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AN OPTIMAL GALERKIN-HOMOTOPY ASYMPTOTIC

METHOD APPLIED TO THE NONLINEAR SECOND-ORDER

BVPS

JALIL MANAFIAN

Abstract. In this paper, a well-known optimal Galerkin-homotopy as-
ymptotic method (OGHAM) has been used to solve the nonlinear second-
order boundary value problems (BVPs) derived from the problem of
thermo-geometric fin parameter together. The obtained solution has
been placed by iteration in each equation of the system. The error func-
tion of each equation in the supposed interval has been gained in each
iteration of this method and has been selected as an optimal iteration
of GHAM to solve the mentioned system by considering the minimum
error in the first subinterval. Using the selected iteration of OGHAM, a
Multi-step homotopy asymptotic method (HAM) has been applied with
a few steps. The proposed method is tested upon nonlinear BVPs from
the literature and the results are compared with the available approx-
imate solutions including exact analytical method [1] and THAM [56].
The results indicate that the solution error in the proposed technique
has decreased significantly.

1. Introduction

The mathematical models including the problem of forced convection in a
porous duct for the case of slug flow(Darcy model) have great use in industries
and engineering. Effecting the incorporation of the boundary and inertial on the
fully developed momentum transfer equation in porous media along with major
changes and adding the viscous shear stress term where has been used by Nield
[50] and using the nonlinear term to account for the form drag effects where has
been noted by Nield and Bejan [51] is the problem considering both boundary
and inertial effects. Vafai and Kim have obtained an exact solution for forced
convection in a channel filled with a porous medium [61]. Thermal dispersion
effects on fully developed forced convection inside a porous-saturated pipe are
investigated in [62]. Also, Abbsasbandy et al. [1] have reported the exact analyt-
ical solution of forced convection in a porous-saturated duct. For further convey
on the problem of forced convection refer to Refs. ([10, 37, 49, 52, 57]). Fins are
an integral part of any equipment which requires the transfer of heat between the
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solid surface and the ambient atmosphere [8]. There has been a lot of research
in this in the past several years. Moreover, in experimental analysis, Baby and
Balaji [8] studied the performance of finned heat sinks made of Aluminium used
in portable electronic devices. Among one can state fins are employed to enhance
the heat transfer between the primary surface and its convective, radiating or
convective-radiating environment. The regular perturbation method and a nu-
merical method were investigated by Aziz and Hug [7] to compute a closed form
solution for a straight convecting fin with temperature-dependent thermal con-
ductivity. The Adomian decomposition method (ADM) has been used to evaluate
the efficiency of straight fins with temperature-dependent thermal conductivity
and to determine the temperature distribution within the fin [4]. The efficiency
of applicable fins with temperature-dependent thermo-physical properties was re-
ported by well-known authors of literature ([9, 55, 58]).
There are many semi-analytical and numerical methods for solving nonlinear
partial differential equations (PDEs), some of these methods which solve PDEs
are: the Adomian decomposition method [59], the homotopy analysis method
[14, 15], the homotopy perturbation method [12], the variational iteration method
[13, 16, 17, 18, 25, 47], the Laplace Adomian decomposition method [42], the
optimal homotopy and differential transform methods [53], the semi-analytical
iterative technique [60], and so on. Recently, Marinca and Herisanu have in-
troduced the OHAM [29, 30, 31, 44, 45] for the solution of nonlinear problems
which made the perturbation methods independent of the assumption of small
parameters. In order to achieve this goal, various methods have been devel-
oped for linear and nonlinear equations such as optimal homotopy asymptotic
method. For further information see references therein ([2, 3, 19, 24, 35]). Also,
for further investigations on some valuable researches the interested author refer
to Refs. ([6]-[43]). The matched asymptotic expansion method was applied for
small values of the Darcy number. Also, the Darcy number of the solution for the
Brinkman-Forchheimer momentum equation was found in terms of an asymptotic
expansion by Hooman [32]. A perturbation based analysis to investigate forced
convection in a porous saturated tube was investigated by Hooman and Ranjbar
[33]. Also, thermal dispersion effects on fully developed forced convection in a
porous-saturated pipe were investigated using numerical and asymptotic tech-
niques in [34]. Magyari and co-authors [41] investigated the forced convection
problem for range λ ≥ 0 of the temperature exponent, the analytical results were
near with numerical findings and for range λ < −12, the existence of a new class
of unique solutions, while for −12 < λ < 0 the occurrence of multiple solutions
was reported.
In order to understand these intricate phenomena, it is key to construct more
exact solutions of NLPDEs. By using the obtained semi-analytical solutions one
can understand the complex structure of physical phenomena. It is notable that
many NLPDEs in diverse fields like biology, physics and chemistry consist of un-
known functions and parameters and the study of exact solutions provides the
guidance to the researchers to maintain and design the experiments, by produc-
ing the suitable natural environment, to obtain the these unknown function and
parameters. The betterment of mathematical approaches for finding out a gen-
eral and compact class of numerical or semi-analytical solutions is one of the
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most basic task to observe the whole dynamical process modeling by complicated
NLPDEs from the recent few years. Finding the semi-analytical solutions of
NLPDEs has the importance to discuss the stability of numerical solutions and
also development of a broad range of new scholar to simplify the routine calcu-
lation. Therefore, the foremost concern for the researchers is to find the exact
solutions of the nonlinear second-order boundary value problems. For this sake
different powerful techniques have been developed for detecting the semi-analytic
solutions of the nonlinear second-order boundary value problems by using various
symbolic computation like Mathematica, Matlab and Maple. Furthermore, the
theory of BVPs draw the attention of the researchers and scientific community,
because it is an active area of research in the fields of mechanical engineering
and mathematical physics. The thermal conductivity of the fin material are sig-
nificant in one-dimensional energy balance equation due to this feature. The
nonlinear wave phenomena can be examined in various scientific fields such as,
fluid dynamics, plasma physics, solitary waves, nonlinear equations, etc.
The objective of the present work is to solve the nonlinear second-order bound-
ary value problems using an analytical technique, optimal Galerkin-homotopy
asymptotic method. Therefore, the goal of this article is to seek semi-analytical
wave solutions which are in the series form solutions. The basic feature of pro-
posed technique is to observe some elementary relationships between NLPDEs
and others simple NLODEs. It has been examined that with the aid of simple
solutions and solvable ODEs, different kind of traveling wave solutions of some
complicated NLPDEs can be easily constructed. The primary benefit of applying
this technique is that we have succeeded in a single move, to gather various types
of new solutions in the new form of OGHAM. An important aspect of mentioned
technique is to provide us a guideline that how to organize these solutions.
The organization of the paper is as follows. In Sect. 2, we describe the basic
formulation in terms of mathematical model. In Sect. 3, we introduce the opti-
mal Galerkin-homotopy asymptotic method and show how the method is used to
solve the nonlinear boundary-value problem. Section 4 is devoted to the solution
of non-linear boundary-value problem. Some numerical examples are presented
in Sect. 5. Finally, Sect. 6 provides conclusions of the study.

