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A NOTE ON THE SCHRÖDINGER OPERATOR WITH

EXPONENTIAL POTENTIAL

AGIL KH. KHANMAMEDOV AND AFAG F. MAMEDOVA

Abstract. The Schrödinger operator L = − d2

dx2 + e2x on the positive
half-line with the Dirichlet boundary condition at zero is studied. A de-
scription of the domain of definition of the operator L is given. Using the
connection between the modified Bessel equation and the Schrödinger
equation, the distribution of the zeros of the Macdonald function and
its derivative is investigated.

1. Introduction and main result

Quantum mechanics gave a powerful impetus to the development of the spec-
tral theory of differential operators with increasing coefficients. In particular,
various spectral problems for the Schrödinger operator with increasing potential
were studied very extensively (see [2], [4], [7], [8], [10], [13]). Some problems of
conformal field theory are closely related to the Schrödinger operator with an
exponential potential (see [14]). However, the question of describing the domain
of definition of such operators has not been studied previously.

We consider the operator L defined on the space L2 (0,+∞) by the differential
expression

l (y) = −y′′ + e2xy, x ∈ [0,+∞)

with the domain

D (L) =
{
y ∈ L2 (0,+∞) : y ∈W 2

2,loc, l (y) ∈ L2 (0,+∞) , y (0) = 0
}
.

In this paper we describe the domain of definition of the operator L. It should
be noted that the last problem is closely related to the modified Bessel equation

z2u′′ + zu′ −
(
z2 + ν2

)
u = 0. (1.1)

The study of the zeros of solutions to the equation (1.1) is of independent interest
(e.g., see [3], [6], [9], [11],[12]).

Consider the equation (1.1) for z > 0. If we set z = ex+c, y (x) = u (ex+c) , ν =
iλ, equation (1.1) takes the form

−y′′ + e2(x+c)y = λ2y. (1.2)
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In what follows, we deal with special functions satisfying the equation (1.2).
It is well known (see [1], [14]) that this equation has two linearly independent
solutions ϕ (x, λ) = Iiλ (ex+c) and ψ (x, λ) = Kiλ (ex+c), where Iν (z) and Kν (z)
are modified functions of the first and second kind, respectively. For each z > 0
both these modified Bessel functions are entire functions of the index ν. The
function Kν (z) satisfies [1] the representation

Kiλ (z) =

∫ ∞
0

e−zcht cosλtdt , |arg z| < π

2
, λ ∈ C.

In particular, this implies that K0 (z) > 0, z > 0. We need some (see [1])
asymptotic equalities related to the functions Iν (z) and Kν (z)

Iν (z) =
ez√
2πz

(
1 +O

(
1

z

))
, z →∞, |arg z| < π

2
, (1.3)

I ′ν (z) =
ez√
2πz

(
1 +O

(
1

z

))
, z →∞, |arg z| < π

2
, (1.4)

Kν (z) =

√
π

2z
e−z

(
1 +O

(
1

z

))
, z →∞, |arg z| < 3π

2
, (1.5)

K ′ν (z) = −
√

π

2z
e−z

(
1 +O

(
1

z

))
, z →∞, |arg z| < 3π

2
. (1.6)

We also introduce the special solutions

ψ (x) = K0 (ex) , (1.7)

ϕ (x) = I0 (ex)− I0 (1)

K0 (1)
K0 (ex) (1.8)

of the equation (1.2) with λ = 0, c = 0.
The main result of this paper is the following theorem.

Theorem 1.1. The domain D (L) coincides with the set of functions of the form

y (x) = ψ (x)

∫ x

0
ϕ (t) f (t) dt+ ϕ (x)

∫ +∞

x
ψ (t) f (t) dt, (1.9)

where f (x) ranges over the entire space L2 (0,+∞). For each function y (x) ∈
D (L) , one has

exy (x)→ 0, y′ (x)→ 0, exy (x) , y′ (x) ∈ L2 (0,+∞) . (1.10)

Equation (1.9) defines a bounded operator on L2 (0,+∞), which is the inverse of
L.

2. Proof of the theorem

Obviously, the operator L is densely defined, because its domain contains in-
finitely differentiable functions compactly supported on (0,∞); the set of these
functions is well known to be dense in L2 (0,∞). Moreover, the operator L is self-
adjoint. Further, note that the ψ (x) = K0 (ex) decays like a double exponent as
x→∞. Hence the improper integral in (1.9) converges. Since f (x) ∈ L2 (0,+∞),
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it follows that the function y = y (x) defined in (1.9) lies in W 1
2 [0, b] for every

finite b. By differentiating, we obtain

y′ (x) = ψ′ (x)

∫ x

0
ϕ (t) f (t) dt+ ϕ′ (x)

∫ +∞

x
ψ (t) f (t) dt, (2.1)

whence it follows that y′ (x) ∈W 1
2 [0, b] for every finite b. By differentiating once

more, we obtain

y′′ (x) = [ψ′ (x)ϕ (x)− ψ (x)ϕ′ (x)] f (x) + ψ′′ (x)
∫ x
0 ϕ (t) f (t) dt+

+ϕ′′ (x)
∫ +∞
x ψ (t) f (t) dt = −f (x) + e2xy (x) ,

i.e., y (x) ∈ W 2
2 [0, b] for each b > 0 and ` (y) = f (x) ∈ L2 (0,+∞). Since

y (0) = 0, it follows that y (x) ∈ D (L). The converse is true as well. Namely, let
y ∈ D (L) and ` (y) = f (x) ∈ L2 (0,+∞). By a classical theorem on the general
form of a solution of a differential equation,

y (x) = C1ψ (x) + C2ϕ (x) + ψ (x)

∫ x

0
ϕ (t) f (t) dt+ ϕ (x)

∫ +∞

x
ψ (t) f (t) dt,

where C1 and C2 are constants. It follows from the relation y (0) = 0 that C1 = 0,
while the condition y ∈ L2 (0,+∞) and the estimate (2.3), which will be proved
below, imply that C2 = 0; i.e., y admits the representation (1.9). Thus, formula
(1.9) defines the inverse operator L−1. Its boundedness follows from the estimate
|y (x)| ≤ R ‖f‖ on every finite interval [0, b] and the estimate (2.3). Here and
in what follows, the letter R,Rj , j = 1, 2, 3 stands for various positive constants,
and ‖◦‖ = ‖◦‖L2(0,∞).

