x))′ + q(x)y(x)− λr(x)y(x) = µy(x), x ∈ (0, 1),
b0y(0) = d0p(0)y′(0), (a1λ+ b1)y(1) = p(1)y′(1).

(2.6)

It follows from [13] that for each λ ∈ R the eigenvalues of (2.6) (or (2.5)) are real
and simple, and forms an unboundedly increasing sequence {µn(λ)}∞n=1. More-
over, the eigenfunction yn(x, λ) corresponding to µn(λ) has n− 1 simple zeros in
(0, 1).

Remark 2.2. The number λ is an eigenvalue of (1.1)-(1.3) if and if µn(λ) = 0.

We introduce the following notations:

bc0 = {y ∈ C1[0, 1] : b0y(0) = d0y
′(0)},

ˆbc0 = {ŷ : y ∈ bc0},
bcλ1 = {y ∈ C1[0, 1] : (a1λ+ b1)y(1) = p (1)y′(1)} for each λ ∈ R.

As is known (see [11, 14]) that the n-th eigenvalue of (2.5) can be characterized
as:

µn(λ) = max
V̂n−1

min
ŷ ∈ ˆbc0

{
(Aŷ, ŷ)− λ(Rŷ, ŷ)

(ŷ, ŷ)
: (ŷ, v̂) = 0, v̂ ∈ V̂n−1

}
,

where V̂n−1 is any set of linearly independent functions v̂j ∈ ˆbc0, j =, 2, . . . n.
Then it follows that

µn(λ) = max
Vk−1

min
y ∈bc0

R(y) :

1∫
0

y(x)ν(x)dx+ y(1)ν(1) = 0, v ∈ Vn−1


where

R(y) =

1∫
0

{
p (x) y′2(x) + q(x)y2 (x)

}
dx− λ

1∫
0

r (x)y2(x)dx+N [y]

1∫
0

y2(x)dx+ b1y2(1)

, (2.7)
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and
Vn−1 = {y : ŷ ∈ V̂n−1}.

Let (λ, y) be a solution of (2.1). Then multiplying both sides of (1.1) by y(x),
integrating this result from 0 to 1, and using boundary conditions (1.2) and (1.3)
we obtain

1∫
0

{
p (x)y′2(x) + q(x)y2(x)

}
dx+N [y] = λ


1∫

0

r(x)y2(x)dx+ a1y
2(1).

 (2.8)

By (1.4) it follows from (2.8) that

1∫
0

r(x)y2(x)dx+ a1y
2(1) > 0 if λ > 0,

1∫
0

r(x)y2(x)dx+ a1y
2(1) < 0 if λ < 0.

(2.9)

3. Classes of usual oscillation count and reducing problem
(1.1)-(1.3) to the equivalent operator equation

Let E be the Banach space E = C1[0, 1] ∩ bc0 with the usual norm

||y||1 = max
x∈[0,1]

|y(x)|+ max
x∈[0,1]

|y′(x)| ,

and let Ê be the Banach space Ê = E ⊕ C with the norm

||ŷ||1 = ||{y, α}||1 = ||y||1 + |α| .
If {y, α} ∈ D(A), then y′ ∈ AC[0, 1] in view of p ∈ C1[0, 1]. Hence it follows

that y ∈ C1[0, 1] and D(A) ⊆ Ê.
For each fixed λ ∈ R let by Sσ, νn, λ, n ∈ N, σ ∈ {+ , −} and ν ∈ {+ , −} we

denote the set of functions y ∈ E that satisfy the following conditions:
(i) y ∈ bcλ1 ,
(ii) y(x) has exactly n− 1 simple zeros in (0, 1),

(iii) σ
1∫
0

r(x)y2(x)dx+ a1y
2(1) > 0,

(iv) lim
x→0+

νy(x) = 1.

Now for each n ∈ N, each σ ∈ {+ , −} and each ν ∈ {+ , −} let Sσ,νn,λ and Sσ,νn
be sets are defined as follows:

Sσ, νn =
⋃
λ∈Rσ

Sσ, νn, λ,

Sσn = Sσ, +n ∩ Sσ,−n .

For each n ∈ N and each σ ∈ {+ , −} the sets Sσ,+n , Sσ,−n and Sσn are open subsets
in E. Moreover, if ŷ ∈ ∂Sσn , then either

(i) there is a η ∈ [0, 1] such that y(η) = y′(η) = 0, or

(ii)
1∫
0

r(x)y2(x)dx+ a1y
2(1) = 0.

Let now

Ŝσ,+n = {ŷ ∈ Ê : y ∈ Sσ,+n }, Ŝσ,−n = {ŷ ∈ Ê : y ∈ Sσ,−n },
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and

Ŝσn = Sσ,+n ∪ Sσ,−n .