2. Mathematical formulation

2.1. The Darcy-Brinkman-Forchheimer momentum equation. Consider
a steady state pressure driven fully-developed parallel flow through a horizontal
channel that is filled with porous media [32], as illustrated in Figure 1. One can
see in Figure (1) that the lower and upper plates are placed at y = −h and y = h
respectively. For x > 0, the heat flux at the tube wall is held constant at the
specified value. The flow is in the direction of x-axis and also the velocity is of
the form v = (u(y), 0, 0). The flow inside the channel is known to be governed
by the Darcy-Brinkman-Forchheimer momentum equation [5]

d2u∗

dy∗2
= − G

µeff
+

u∗

MK
+

ρCf

µeff
√
K
u∗2, (2.1)

where Cf is the form drag coefficient, G is the pressure gradient, K is the per-
meability, ρ is the fluid density, µ is the fluid viscosity, µeff is the viscosity of
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the fluid in the porous medium and M(= µeff/µ) is the viscosity ratio. By
considering the following transformations

y∗ = yh, u∗ =
Gh2u

µ
, (2.2)

then Eq. (2.1) reduced to

d2u(y)

dy2
− s2u(y)− Fs u(y)2 +

1

M
= 0, (2.3)

subject to the initial and boundary conditions

u(1) = 0, u′(0) = 0, (2.4)

where F is the Forchheimer number and s is the porous medium shape parame-
ter. Awartani and Hamdan [5] investigated numerically utilizing a second-order
accurate finite difference technique for solving the Darcy-Brinkman-Forchheimer
equation. The asymptotic aspects of solutions to Eq. (2.3) were determined by
perturbation schemes for limiting cases by Hooman [32]. Motsa et al. [48] have
applied the spectral-homotopy analysis method in order to achieve a solution
with good accuracy. Abbasbandy [1] obtained a closed form solution of forced
convection in a porous-saturated duct.

2.2. Fin temperature distribution. Take the one-dimensional energy balance
equation where illustrated in Figure (2), is considered as

Ac
d

dξ

[
k(T )

dT

dξ

]
− Ph(Tb − Ta) = 0. (2.5)

By assuming be a linear function of the thermal conductivity of the fin material
as

k(T ) = ka[1 + λ(T − Ta)], (2.6)

where ka is the thermal conductivity at the ambient fluid temperature of the
fin and λ is the parameter portraying the variation of the thermal conductivity.
Also, by employing the dimensionless parameters as below form

θ =
T − Ta
Tb − Ta

, x =
ξ

b
, β = λ(Tb − Ta), ψ =

(
hPb2

kaAc

) 1
2

, (2.7)

then, fin efficiency of convective straight fins with temperature-dependent thermal
conductivity is considered as [4]

β

(
dθ(x)

dx

)2

+ (1 + βθ)
d2θ(x)

dx2
− ψ2 = 0, (2.8)

under the below boundary conditions

dθ(x)

dx

∣∣∣∣
x=0

= 0, θ(1) = 1, (2.9)

where ψ is the thermo-geometric fin parameter and β is the thermal conductivity
parameter. The ADM and the homotopy perturbation technique were used to
evaluate the efficiency of straight fins with temperature-dependent thermal con-
ductivity, respectively, in [4] and [54]. The Taylor series expansion method was
employed to the fin problem with a temperature-dependent thermal conductivity



160 JALIL MANAFIAN

Figure 1. Steady state parallel flow inside a fluid-saturated porous channel.

has been investigated by Kim and Huang [39]. Analysis convective straight fins
with temperature-dependent thermal conductivity were applied by the help of
the variational iteration method and the HPM [20] (Ganji et al.), FEM analyzes
[11] (Coşkun and Atay) and HAM [36, 38] (Inc and Khani et al.).

Figure 2. Geometry of a straight fin.

3. Analysis of the method

The method of optimal homotopy asymptotic method has been proposed by
Marinca and Herisanu [45] in 2008 for the first time and was found on the concept
of homotopy. Bring up the partial differential equation of the below form:

K(v(x)) + g(x) +M(v(x)) = 0, x ∈ Σ, S
(
v,
dv

dx

)
= 0, (3.1)

where K is a linear operator and M is a nonlinear operator. S is boundary
operator, v(x) is an unknown function, and x defines spatial variable, Σ is the
problem domain and r(x) is a known function.
Based on the OHAM, one can create the optimal homotopy ρ(x; q) : Σ×[0, 1]→ R
which complies:

(1− q) {K(ρ(x; q)) + r(x)} = Λ(q) {K(ρ(x; q)) +M(ρ(x; q)) + r(x)} , (3.2)
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S
(
ρ(x; q),

∂ρ(x; q)

∂x

)
= 0,

where q ∈ [0, 1] is an embedding parameter, Λ(q) is a nonzero auxiliary function
for q 6= 0, Λ(0) = 0. Eq. (3.2) is named the optimal homotopy equation. Vividly,
we can write:

q = 0⇒ K(ρ(x; 0)) + r(x) = 0, (3.3)

q = 1⇒ K(ρ(x; 1)) +M(ρ(x; 1)) + r(x) = 0. (3.4)

Vividly, until q = 0 and q = 1 it holds that ρ(x; 0) = α0(x) and ρ(x; 1) = α(x),
respectively. Therefore, as q varies from 0 to 1, the solution ρ(x; q) comes close
from α0(x) to α(x), where α0(x) is achieved from Eq. (3.2) for q = 0:

K(α0(x)) + r(x) = 0, S
(
α0,

dα0

dx

)
= 0. (3.5)

Next, we pick out the auxiliary function Λ(q) in the form [29, 30]

Λ(q) = qA1 + q2A2 + ...+ qmAm, (3.6)

where A1, A2, ..., Am are constants to be determined. Λ(q) can be stated in plenty
of the forms as reported by V. Marinca et al. [45, 31, 44].
To access an approximate solution, we enlarge ρ(x; q, Ai) in Taylor’s series about
q in the below form as,

ρ(x; q, Ai) = α0(x) +

∞∑
k=1

αk(x;Ai)q
k, i = 1, 2, .... (3.7)

Substituting Eq. (3.7) into Eq. (3.2) and equating the coefficient of like powers
of qk, we catch Zeroth order problem, given by Eq. (3.5), the first and second
order problems are given by Eqs. (3.8) and (3.9) respectively and the general
governing equations for αk(x) are defined via Eq. (3.10):

K(α1(x)) = A1M0(α0(x)), S
(
α1,

dα1

dx

)
= 0, (3.8)

K(α2(x))−K(α1(x)) = A2M0(α0(x)) +A1 [K(α1(x)) (3.9)

+M1(α0(x), α1(x))] ,S
(
α2,

dα2

dx

)
= 0,

K(αk(x))−K(αk−1(x)) = AkM0(α0(x)) +

k−1∑
i=0

Ai [K(αk−i(x)) (3.10)

+Mk−i(α0(x), α1(x), ..., αk−i(x))] ,k = 2, 3, ... S
(
αk,

dαk

dx

)
= 0,

where Mk−i(α0(x), α1(x), ..., αk−i(x)) is the coefficient of qk−i in the expansion
M(ρ(x; q)) about the embedding parameter q.

