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ON A PROBLEM OF SYNTHESIS OF CONTROL OF POWER

OF THE MOVING SOURCES ON HEATING OF A ROD

KAMIL R. AIDA-ZADE, VUGAR A. HASHIMOV, AND ARZU H. BAGIROV

Abstract. The problem of synthesis of control of power of the moving
sources according to the given rules and trajectories under heating the
rod is considered. The current values of the controls are determined
depending on the values of the temperature of the rod at the points of
measurement. Formulas for the components of the gradient of the ob-
jective functional are obtained with respect to the feedback parameters
and the coordinates of the placement of the measurement points. The
formulas can be used in the numerical solution to the test problem using
first-order numerical optimization methods.

1. Introduction

We consider the problem of optimal synthesis of control of power of the sources
under heating a rod moving on given trajectories and accordingly given laws
The current values of the powers of the sources are assigned depending on the
measured values of temperature of the rod at the points at which the measuring
devices are set.

In recent years, due to development of computing and measuring technology,
interest in the study control problems with feedback with a controlled object has
increased. To control and regulate some industrial processes and technical ob-
jects special control devices were developed already in the last century using the
research results of J.C. Maxwell, E.J., Routh, I.A. Vyshnegradskiy, A. Hurwitz,
A.M. Lyapunov and other scientists and engineers. Later, the results of research
of L.S. Pontryagin, R.E. Bellman, A.M. Letov and many other scientists made
it possible to solve serious problems in rocketry, astronautics and create the sys-
tems for automatic control of various technological processes, industrial objects
[7],[8],[9],[10],[14],[15],[16],[17],[18].

The originality of the results of this work regarding the problems of synthesis of
optimal control of systems with distributed parameters is that the synthesis of the
power of control of the moving sources is carried out; for assignment the current
values of powers of the sources a formula of linear dependence on the measured
temperature values at the measurement points, the placements of which need to
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be optimized is proposed; the considered control synthesis problem is reduced to
a finite-dimensional optimization problem.

A specific feature of the problem under consideration is, firstly, that the current
values of the powers of moving lumped sources are distributed along the rod in
some neighbourhood of their current locations; secondly, the current state of the
rod is influenced not only by the instant values of the power of the sources, but
also by the integral values during a certain specified time interval.

In this work we obtained formulas for the components of the gradient of the ob-
jective functional with respect to the feedback parameters and the location of the
measuring points, which allow using standard numerical methods of optimization
of the gradient type to solve the control synthesis problem.

The proposed approach can be used in the systems for control and regulation
sources for objects described by other kinds and types of initial-boundary value
problems.

2. Formulation of the problem

Consider the rod heating process described by the following initial-boundary
value problem regarding to integral-differential equation [5]:

ut(x, t) = a2uxx(x, t)− λ0 [u(x, t)− θ] +

Ns∑
i=1

qi(t)µσs(x; zi (t)), (2.1)

(x, t) ∈ (0, l)× (0, T ],

u(x, 0) = b(x) = b = const, x ∈ [0, l] , (2.2)

ux(0, t) = λ [u(0, t)− θ] , ux(l, t) = λ [u(l, t)− θ] , t ∈ (0, T ], (2.3)

Here: u(x, t) is the temperature of the rod at a point x ∈ [0, l] at the moment t;
a, λ, λ0 are given parameters of the heating process; θ is ambient temperature.

Continuously differentiable with respect to x function µσs (x; ẑ), ẑ ∈ [σs, l − σs]
for given positive parameter σs, determine the distribution of the instant value
of the q(t) power of the source at time t, lumped at the point ẑ, in a domain
(ẑ − σs, ẑ + σs):

µσs(x; ẑ)

{
≥ 0, if x ∈ (ẑ − σs, ẑ + σs) ,

= 0, if x /∈ (ẑ − σs, ẑ + σs) .

Moreover, these functions must satisfy the conditions:

ẑ+σs∫
ẑ−σs

µσs(x; ẑ)dx = 1.

It is clear that for σs tending to 0 the function µσs (x; 0) tends to the δ-function
of Dirac [12]. But the problem considered in this work is closer to real applica-
tions.