We define the continuous operators R : Ê → C0[0, 1] and G : R × Ê →
C0[0, 1]⊕ C by

R(λ, ŷ) = R(λ, {y, α}) = {r(x)y, α}, α = a1y(1),

and

G(λ, ŷ) = G(λ, {y, α}) = {g(x, y, y′, λ), 0},

respectively, where C0[0, 1]⊕ R has norm given by

||ŷ||0 = ||{y, α}||0 = ||y||0 + |α|, ||y||0 = max
x∈[0,1]

|y(x)|.

Then (1.1)-(1.3) is reduced to the following equivalent problem

Aŷ = λRŷ +G(λ, ŷ), (3.1)

i.e., between the solutions (λ, y) and (λ, ŷ) of problems (1.1)-(1.3) and (3.1) there
is a one-to-one correspondence

(λ, y)↔ (λ, ŷ), ŷ = {y, α}, α = a1y(1). (3.2)

Since λ = 0 is not eigenvalue of linear problem (2.1) it follows from [6, Lemma
3.3] that there exists

A = A−1 : C0[0, 1]⊕ C→ D(A),

and is a continuous and compact operator.
Let R : Ê → Ê and G : R× Ê → Ê be the operators defined by

R = AR and G = AG,

respectively. Then R and G are also continuous and compact operators. More-
over, it follows from (1.6) that

G(λ, ŷ) = o (||ŷ||1) as ||ŷ||1 → 0, (3.3)

uniformly in λ ∈ Λ (see [2, 4]).
It is obvious that the nonlinear eigenvalue problem (1.1)-(1.3) (or (3.1)) can

be rewritten in the following equivalent operator equation

ŷ = λRŷ + G(λ, ŷ). (3.4)

By (3.3) problem (3.4) is linearizable, and the linearization of this problem at
ŷ = 0̂ = {0, 0} is given by

ŷ = λRŷ. (3.5)

Note that problem (3.5), in turn, is equivalent to problem (2.3) (or (2.1)).
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4. Global bifurcation from zero in problem (1.1)-(1.3)

The following results are needed in the sequel.

Lemma 4.1. If (λ, y) is a nontrivial solution of (1.1)-(1.3) such that y ∈ ∂Sσ, νn ,
then y ≡ 0.

The proof of Lemma 4.1 is similar to the proof of [1, Lemma 1.1].

Lemma 4.2. Let (λ, y) is a nontrivial solution of (1.1)-(1.3). Then λ 6= 0.

Proof. Multiplying both sides of (1.1) by y(x), integrating the result from 0
to 1, and taking into account boundary conditions (1.2) and (1.3) we get

1∫
0

{
p (x) y′2(x) + q(x) y2(x)

}
dx+N [y] = λ

1∫
0

y2(x)dx+

1∫
0

g(x, y(x), y′(x), λ)y(x)dx.

If λ = 0, then it follows from this relation that

1∫
0

{
p (x)y′2(x) + q(x)y2(x)

}
dx+N [y] =

1∫
0

g(x, y(x), y′(x), 0)y(x)dx.

(4.1)

By virtue of (2.4) the left hand-side of (4.1) is positive, while by condition (1.5)
the right hand-side of this relation is nonpositive, giving a contradiction. The
proof of this lemma is complete.

Theorem 4.1. For each n ∈ N, each σ ∈ {+ , −} and each ν ∈ {+ , −} there ex-

ists a continuum Ĉσ, νk of solutions of problem (1.1)-(1.3) which contains (λn, σ, 0̂)

is contained in (Rσ × Ŝσ, νn ) ∪ {(λn, σ, 0̂)} and is unbounded in R× Ê.

Proof. By Remark 2.1 it follows from [15, Ch. 4, § 2, Theorem 2.1] that for

each n ∈ N and each σ ∈ {+ , −} the point (λnσ, 0̂) ∈ Rσ × Ê is a bifurcation

point of problem (3.4) and a connected branch Ĉσ∗n of nontrivial solutions cor-

responds to this point. Let Ĉσn = Ĉσ∗n ∪ {(λnσ, 0̂)}. Then it follows from [17,
Theorem 1.3] that either

(i) Ĉσn is unbounded in R× Ê, or

(ii) there exists (n′, σ′) 6= (n, σ) such that (λn′, σ′ , 0̂) ∈ Ĉσn .

Since Ĉσn is connected in R× Ê, Lemma 3.2 implies that Ĉσn ⊂ Rσ × Ê. Next,

if (λ, ŷ) ∈ Ĉσn and is near (λn, σ, 0̂), then by [17, Lemma 1.24] we have

ŷ = γŷσ+
n + ŵ, (4.2)

where ŵ = o (|γ|) and ŷσ+
n is an unique eigenfunction corresponding to the eigen-

value λσn of (3.5) such that ŷσ+
n ∈ Ŝσ,+n and ||ŷσ+

n ||1 = 1. Recall that Ŝσn is an

open set in R× Ê, and consequently,

ŷ ∈ Sσn and (Ĉσ∗n ∩ B̂ε) ⊂ Rσ × Ŝσn
for all small ε > 0, where B̂ε = {ŷ ∈ Ê : ||ŷ||1 < ε}. Moreover, it follows from
Lemma 4.1 that

Ĉσ∗n ∩ ∂Ŝσn = ∅,
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which implies that

Ĉσn ⊂ (Rσ × Ŝσn) ∪ {(λσn, 0̂)}.
Since for each σ ∈ {+ , −} the relation

Ŝσn ∩ Ŝσk = ∅, n, k ∈ N, n 6= k,

holds it follows that alternative (ii) of [17, Theorem 1.3] does not occur.