M(ψ(x; q, Ai)) =M0(α0(x)) +
∑
k≥1

Mk−i(α0(x), α1(x), ..., αk(x))qk. (3.11)
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Theorem 3.1. The convergence of the series in Eq. (3.7) depends upon the
auxiliary constants A1, A2, ..., Am and it is convergent at q = 1, when we have:

ρ(x;Ai) = α0(x) +

∞∑
k=1

αk(x,A1, A2, ..., Ak). (3.12)

The consequence of the mth order approximations are specified

α̃(x,A1, A2, ..., Am) = α0(x) +

m∑
k=1

αk(x,A1, A2, ..., Ak). (3.13)

Substituting Eq. (3.13) into Eq. (3.1), it consequences the residual as below form:

E(x,A1, A2, ..., Am) = K(α̃(x,A1, A2, ..., Am)) + r(x) +M(α̃(x,A1, A2, ..., Am)).
(3.14)

Proof. If E = 0, then α̃ will be the closed form of solution. Commonly it does
not happen, particularly in nonlinear problems. In order to detect the optimal
amounts of Ai; i = 1, 2, 3, ...,m, we first create the below functional,

F(A1, A2, ..., Am) =

∫
Ω
E2(x,A1, A2, ..., Am)dx, (3.15)

and then minimizing it, we have

∂F
∂A1

=
∂F
∂A2

= ... =
∂F
∂Am

= 0. (3.16)

The constants Ai can also be detected by another method as below form:

E(σ1;Ai) = E(σ2;Ai) = ... = E(σm;Ai) = 0, i = 1, 2, ...,m, (3.17)

where σi ∈ Σ is in the domain of the problem. �

For further information see references therein ([26, 27, 28]).

4. Application of the OG-HAM

4.1. Application of the OG-HAM for DBF momentum equation. We
utilize the offered method (OG-HAM) to solve the DBF momentum equation
where given by Eq. (2.3) and (2.4).

Theorem 4.1. Following the OG-HAM formulation, we have:

K(u(y)) =
d2u(y)

dy2
, M(u(y)) = −s2u(y)− Fs u(y)2 +

1

M
, (4.1)

under the below initial condition:

u′(0) = 0, u(1) = 0. (4.2)

The second order approximate solution by OHAM for, q = 1, is;

ũ(y,A1, A2) = u0(y) + u1(y,A1) + u2(y,A1, A2). (4.3)

With the domain Σ = [a, b] = [0, 1], the residual will be as

R(y,A1, A2) =
d2u(y,A1, A2)

dy2
− s2u(y,A1, A2)− Fs u(y,A1, A2)2 +

1

M
. (4.4)
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Zeroth-order problem defined via Eq. (3.5) is as

d2u0(y)

dy2
= 0, u′0(0) = 0, u0(1) = 0, (4.5)

from which we obtain

u0(y) = 0. (4.6)

First-order problem given by Eq. (3.8):

d2u1(y,A1)
dy2

= (1−A1)d
2u0(y)
dy2

+A1s
2u0(y) +A1sF (u0(y))2 − A1

M , (4.7)

u′1(0) = 0, u1(1) = 0.

We access the solution as below:

u1(y,A1) = −1

2
A1(y2 − 1). (4.8)

Second-order problem given via Eq. (3.9):

d2u2(y,A1, A2)

dy2
= (1−A1)

d2u1(y,A1)

dy2
+A1su1(y,A1)(2Fu0(y) + s)− A2

M
(4.9)

+A2

(
sF (u0(y))2 + s2u0(y)− d2u0(y)

dy2

)
, u′2(0) = 0, u2(1) = 0.

The solution becomes:

u2(y,A1, A2) = − 1

20M

{
0.0833A2

1s
2y4 + (A2 − 0.5A2

1s
2 +A1 −A2

1)y2 (4.10)

−A2 −A1 +A2
1 + 0.4166s2A2

1

}
.

Using Eqs. (4.6), (4.8) and (4.10), the second order approximate solution by
OHAM for, q = 1, is;

ũ(y,A1, A2) = u0(y) + u1(y,A1) + u2(y,A1, A2). (4.11)

Following the procedure described in Section 3 on the domain Σ = [a, b] = [0, 1],
using the residual,

R(y,A1, A2) =
d2u(y,A1, A2)

dy2
− s2u(y,A1, A2)− Fs u(y,A1, A2)2 +

1

M
. (4.12)

Case A: F = M = 1
By considering the obtained values of Ai’s our approximate solution and Residual
for the following subcases, respectively, become,
Subcase I-A: s = 0.0

A1 = 1.0, A2 = −3.0× 10−10, ũ(y) = 0.4999− 0.4999y2, R̃(y) = 4.0× 10−10.
(4.13)

Subcase II-A: s = 0.5

A1 = 1.33377, A2 = 0.14232, ũ(y) = 0.42280− 0.40427y2 − 0.01853y4, (4.14)

Ẽ(y) = −0.09301 + 0.22056y2 − 0.14313y4 − 0.01498y6 − 0.00034y8. (4.15)
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Subcase III-A: s = 1.0

A1 = 0.94689, A2 = 0.02424, ũ(y) = 0.32392− 0.28656y2 − 0.03736y4, (4.16)

Ẽ(y) = −0.00195 + 0.02389y2 − 0.02055y4 − 0.02141y6 − 0.00139y8. (4.17)

Subcase IV-A: s = 1.5

A1 = 0.73459, A2 = 0.05293, ũ(y) = 0.23829− 0.18770y2 − 0.05059y4, (4.18)

Ẽ(y) = 0.003260.05056y2 + 0.09714y4 − 0.02849y6 − 0.00384y8. (4.19)

Subcase V-A: s = 2.0

A1 = 0.58941, A2 = 0.09589, ũ(y) = 0.17415− 0.11625y2 − 0.05790y4, (4.20)

Ẽ(y) = 0.01026− 0.14885y2 + 0.24491y4 − 0.02692y6 − 0.00671y8. (4.21)

Subcase VI-A: s = 2.5

A1 = 0.48256, A2 = 0.13156, ũ(y) = 0.12869− 0.06805y2 − 0.06064y4, (4.22)

Ẽ(y) = 0.01814− 0.25859y2 + 0.40646y4 − 0.02063y6 − 0.00919y8. (4.23)

Subcase VII-A: s = 3.0

A1 = 0.40103, A2 = 0.15569, ũ(y) = 0.09692− 0.03661y2 − 0.06031y4, (4.24)

Ẽ(y) = 0.02637− .37298y2 + 0.57384y4 − 0.01325y6 − 0.01091y8. (4.25)

Subcase VIII-A: s = 3.5

A1 = 0.33737, A2 = 0.16909, ũ(y) = 0.07454− 0.01644y2 − 0.05809y4, (4.26)

Ẽ(y) = 0.03458− 0.48712y2 + 0.74102y4 − 0.00669y6 − 0.01181y8. (4.27)

Subcase IX-A: s = 4.0

A1 = 0.28681, A2 = 0.17409, ũ(y) = 0.05853− 0.00369y2 − 0.05484y4, (4.28)

Ẽ(y) = 0.04251− 0.59738y2 + 0.90306y4 − 0.00162y6 − 0.01203y8. (4.29)

Subcase X-A: s = 4.5

A1 = 0.24611, A2 = 0.17310, ũ(y) = 0.04685 + 0.00426y2 − 0.05111y4, (4.30)

Ẽ(y) = 0.04998− 0.70129y2 + 1.05636y4 + 0.00196y6 − 0.01175y8. (4.31)