The heating process is carried out by Ns sources moving along given trajec-
tories, powers q = q (t) =

(
q1(t), . . . , qNs(t)

)
, which are piece-wise continuous

controls, satisfy the constraints:

qi(t) ∈ Qi =
[
qi, qi

]
, i = 1, . . . , Ns, t ∈ [0, T ), (2.4)
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where values qi, qi, i = 1, . . . , Ns are given. Continuous functions zi(t) ∈
[σs, l − σs] are given, they determine the position of i-th power source at the
moment t on the rod, i = 1, . . . , Ns.

We consider the initial temperature in (2.2) at all points of the rod to be the
same, but not exactly specified, and belonging to a given set B ⊂ R with a known
density function ρB(b):

ρB(b) ≥ 0, b ∈ B,
∫
B

ρB(b)db = 1.

Ambient temperature θ is constant, and its values belong to the set Θ ⊂ R
with a given density function ρΘ(θ) with properties

ρΘ(θ) ≥ 0, θ ∈ Θ,

∫
Θ

ρΘ(θ)dθ = 1.

The formulated problem is to determine the values of the sources power q =
q (t) =

(
q1(t), . . . , qNs(t)

)
∈ Q which minimize the following objective functional:

JT (q) =

∫
B

∫
Θ

IT (q; b, θ)ρB(b)ρΘ(θ)dθdb, (2.5)

IT (q; b, θ) =

l∫
0

ζ(x) [u(x, T )− U(x)]2dx+ ε||q(t)− q̂(t)||2
LNs
2 [0,T ]

. (2.6)

Here: function u(x, t) = u(x, t; q, b, θ) is the solution to the initial-boundary value
problem (2.1)−(2.3) at u(x, 0) = b, ambient temperature θ, values of sources
power q(t); function U(x), x ∈ [0, l] is the desired state of the rod at t = T ;
ζ(x) ≥ 0, x ∈ [0, l] is the weight function; ε, q̂(t) are regularization parameters of
the objective functional of the problem [19].

Let at the given Nc points of the rod ξj ∈ [σc, l − σc], j = 1, . . . , Nc tempera-
ture measurements in the process of its heating are carried out:

uj(t) =

ξj+σc∫
ξj−σc

u(x, t)νσc(x; ξj)dx, j = 1, . . . , Nc, t ∈ [0, T ] , (2.7)

continuously in time or at given times tk ∈ [0, T ]:

ukj =

ξj−σc∫
ξj−σc

u(x, tk)νσc(x; ξj)dx, j = 1, . . . , Nc, k = 0, . . . , Nt. (2.8)

The relations (2.7) and (2.8) indicate that the assignment of the measured
current state at the point ξj affects the states at the points of some of its neigh-
borhood:

(
ξj − σc, ξj + σc

)
with weight function νσc(x; ξj), j = 1 . . . , Nc.

The weight function νσc(σc; ξ̂) has the following properties:

νσc(x; ξ̂)

{
≥ 0, if x ∈ (ξ̂ − σc, ξ̂ + σc),

= 0, if x /∈ (ξ̂ − σc, ξ̂ + σc),
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ξ̂+σc∫
ξ̂−σc

νσc(x; ξ̂)dx = 1.

Based on the obtained measurement the power values qi(t), i = 1, . . . , Ns are
determined using the following relationship:

qi(t) =

Nc∑
j=1

αji

 ξj+σc∫
ξj−σc

u(x, t)νσc(x; ξj)dx− ω̂ji

 , i = 1, . . . , Ns, t ∈ [0, T ) , (2.9)

where αji , ω̂
j
i , ξ

j are coefficients of feedback, i = 1, . . . , Ns, j = 1, . . . , Nc [4], [11].
The value in brackets is equal to the deviation of the temperature at the j-th

measuring point from the value ω̂ji that is nominal relative to the i-th source for

the j-th measuring point, αji are the coefficients of the amplification.
Formula (2.9) can be written as follows:

qi(t) =

Nc∑
j=1

αji

ξj+σc∫
ξj−σc

u(x, t)νσc(x; ξj)dx−
Nc∑
j=1

αji ω̂
j
i , i = 1, . . . , Ns, t ∈ [0, T ) ,

and after notation
Nc∑
j=1

αji ω̂
j
i = ωi, i = 1, . . . , Ns,

we have:

qi(t) =

Nc∑
j=1

αji

ξj+σc∫
ξj−σc

u(x, t)νσc(x; ξj)dx− ωi, i = 1, . . . , Ns, t ∈ [0, T ) . (2.10)

The number of feedback coefficients (parameters) in formulas (2.9) and (2.10)
is n = NsNc +Ns +Nc. Further for the control influence qi(t), i = 1, . . . , Ns we
will use the dependency (2.10).