Now we can decompose Ĉσn into two subcontinua Ĉσ,+n and Ĉσ,−n by using the

Dancer’s construction given in [11] (here Ĉσ νn = Ĉσ∗, νn ∪ {(λσn, 0̂)}). It is obvious

that tŷσ+
n ∈ Sσ,±n for ± t > 0. Consequently, if (λ, ŷ) ∈ Ĉσ+

n (Ĉσ−n ) and is near
(λσn, 0̂), then by (4.2) we have

(Ĉσ∗,+n ∩ B̂ε) ⊂ Rσ × Ŝσ,+n ((Ĉσ∗,−n ∩ B̂ε) ⊂ Rσ × Ŝσ,−n )

for all small ε > 0. Moreover, in view of Lemma 4.1 we get

Ĉσ∗,+n ∪ ∂Ŝσ,+n = ∅ and Ĉσ∗,−n ∪ ∂Ŝσ,−n = ∅.
Therefore, we have the following relations

Ĉσ,+n ⊂ (Rσ × Ŝσ,+n ) ∪ {(λσn, 0̂)} and Ĉσ,−n ⊂ (Rσ × Ŝσ,−n ) ∪ {(λσn, 0̂)}.
Since

Ŝσ,+n ∩ Ŝσ,−n = ∅, n ∈ N,
it follows that

Ĉσ∗,+n ∩ Ĉσ∗,−n = ∅, n ∈ N.
Then by virtue of Theorem 2 of [9] the sets Ĉσ∗,+n and Ĉσ∗,−n are unbounded in

R× Ê. The proof of this theorem is complete.
By (4.2) from Theorem 3.1 we have the following result.

Theorem 4.2. For each n ∈ N, each σ ∈ {+ , −} and each ν ∈ {+ , −} there ex-
ists a continuum Cσ, νk of solutions of problem (1.1)-(1.3) which contains (λn, σ, 0)
is contained in (Rσ × Sσ, νn ) ∪ {(λn, σ, 0)} and is unbounded in R× E.

Now suppose that the nonlinear term g has the form g(x, u, s, λ) = g1(x, u, s, λ)u
where g1 ∈ C0

(
[0, 1]× R3

)
and satisfies the following conditions:

g1(x, u, s, λ) ≤ 0, (x, u, s, λ) ∈ [0, 1]× R3; (4.3)

there is a constant K > 0 such that

|g1(x, u, s, λ)| ≤ K, (x, u, s, λ) ∈ [0, 1]× R3. (4.4)

Theorem 4.3. Let the conditions (4.3) and (4.4) be satisfied. Then

C+, νn ⊂ (I+n × S+, ν
n ) ∪ {(λ+n , 0̂)} and C−, νn ⊂ (I−n × S−, νn ) ∪ {(λ−n , 0̂)}

for each n ∈ N and each ν ∈ {+ , −}, where

I+n = [λ+n , λ
K
n,+], I−n = [λKn,−, λ

−
n ],

and λKn,+ and λKn,− are n-th positive and negative eigenvalues of problem

(p(x)y′(x))′ + (q(x) +K)y(x) = λr(x)y(x), x ∈ (0, 1),
b0y(0) = d0p(0)y′(0), (a1λ+ b1)y(1) = p(1)y′(1),

(4.5)

respectively.
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Proof. We will prove the theorem for arbitrary fixed n = n0, ν = ν0, and
σ = + (the case of σ = − is considered in a similar way).

Let (λ̃, ỹ) be a solution of problem (1.1)-(1.3). Then (λ̃, ỹ) solves the following
linear eigenvalue problem

(p(x)y′(x))′ + (q(x) + h̃(x))y(x) = λr(x)y(x), x ∈ (0, 1),
b0y(0) = d0p(0)y′(0), (a1λ+ b1)y(1) = p(1)y′(1),

(4.6)

where
h̃(x) = −g1(x, ỹ(x), ỹ′(x), λ̃).

It follows from conditions (4.3) and (4.4) that

h̃(x) ∈ C0[0, 1] and 0 ≤ h̃(x) ≤ K for x ∈ [0, 1]. (4.7)

By (2.7), (2.9) and (4.7) it follows from [16, Lemma 2.2] that

λn,+ ≤ λh̃n,+ ≤ λKn,+, n ∈ N, (4.8)

where λh̃n,+ is the n-th positive eigenvalue of problem (4.6).

Thus, if (λ̃, ỹ) ∈ C+∗, ν0n0 , then λ̃ = λh̃n,+, and consequently, λ̃ ∈ I+n0
in view of

(4.8). The proof of this theorem is complete.
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