Subcase XI-A: s = 5

A1 = 0.21296, A2 = 0.16817, ũ(y) = 0.03816 + 0.00908y2 − 0.04724y4, (4.32)

Ẽ(y) = 0.05688− 0.79742y2 + 1.19867y4 + 0.00429y6 − 0.01116y8. (4.33)

Case B: F = s = 1
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By considering the obtained values of Ai’s our approximate solution and Residual
for the following subcases, respectively, become,
Subcase I-B: M = 1

A1 = 0.94689, A2 = 0.02424, ũ(y) = 0.32392− 0.28656y2 − 0.03736y4, (4.34)

Ẽ(y) = −0.00195 + 0.02389y2 − 0.02055y4 − 0.02141y6 − 0.00139y8. (4.35)

Subcase II-B: M = 2

A1 = 0.89436, A2 = 0.01808, ũ(y) = 0.16841− 0.15175y2 − 0.01666y4, (4.36)

Ẽ(y) = −0.00026 + 0.00289y2 − 0.00075y4 − 0.00506y6 − 0.00028y8. (4.37)

Subcase III-B: M = 3

A1 = 0.87397, A2 = 0.01729, ũ(y) = 0.11386− 0.10325y2 − 0.01061y4, (4.38)

Ẽ(y) = 0.00001− 0.0005y2 + 0.00236y4 − 0.00219y6 − 0.00011y8. (4.39)

Subcase IV-B: M = 4

A1 = 0.86312, A2 = 0.01724. (4.40)

Via inserting these amounts the approximate solution and Residual, respectively,
become as below,

ũ(y) = 0.08601− 0.07825y2 − 0.00776y4, (4.41)

Ẽ(y) = 0.00009− 0.00141y2 + 0.00297y4 − 0.00121y6 − 0.00006y8. (4.42)

Subcase V-B: M = 5

A1 = 0.85638, A2 = 0.01736, ũ(y) = 0.06911− 0.06300y2 − 0.00611y4, (4.43)

Ẽ(y) = 0.00011− 0.00163y2 + 0.00299y4 − 0.00077y6 − 0.00004y8. (4.44)

Subcase VI-B: M = 6

A1 = 0.85179, A2 = 0.01746, ũ(y) = 0.05777− 0.05273y2 − 0.00504y4, (4.45)

Ẽ(y) = 0.00011− 0.00164y2 + 0.00284y4 − 0.00053y6 − 0.00003y8. (4.46)

Subcase VII-B: M = 7

A1 = 0.84846, A2 = 0.01758, ũ(y) = 0.04962− 0.04533y2 − 0.00428y4, (4.47)

Ẽ(y) = 0.00011− 0.00159y2 + 0.00266y4 − 0.00039y6 − 0.00002y8. (4.48)

Subcase VIII-B: M = 8

A1 = 0.84593, A2 = 0.01768, ũ(y) = 0.04349− 0.03976y2 − 0.00373y4, (4.49)

Ẽ(y) = 0.00010− 0.00151y2 + 0.00247y4 − 0.00029y6 − 0.00001y8. (4.50)
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Subcase IX-B: M = 9

A1 = 0.84395, A2 = 0.01778, ũ(y) = 0.03870− 0.03541y2 − 0.00329y4, (4.51)

Ẽ(y) = 0.00009− 0.00142y2 + 0.00229y4 − 0.00023y6 − 0.00001y8. (4.52)

Subcase X-B: M = 10

A1 = 0.8423, A2 = 0.01786, ũ(y) = 0.03487− 0.03191y2 − 0.00296y4, (4.53)

Ẽ(y) = 0.00009− 0.00134y2 + 0.00214y4 − 0.00019y6 − 0.000009y8. (4.54)

Case C: M = s = 1
By considering the obtained values of Ai’s our approximate solution and Residual
for the following subcases, respectively, become,
Subcase I-C: F = 0

A1 = 0.82752, A2 = 0.01889, ũ(y) = 0.35190− 0.32337y2 − 0.02853y4, (4.55)

Ẽ(y) = 0.00136− 0.01902y2 + 0.02853y4. (4.56)

Subcase II-C: F = 1

A1 = 0.94689, A2 = 0.02424, ũ(y) = 0.32392− .28656y2 − 0.037356y4, (4.57)

Ẽ(y) = −0.00195 + 0.02389y2 − 0.02055y4 − 0.02141y6 − 0.00139y8. (4.58)

Subcase III-C: F = 2

A1 = 1.02545, A2 = 0.04426, ũ(y) = 0.30273− 0.25892y2 − 0.04381y4, (4.59)

Ẽ(y) = −0.00387 + 0.04668y2 − 0.03721y4 − 0.04538y6 − 0.00384y8. (4.60)

Subcase IV-C: F = 3

A1 = 1.0822, A2 = 0.06642, ũ(y) = 0.28583− 0.23703y2 − 0.04880y4, (4.61)

Ẽ(y) = −0.00497 + 0.05791y2 − 0.03605y4 − 0.06940y6 − 0.00714y8. (4.62)

Subcase V-C: F = 4

A1 = 1.12564, A2 = 0.08742, ũ(y) = 0.27185− 0.21905y2 − 0.05279y4, (4.63)

Ẽ(y) = −0.00555 + 0.06191y2 − 0.02433y4 − 0.09252y6 − 0.01115y8. (4.64)

Subcase VI-C: F = 5

A1 = 1.16012, A2 = 0.10639, ũ(y) = .25999− .20391y2 − 0.05608y4, (4.65)

Ẽ(y) = −0.00579 + 0.06112y2 − 0.00602y4 − .11435y6 − 0.15724y8. (4.66)

Subcase VII-C: F = 6

A1 = 1.18826, A2 = 0.12323, ũ(y) = 0.24974− .19091y2 − 0.05883y4, (4.67)

Ẽ(y) = −0.00578 + 0.05706y2 + 0.01647y4 − .13478y6 − 0.02077y8. (4.68)



AN OPTIMAL GALERKIN-HOMOTOPY ASYMPTOTIC METHOD . . . 167

Figure 3. Profile of (left) the DBF equation (right) the derivative of
DBF equation for diverse amounts of s with M = F = 1.

Subcase VIII-C: F = 7

A1 = 1.21169, A2 = 0.13806, ũ(y) = 0.24074− .17957y2 − 0.06118y4, (4.69)

Ẽ(y) = −0.00559 + 0.05069y2 + 0.04165y4 − .15379y6 − 0.02619y8. (4.70)

Subcase IX-C: F = 8

A1 = 1.23154, A2 = 0.15108, ũ(y) = 0.23276− .16956y2 − 0.06319y4, (4.71)

Ẽ(y) = −0.00528 + 0.04267y2 + 0.06854y4 − .17145y6 − 0.03195y8. (4.72)

Subcase X-C: F = 9

A1 = 1.24857, A2 = 0.16251, ũ(y) = 0.22559− .16063y2 − 0.06495y4, (4.73)

Ẽ(y) = −0.00486 + 0.03344y2 + 0.09648y4 − .18781y6 − 0.03797y8. (4.74)

Subcase XI-C: F = 10

A1 = 1.26332, A2 = 0.17254, ũ(y) = 0.21910− 0.15260y2 − 0.06649y4, (4.75)

Ẽ(y) = −0.00438 + 0.02334y2 + .12502y4 − .20296y6 − 0.04422y8. (4.76)

4.2. Application of the OG-HAM for FTD equation. We utilize the of-
fered method (OG-HAM) to study the FTD where given by Eq. (2.8) and (2.9).