Let us prove relations (1.10). First, note that, by virtue of (1.3), (1.8), there
exists a constant R such that the estimate

|ϕ (t)| ≤ Re−
t
2 ee

t

holds for t > 0. It is easily seen that the function g (t) = e−
t
2 ee

t
increases for

sufficiently large t > b. Hence∣∣∫ x
0 ϕ (t) f (t) dt

∣∣ ≤ (∫ b0 +
∫ x−1
b +

∫ x
x−1

)
|ϕ (t)| |f (t)| ≤ R1 ‖f‖+

+Rx
1
2 e−

x−1
2 ee

x−1 ‖f‖+Re−
x
2 ee

x
(∫ x

x−1 |f (t)|2 dt
) 1

2

for x > b+ 1. Here the constant R1 depends on b alone. This estimate, together
with the representation (1.5), implies that∣∣ψ (x)

∫ x
0 ϕ (t) f (t) dt

∣∣ ≤ R2 ‖f‖ e−
x
2 e−e

x
+

+R2x
1
2 e−xee

x(e−1−1) ‖f‖+R2e
−x
(∫ x

x−1 |f (t)|2 dt
) 1

2

for sufficiently large x. We have estimated the first summand in (1.9). In a similar

way, we estimate the second summand. The function h (t) = ete−e
t

is decreasing
for sufficiently large t, and due to (1.5), (1.7) we have∣∣∫∞

x ψ (t) f (t) dt
∣∣ ≤ (∫ x+1

x +
∫∞
x+1

)
|ψ (t)| |f (t)| ≤

≤ R
∫ x+1
x h (t) e−

3
2
t |f (t)| dt+R

(∫∞
x+1 h

2 (t) e−3tdt
) 1

2 ‖f‖ ≤

≤ Rh (x) e−
3
2
x
(∫ x+1

x |f (t)|2 dt
) 1

2
+Rh (x+ 1) e−x ‖f‖
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for large x. We have

|ϕ (x)| ≤ Re
x
2 h−1 (x) , h (x+ 1)h−1 (x) = ee(1−e)e

x

and hence the absolute value of the second term on the right-hand side in (1.9)
can be estimated by

Re−x
(∫ x+1

x
|f (t)|2 dt

)
+Ree−

x
2 e(1−e)e

x ‖f‖ .

By adding the resulting estimates, we arrive at the inequality

|y (x)| ≤ R3x
1
2 e−xe(1−e)e

x ‖f‖+R3e
−x

2 e(1−e)e
x ‖f‖+

R3e
−x
(∫ x+1

x−1 |f (t)|2 dt
) 1

2
, x > b+ 1,

(2.2)

which proves the first relation in (1.10). The second relation in (1.10) can be
obtained in the same way except that (2.2) is used instead of (1.9) and we take
into account the fact that the estimates for the derivatives ψ (x) and ϕ (x) differ
from the estimates for the functions themselves by the factor ex (see (1.4), (1.6)-
(1.8)).

Let us prove that exy (x) ∈ L2 (0,+∞). It follows from the estimate (2.2) that∫∞
b |e

xy (x)|2 dx ≤ R ‖f‖2
∫∞
b xe2(1−e)e

x
dx +R ‖f‖2

∫∞
b exe2(1−e)e

x
dx+

+R
∫∞
b

∫ x+1
x−1 |f (t)|2 dtdx ≤ R ‖f‖2 +R

∫∞
b−1 |f (t)|2

∫ t+1
t−1 dxdt ≤ R ‖f‖

2 .

(2.3)
The inclusion y′ (x) ∈ L2 (0,+∞) can be obtained in a similar way with regard
to the fact that |y (x)| is bounded by the right-hand side of (2.2) multiplied by
ex. This completes the proof of the theorem.

The above results also extend to the case of the self-adjoint operator Lc, gen-
erated on the space L2 (0,+∞) by the differential expression

lc (y) = −y′′ + e2(x+c)y, x ∈ [0,+∞)

and boundary condition

αy (0) + βy′ (0) = 0, (2.4)

where α2 + β2 > 0. By way of application, we use the operator Lc. Since
ex → +∞ as x → +∞ , the spectrum of the operator Lc consists [4] of simple
real eigenvalues λ2n = λ2n (c) > 0, n = 1, 2, ..., condensing to +∞. Hence and from
the relationship Kν (z) = K−ν (z) it follows that the function

∆ (λ) = αKiλ (ec) + βecK ′iλ (ec) (2.5)

has only real zeros ±λn, λn > 0, n = 1, 2, .... Further, in the boundary condition
(2.4) the quantities α, β can be arbitrary numbers that satisfy the condition
α2 + β2 > 0. Obviously, numbers a = α, b = βec also have this property.
Assuming then z = ec and taking into account that ν = iλ from (2.5) we find
that the function aKν (z) + bK ′ν (z) , z > 0 has a countable number of simple
purely imaginary zeros ±iνn, νn > 0, n = 1, 2, ... .
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