Theorem 4.2. Following the OG-HAM formulation, we have:

K(θ(x)) =
d2θ(x)

dx2
, M(θ(x)) = β

(
dθ

dx

)2

+ βθ
d2θ(x)

dx2
− ψ2, (4.77)

with the initial condition:

θ′(0) = 0, θ(1) = 1. (4.78)



168 JALIL MANAFIAN

Figure 4. Profile of (left) the DBF equation (right) the derivative of
DBF equation for diverse amounts of M with s = F = 1.

Figure 5. Profile of (left) the DBF equation (right) the derivative of
DBF equation for diverse amounts of F with s = M = 1.

With the second order approximate solution by OHAM for, q = 1, is;

θ̃(x,A1, A2) = θ0(x) + θ1(x,A1) + θ2(x,A1, A2). (4.79)

For the domain Σ = [a, b] = [0, 1], the residual will be utilized as

E(x,A1, A2) =
d2θ̃(x,A1, A2)

dx2
+β

d

dx

(
θ̃(x,A1, A2)

d2θ̃(x,A1, A2)

dx2

)
−ψ2. (4.80)

Zeroth-order problem defined via Eq. (3.5) is as

d2θ0(x)

dx2
= 0, θ′0(0) = 0, θ0(1) = 1, (4.81)

from which we can get
θ0(x) = 1. (4.82)
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Figure 6. Profile of (left) the Residual of DBF equation for diverse
amounts of s with F = M = 1 (right) the Residual of DBF equation for
various values of M when s = F = 1.

Figure 7. Profile of the Residual of DBF equation for diverse amounts
of F with s = M = 1.

First-order problem defined via Eq. (3.8) is as:

θ′′1(x,A1) = (1−A1)θ′′0(x)−A1β(θ′20 (x)+θ0(x)θ′′0(x))+A1ψ
2, θ′1(0) = 0, θ1(1) = 0.

(4.83)
The solution will can be written as below:

θ1(x,A1) =
1

2
A1ψ

2(x2 − 1). (4.84)

Second-order problem given by Eq. (3.9):

θ′′2(x,A1, A2) = (1−A1)θ′′1(x,A1)+A1ψ
2−C2θ

′′
0(x)+A2β(θ0(x)θ′′0(x)+θ′0(x))

(4.85)

−A1β(θ1(x,A1)θ′′0(x) + θ0(x)θ′′1(x,A1) + 2θ′0(x)θ′1(x,A1)), θ′2(0) = 0, θ2(1) = 0.
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The solution becomes:

θ2(x,A1, A2) = 0.041667A2
1ψ

4x4 +
1

2
ψ2x2(A2−(β+1)A2

1 +A1−0.5A2
1ψ

2) (4.86)

+0.20833A2
1ψ

4 − 1

2
ψ2(A1 +A2 − (β + 1)A2

1).

Using Eqs. (4.82), (4.84) and (4.86), the second order approximate solution by
OHAM for, q = 1, is;

θ̃(x,A1, A2) = θ0(x) + θ1(x,A1) + θ2(x,A1, A2). (4.87)

Following the procedure described in Section 3 on the domain Σ = [a, b] = [0, 1],
utilizing the residual,

E(x,A1, A2) =
d2θ̃(x,A1, A2)

dx2
+β

d

dx

(
θ̃(x,A1, A2)

d2θ̃(x,A1, A2)

dx2

)
−ψ2. (4.88)

Case A: β = 0.1
Via considering the obtained amounts of Ai’s our approximate solution and Resid-
ual for the following subcases, respectively, become,
Subcase I-A: ψ = 0.1

A1 = 0.77436, A2 = 0.01922, θ̃(x) = 0.99547 + 0.00453x2 + 0.000002x4, (4.89)

Ẽ(x) = 6.094×10−10−6.895×10−9x2 +8.945×10−9x4 +1.748×10−11x6. (4.90)

Subcase II-A: ψ = 0.2

A1 = 0.77161, A2 = 0.01786, θ̃(x) = 0.98208 + 0.01789x2 + 0.00004x4, (4.91)

Ẽ(x) = 3.069×10−8−3.867×10−7x2 + 5.420×10−7x4 + 4.411×10−9x6. (4.92)

Subcase III-A: ψ = 0.3

A1 = 0.76710, A2 = 0.01579, θ̃(x) = 0.93123 + 0.06815x2 + 0.00062x4, (4.93)

Ẽ(x) = 2.721× 10−7 − 0.000x2 + 5.620× 10−6x4 + 1.104× 10−7x6. (4.94)

Subcase IV-A: ψ = 0.4

A1 = 0.76078, A2 = 0.01331, θ̃(x) = 0.96037 + 0.03943x2 + 0.00019x4, (4.95)

Ẽ(x) = 0.000001− 0.000019x2 + 0.00003x4 + 0.000001x6. (4.96)

Subcase V-A: ψ = 0.5

A1 = 0.75278, A2 = 0.01076, θ̃(x) = 0.89576 + 0.10277x2 + 0.00148x4, (4.97)

Ẽ(x) = 0.000004− 0.00006x2 + 0.00009x4 + 0.000006x6. (4.98)

Case B: β = 0.2
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Via considering the obtained amounts of Ai’s our approximate solution and Resid-
ual for the following subcases, respectively, become,
Subcase I-B: ψ = 0.1

A1 = 0.58945, A2 = 0.07023, θ̃(x) = 0.99585 + 0.00415x2 + 0.000001x4, (4.99)

Ẽ(x) = −1.714× 10−9 − 7.084× 10−10x2 + 2.159× 10−8x4 + 1.174× 10−11x6.
(4.100)

Subcase II-B: ψ = 0.2

A1 = 0.58918, A2 = 0.06702, θ̃(x) = 0.98354 + 0.01644x2 + 0.00002x4, (4.101)

Ẽ(x) = 7.156×10−8−9.398×10−7x2 +1.350×10−6x4 +2.999×10−9x6. (4.102)

Subcase III-B: ψ = 0.3

A1 = 0.58902, A2 = 0.06177, θ̃(x) = 0.96353 + 0.03636x2 + 0.00012x4, (4.103)

Ẽ(x) = 7.173× 10−7− 1.003× 10−6x2 + 1.5× 10−5x4 + 7.678× 10−8x6. (4.104)

Subcase IV-B: ψ = 0.4

A1 = 0.58853, A2 = 0.05509, θ̃(x) = 0.93653 + 0.06310x2 + 0.00037x4, (4.105)

Ẽ(x) = 0.000004− 0.000054x2 + 0.00008x4 + 7.644× 10−7x6. (4.106)

Subcase V-B: ψ = 0.5

A1 = 0.58757, A2 = 0.04754, θ̃(x) = 0.90345 + 0.09565x2 + 0.00089x4, (4.107)

Ẽ(x) = 0.00001− 0.00019x2 + 0.00029x4 + 0.000005x6. (4.108)

Case C: β = 0.3
Via considering the obtained amounts of Ai’s our approximate solution and Resid-
ual for the following subcases, respectively, become,
Subcase I-C: ψ = 0.1

A1 = 0.42783, A2 = 0.15016, θ̃(x) = 0.99616 + 0.00383x2 + 7.627× 10−7x4,
(4.109)

Ẽ(x) = −3.456×10−9+9.256×10−9x2+1.869×10−8x4+4.886×10−12x6. (4.110)

Subcase II-C: ψ = 0.2

A1 = 0.42956, A2 = 0.14465, θ̃(x) = 0.98478 + 0.01520x2 + 0.00001x4, (4.111)

Ẽ(x) = 6.751× 10−8 − 8.483× 10−7x2 + 0.000001x4 + 1.271× 10−9x6. (4.112)

Subcase III-C: ψ = 0.3

A1 = 0.43300, A2 = 0.13527, θ̃(x) = 0.96623 + 0.03371x2 + 0.00006x4, (4.113)

Ẽ(x) = 6.439× 10−7 − 0.000009x2 + 0.00001x4 + 3.364× 10−8x6. (4.114)
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Subcase IV-C: ψ = 0.4

A1 = 0.43730, A2 = 0.12320, θ̃(x) = 0.94108 + 0.05871x2 + 0.00020x4, (4.115)

Ẽ(x) = 0.000004− 0.0000503x2 + 0.00008x4 + 3.495× 10−7x6. (4.116)

Subcase V-C: ψ = 0.5

A1 = 0.44213, A2 = 0.10923, θ̃(x) = 0.91012 + 0.08937x2 + 0.00051x4, (4.117)

Ẽ(x) = 0.000014− 0.00019x2 + 0.00028x4 + 0.0000022x6. (4.118)

Case D: β = 0.4
Via considering the obtained amounts of Ai’s our approximate solution and Resid-
ual for the following subcases, respectively, become,
Subcase I-D: ψ = 0.1

A1 = 0.27204, A2 = 0.27237, θ̃(x) = 0.99644 + 0.00356x2 + 3.084× 10−7x4,
(4.119)

Ẽ(x) = −2.489×10−9+8.119×10−9x2+1.009×10−8x4+1.065×10−12x6. (4.120)

Subcase II-D: ψ = 0.2

A1 = 0.27639, A2 = .26273, θ̃(x) = 0.98585 + 0.01414x2 + 0.000005x4, (4.121)

Ẽ(x) = 4.506×10−8−5.083×10−7x2 +6.605×10−7x4 +2.905×10−10x6. (4.122)

Subcase III-D: ψ = 0.3

A1 = 0.28412, A2 = 0.24651, θ̃(x) = 0.96856 + 0.03141x2 + 0.000027x4, (4.123)

Ẽ(x) = 3.722× 10−7 − 0.000005x2 + 0.000008x4 + 8.313× 10−9x6. (4.124)

Subcase IV-D: ψ = 0.4

A1 = 0.29388, A2 = 0.22588, θ̃(x) = 0.94504 + .054865x2 + 0.00009x4, (4.125)

Ẽ(x) = 0.000002− 0.000031x2 + 0.000046x4 + 9.505× 10−8x6. (4.126)

Subcase V-D: ψ = 0.5

A1 = 0.30508, A2 = 0.20216, θ̃(x) = 0.91596 + 0.08379x2 + 0.00024x4, (4.127)

Ẽ(x) = 0.000009− 0.000122x2 + 0.00018x4 + 6.579× 10−7x6. (4.128)

Case E: β = 0.5
Via considering the obtained amounts of Ai’s our approximate solution and Resid-
ual for the following subcases, respectively, become,
Subcase I-E: ψ = 0.1

A1 = 0.08958, A2 = 0.49809, θ̃(x) = 0.99667 + 0.00333x2 + 3.344× 10−8x4,
(4.129)

Ẽ(x) = −1.055×10−7+5.271×10−7x2+1.334×10−9x4+1.565×10−14x6. (4.130)
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Figure 8. Profile of (left) the FTD (right) the Residual of FTD for
diverse amounts of ψ with β = 0.1.

Subcase II-E: ψ = 0.2

A1 = 0.06414, A2 = 0.53874, θ̃(x) = 0.98678 + 0.01322x2 + 2.743× 10−7x4,
(4.131)

Ẽ(x) = −5.107×10−8+2.366×10−7x2+4.339×10−8x4+1.053×10−12x6. (4.132)

Subcase III-E: ψ = 0.3

A1 = 0.09273, A2 = 0.48129, θ̃(x) = 0.97059 + 0.02941x2 + 0.000003x4, (4.133)

Ẽ(x) = 4.828× 10−8 − 6.782× 10−7x2 + 0.000001x4 + 1.179× 10−10x6. (4.134)

Subcase IV-E: ψ = 0.4

A1 = 0.12207, A2 = 0.42279, θ̃(x) = 0.94851 + 0.05147x2 + 0.000016x4, (4.135)

Ẽ(x) = 4.496× 10−7 − 0.000006x2 + 0.000009x4 + 3.5363× 10−9x6. (4.136)

Subcase V-E: ψ = 0.5

A1 = 0.15009, A2 = 0.36709, θ̃(x) = 0.92110 + 0.07883x2 + 0.00006x4, (4.137)

Ẽ(x) = 0.000003− 0.00004x2 + 0.00006x4 + 4.818× 10−8x6. (4.138)

5. Numerical Solution via OGHAM

Now, considering the results obtained by OGHAM in the form of tables and fig-
ures. The simulation comparisons according to effects of free parameters, namely,
s, F and M in DBF momentum equation and β and ψ in Fin temperature distri-
bution by Exact solutions, THAM solutions and OGHAM solutions are shown.
In addition, the errors and residuals are as well as presented in this part. The
simulation solutions for the nonlinear second order boundary value problems are
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Figure 9. Profile of (left) the FTD (right) the Residual of FTD for
diverse amounts of ψ with β = 0.2.

Figure 10. Profile of (left) the FTD (right) the Residual of FTD for
diverse amounts of ψ with β = 0.3.

received. Three diverse schemes namely, THAM, and OGHAM are utilized for the
solutions of nonlinear BVPs. The results of the DBF equation and the residual
of it and also results of the fin and the residual of it obtained from the nonlinear
BVPs are compared numerically in Tables 1-8 for diverse amounts of embed-
ded parameters of s, F,M and β, ψ. All consequences for the nonlinear BVPs
are demonstrated in the x-coordinate only for as selected domain x ∈ [0, 1]. As
well as, the Residual of DBF for diverse amounts, namely, the viscosity ratio
(M), the Forchheimer number (F ) and the porous medium shape parameter (s)
are depicted in Figures 3-7. Also, in Figures 8-12, FTD for two parameters the
thermo-geometric fin parameter (ψ) and the thermal conductivity parameter (β)
are discussed. It can be vividly viewed from Figures 3-5 that an exponential rate
of convergence is obtained. Figures 3-5, show that comparison the DBF equation
and derivative of it when the porous medium shape parameter s, the viscosity
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Figure 11. Profile of (left) the FTD (right) the Residual of FTD for
diverse amounts of ψ with β = 0.4.

Figure 12. Profile of (left) the FTD (right) the Residual of FTD for
diverse amounts of ψ with β = 0.5.

ratio M and the Forchheimer number F , respectively, change. Also, figures 6
and 7 show that the Residual of DBF equation, when the porous medium shape
parameter s, the viscosity ratio M and the Forchheimer number F , respectively,
change. For different the thermal conductivity and the thermo-geometric fin
parameters, figures 8-12 are depicted. A comparison between present method
results and similar results of literature for u(0) and u′(1) for diverse amounts of
s with M = F = 1 in Table 1, diverse amounts of M with s = F = 1 in Table
2 and diverse amounts of F with s = M = 1 in Table 3, for DBF equation are
given. Finally, comparisons of the residual of FTD when β is changed in Tables
4-8 are given. In made works by some scholars one can see a comparison be-
tween OGHAM and ADM ([62]), HAM ([1]) and some other methods presented
at ([10, 37, 49, 52, 57]). The obtained errors by our show the efficiency of method
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in works offered in the literature. Also, the error of equations has been calcu-
lated by replacing the solutions in the method is near 10−10. Of course, the more
distance of the initial point results in the greater discrepancy. So, the error of
obtained solution has been improved by decreasing the step length.

Table 1. A comparison between current method results and
similar results of literature for u(0) and u′(1) for diverse amounts
of s with M = F = 1 for DBF equation.

u(0) u′(1)

s Exact [1] THAM [56] OHAM Exact [1] THAM [56] OHAM

0.0 0.50000000 0.50000000 0.49999999 −1.00000000 −1.00000000 −0.99999999

0.5 0.42268539 0.42268512 0.42280349 −0.88064312 −0.88064302 −0.88266829

1.0 0.32384748 0.32384737 0.32391684 −0.72123255 −0.72123150 −0.72255188

1.5 0.23838512 0.23838511 0.23829315 −0.57910415 −0.57910403 −0.57776604

2.0 0.17443254 0.17443249 0.17414743 −0.46912865 −0.46912838 −0.46409652

2.5 0.12917334 0.12917323 0.12869561 −0.38790266 −0.38790262 −0.37867709

3.0 0.09756501 0.09756552 0.09691552 −0.32802775 −0.32802769 −0.31445019

3.5 0.07532735 0.07532713 0.07453745 −0.28310477 −0.28310468 −0.26526295

4.0 0.05942133 0.05942103 0.05852592 −0.24857364 −0.24857355 −0.22673197

4.5 0.04781481 0.04781437 0.04684759 −0.22137069 −0.22137051 −0.19590678

5.0 0.03916962 0.03916923 0.03816031 −0.19945535 −0.19945515 −0.17080529

6. Conclusion

In this paper, we considered the nonlinear second order boundary value prob-
lem. The approximate solutions of the nonlinear second-order boundary value
problem achieved by applying a new analytical technique namely, OG-HAM.
The result obtained from the techniques compared to numerically and graphi-
cally. The result of THAM and OG-HAM close associated with each other. The
effects of model parameters are presented graphically on the DBF and DTB and
residual of those. Although the method of optimal Galerkin-homotopy asymp-
totic is famous and applicable for various problems, in this paper it has been
shown that the error of solution obtained by the method in a known equation is
sizeable, at least. The fin temperature distribution has been considered in this
paper. The approximate solutions of several iterations have been obtained by
OGHAM and has been presented their errors. We have selected an appropriate
iteration of HAM with less error in a first subinterval. Based on this obtained
solution and suitable step, the OGHAM has been utilized. There is an intense
distinction between the solution obtained by HAM and OGHAM. The values and
differences of solutions at several points have been illustrated in the figures and
tables. Also, the error of equations has been calculated by replacing the solutions
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Table 2. A comparison between current method results and
similar results of literature for u(0) and u′(1) for diverse amounts
of M with s = F = 1 for DBF equation.

u(0) u′(1)

M Exact [1] THAM [56] OHAM Exact [1] THAM [56] OHAM

1.0 0.32384748 0.32384746 0.32391684 −0.72123156 −0.72123154 −0.72255188

2.0 0.16840089 0.16840085 0.16841012 −0.36994359 −0.36994358 −0.370148202

3.0 0.11385781 0.11385781 0.11385776 −0.24891284 −0.24891282 −0.248932866

4.0 0.08601438 0.08601437 0.08601184 −0.18757523 −0.18757522 −0.187544056

5.0 0.06911628 0.06911628 0.06911299 −0.15049696 −0.15049693 −0.150449157

6.0 0.05776862 0.05776862 0.05776516 −0.12566013 −0.12566011 −0.125607334

7.0 0.04962212 0.04962002 0.04961872 −0.10786072 −0.10786522 −0.107807432

8.0 0.04348953 0.04348623 0.04348625 −0.09447861 −0.09447069 −0.094426650

9.0 0.03870614 0.03870456 0.03870302 −0.08405082 −0.08403012 −0.084000924

10.0 0.03487080 0.03487001 0.03486799 −0.07569623 −0.07569257 −0.075648636

Table 3. A comparison between current method results and
similar results of literature for u(0) and u′(1) for diverse amounts
of F with s = M = 1 for DBF equation.

u(0) u′(1)

F Exact [1] THAM [56] OHAM Exact [1] THAM [56] OHAM

0.0 0.35194573 0.35194571 0.35190217 −0.76159416 −0.76159411 −0.76086957

1.0 0.32384748 0.32384751 0.32391684 −0.72123156 −0.72123151 −0.72255188

2.0 0.30260920 0.30260920 0.30273429 −0.69043361 −0.69043358 −0.69309711

3.0 0.28566735 0.28566733 0.28582690 −0.66566104 −0.66566101 −0.66925454

4.0 0.27166879 0.27166875 0.27184658 −0.64503208 −0.64503203 −0.64928185

5.0 0.25980414 0.25980411 0.25998982 −0.62741989 −0.62741976 −0.63213575

6.0 0.24955327 0.24973977 0.24973978 −0.61209816 −0.61207546 −0.61714215

7.0 0.24056245 0.24056045 0.24074488 −0.59857162 −0.59831762 −0.60384052

8.0 0.23258057 0.23218037 0.23275542 −0.58648782 −0.58632752 −0.59190248

9.0 0.22542325 0.22522835 0.22558798 −0.57558726 −0.57543226 −0.58108578

10.0 0.21895122 0.21835155 0.21910401 −0.56567351 −0.56566052 −0.57120674

in the aforementioned method. Of course, the more distance of the initial point
results in the greater discrepancy. So, the error of obtained solution has been
improved by decreasing the step length.
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Table 4. Comparison of the Residual of FTD when β = 0.1

x ψ = 0.1 ψ = 0.2 ψ = 0.3 ψ = 0.4 ψ = 0.5
0.0 6.09× 10−10 3.07× 10−8 2.73× 10−7 3.89× 10−6 1.41× 10−5

0.1 5.42× 10−10 2.69× 10−8 2.35× 10−7 3.35× 10−6 1.21× 10−5

0.2 3.48× 10−10 1.61× 10−8 1.30× 10−7 1.85× 10−6 6.68× 10−6

0.3 6.14× 10−11 2.81× 10−10 −2.38× 10−8 −3.40× 10−7 −1.23× 10−6

0.4 −2.65× 10−10 −1.73× 10−8 −1.91× 10−7 −2.72× 10−6 −9.86× 10−6

0.5 −5.55× 10−10 −3.20× 10−8 −3.24× 10−7 −4.61× 10−6 −1.67× 10−5

0.6 −7.13× 10−10 −3.81× 10−8 −3.61× 10−7 −5.13× 10−6 −1.86× 10−5

0.7 −6.19× 10−10 −2.81× 10−8 −2.25× 10−7 −3.20× 10−6 −1.62× 10−5

0.8 −1.35× 10−10 6.39× 10−9 1.79× 10−7 2.46× 10−6 8.97× 10−6

0.9 9.03× 10−10 7.55× 10−8 9.44× 10−7 1.34× 10−6 4.86× 10−5

1.0 2.68× 10−9 1.90× 10−7 2.20× 10−6 3.12× 10−5 1.14× 10−4

Table 5. Comparison of the Residual of FTD when β = 0.2

x ψ = 0.1 ψ = 0.2 ψ = 0.3 ψ = 0.4 ψ = 0.5
0.0 −1.71× 10−9 7.16× 10−8 7.18× 10−7 1.36× 10−6 4.36× 10−6

0.1 −1.72× 10−9 6.23× 10−8 6.18× 10−7 1.17× 10−6 3.77× 10−6

0.2 −1.71× 10−9 3.62× 10−8 3.39× 10−7 6.48× 10−7 2.09× 10−6

0.3 −1.60× 10−9 −2.03× 10−9 −6.42× 10−8 −1.13× 10−7 −3.49× 10−7

0.4 1.27× 10−9 −4.41× 10−8 −5.04× 10−7 −9.45× 10−7 −5.19× 10−6

0.5 −5.41× 10−10 −7.86× 10−8 −8.52× 10−7 −1.61× 10−6 −3.03× 10−6

0.6 8.30× 10−10 −9.08× 10−8 9.47× 10−7 −1.80× 10−6 −5.85× 10−6

0.7 3.12× 10−9 −6.29× 10−8 −5.88× 10−7 −1.14× 10−6 −3.73× 10−6

0.8 6.68× 10−9 2.66× 10−8 4.61× 10−7 8.49× 10−7 2.72× 10−6

0.9 1.19× 10−8 2.02× 10−7 2.47× 10−6 4.71× 10−6 1.53× 10−5

1.0 1.92× 10−8 4.92× 10−7 5.76× 10−6 1.08× 10−5 3.64× 10−5

Table 6. Comparison of the Residual of FTD when β = 0.3

x ψ = 0.1 ψ = 0.2 ψ = 0.3 ψ = 0.4 ψ = 0.5
0.0 −3.46× 10−9 6.75× 10−8 7.17× 10−7 3.59× 10−6 1.35× 10−5

0.1 −3.36× 10−9 5.91× 10−8 6.44× 10−7 3.10× 10−6 1.66× 10−5

0.2 −3.06× 10−9 3.55× 10−8 5.55× 10−7 6.48× 10−7 2.09× 10−6

0.3 −2.47× 10−9 8.09× 10−10 3.05× 10−8 1.71× 10−6 6.42× 10−6

0.4 −1.49× 10−9 −3.77× 10−8 −5.79× 10−8 −3.19× 10−7 −1.20× 10−6

0.5 2.68× 10−11 −7.01× 10−8 −7.65× 10−7 −2.52× 10−6 −9.49× 10−6

0.6 2.29× 10−9 −8.35× 10−8 −8.49× 10−7 −4.27× 10−6 −1.61× 10−5

0.7 5.57× 10−9 −6.20× 10−8 −5.27× 10−7 −4.75× 10−6 −1.78× 10−5

0.8 1.01× 10−8 1.28× 10−8 4.14× 10−7 2.29× 10−6 8.66× 10−6

0.9 1.63× 10−8 1.63× 10−7 2.22× 10−6 1.24× 10−5 4.67× 10−5

1.0 2.45× 10−8 4.12× 10−7 5.17× 10−6 2.88× 10−5 1.09× 10−4

Table 7. Comparison of the Residual of FTD when β = 0.4

x ψ = 0.1 ψ = 0.2 ψ = 0.3 ψ = 0.4 ψ = 0.5
0.0 −2.49× 10−9 4.51× 10−8 3.72× 10−7 2.20× 10−6 8.74× 10−6

0.1 −2.41× 10−9 4.01× 10−8 3.21× 10−7 1.89× 10−6 7.53× 10−6

0.2 −2.15× 10−9 2.58× 10−8 1.76× 10−7 4.66× 10−6 4.14× 10−6

0.3 −1.68× 10−9 4.66× 10−9 −3.37× 10−8 −1.90× 10−7 −7.87× 10−7

0.4 −9.31× 10−10 −1.94× 10−8 −2.62× 10−7 −1.54× 10−6 −6.14× 10−6

0.5 1.73× 10−10 −4.07× 10−8 −4.42× 10−7 −2.60× 10−6 −1.04× 10−5

0.6 1.74× 10−9 −5.23× 10−8 −4.91× 10−7 −2.89× 10−6 −1.15× 10−5

0.7 3.92× 10−9 −4.54× 10−8 −3.04× 10−7 −1.81× 10−6 −7.16× 10−6

0.8 6.85× 10−8 −9.63× 10−9 2.40× 10−7 1.38× 10−6 5.62× 10−6

0.9 1.07× 10−8 6.69× 10−8 1.28× 10−6 7.50× 10−6 1.47× 10−5

1.0 1.58× 10−8 1.98× 10−7 2.98× 10−6 1.75× 10−5 7.02× 10−5



AN OPTIMAL GALERKIN-HOMOTOPY ASYMPTOTIC METHOD . . . 179

Table 8. Comparison of the Residual of FTD when β = 0.5

x ψ = 0.1 ψ = 0.2 ψ = 0.3 ψ = 0.4 ψ = 0.5
0.0 −1.06× 10−7 −5.11× 10−8 4.83× 10−8 4.50× 10−7 2.55× 10−6

0.1 −1.01× 10−7 −4.87× 10−8 4.16× 10−8 3.86× 10−7 2.19× 10−6

0.2 −8.44× 10−8 −4.15× 10−8 2.28× 10−8 2.09× 10−7 1.19× 10−6

0.3 −5.81× 10−8 −2.94× 10−8 −4.50× 10−9 −4.92× 10−8 −2.66× 10−7

0.4 −2.12× 10−8 −1.21× 10−8 −3.41× 10−8 −3.28× 10−7 −1.84× 10−6

0.5 2.63× 10−8 1.08× 10−8 −5.76× 10−8 −5.47× 10−7 −3.08× 10−6

0.6 8.44× 10−8 3.97× 10−8 −6.38× 10−8 −6.00× 10−7 −3.39× 10−6

0.7 1.53× 10−7 7.53× 10−8 −3.94× 10−8 −3.59× 10−7 −2.05× 10−6

0.8 2.32× 10−7 1.18× 10−7 3.16× 10−8 3.27× 10−7 1.80× 10−6

0.9 3.22× 10−7 1.69× 10−7 1.68× 10−7 1.63× 10−6 1.44× 10−6

1.0 4.23× 10−7 2.29× 10−7 3.89× 10−7 3.76× 10−6 2.11× 10−5
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