In the case of measurements (2.8) that are discrete in time, we use the formula:

qi(t) =

Nc∑
j=1

αji

ξj+σc∫
ξj−σc

u(x, tk)νσc(x; ξj)dx−ωi, i = 1, . . . , Ns, t ∈ [tk, tk+1) , (2.11)

k = 0, . . . , Nt, t0 = 0, tNt+1 = T.

Since the function u(x, t) is the solution of problem (2.1)−(2.3) is continuous by
t at t ∈ [0, T ], then the power q(t), obtained from formula (2.10), in measurements
(2.7) are continuous functions. If measurements are taken discretely in time, then
the power functions qi(t), i = 1, . . . , Ns, according to formula (2.11) are piece-wise
continuous for t ∈ [0, T ] and are continuous at t ∈ [tk, tk+1), k = 0, . . . , Nt.

Using formula (2.9) in the case of continuous feedback (2.10) in equation (2.1),
we get:

ut(x, t) = a2uxx(x, t)− λ0 [u(x, t)− θ] + (2.12)
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+

Ns∑
i=1

 Nc∑
j=1

αji

ξj+σc∫
ξj−σc

u(γ, t)νσc(γ; ξj)dγ − ωi

µσs(x; zi (t)),

x ∈ (0, l) , t ∈ (0, T ] .

If the feedback is discrete in time, substituting (2.11) into (2.1), for the heating
process we obtain the following equations, defined on time half-intervals t ∈
[tk, tk+1), k = 0, . . . , Nt:

ut(x, t) = a2uxx(x, t)− λ0 [u(x, t)− θ] + (2.13)

+

Ns∑
i=1

 Nc∑
j=1

αji

ξj+σc∫
ξj−σc

u(γ, tk)νσc(γ; ξj)dγ − ωi

µσs(x; zi (t)),

x ∈ (0, l) , t ∈ [tk, tk+1) , k = 0, . . . , Nt.

In this case, the conditions for the continuity of the process as a whole are
satisfied:

u(x, t−k ) = u(x, tk) = u(x, t+k ), x ∈ [0, l] , k = 1, . . . , Nt.

Equations (2.12) and (2.13) are integro-differential or integrally loaded. The
corresponding initial-boundary value problems have been studied in many works
(the bibliography can be found in [13]). By discrete approximation of the integral
in the equation is reduced to a point-loaded equation. The study of such equations
was carried out in [1],[2],[3],[6],[13].

The problem considered below is to determine the feedback coefficients α =(
αji

)
, ω =

(
ωi
)
, ξ =

(
ξj
)
, j = 1, . . . , Nc, i = 1, . . . , Ns under constraints (2.4)

that provide the objective functional with a minimum value. For the parameters
optimized in the problem, we introduce the notation y = (α, ω, ξ) ∈ Rn, and
functional (2.5), (2.6) of the considered problem can be written as follows:

JT (y) =

∫
B

∫
Θ

IT (y; b, θ)ρB(b)ρΘ(θ)dθdb, (2.14)

IT (y; b, θ) =

l∫
0

ζ(x) [u(x, T )− U(x)]2dx+ ε||y − ŷ||2Rn . (2.15)

Here: u(x, t) = u(x, t; y, b, θ) solution of the initial-boundary value problem
with respect to equation (2.12), (2.13), (2.2), (2.3) for the given parameters
y = (α, ω, ξ), with the initial condition u(x, 0) = b and ambient temperature
θ.

Constraints (2.4) on the power of sources with continuous feedback (2.10) will
become joint constraints on the parameters y and the phase state temperature
at the measuring points ξj in integral form, j = 1, . . . , Nc.

qi ≤ qi(t; y) =

Nc∑
j=1

αji

ξj+σc∫
ξj−σc

u(x, t)νσc(x; ξj)dx− ωi ≤ qi, (2.16)

t ∈ [0, T ) , i = 1, . . . , Ns.
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We can write these restrictions in the equivalent form

gi (t; y) = |gi0(t; y)| −
qi − qi

2
≤ 0, t ∈ [0, T ) , i = 1, . . . , Ns, (2.17)

gi0(t; y) =
qi + qi

2
− qi(t; y).

The resulting problem (2.12), (2.2)−(2.4), (2.14), (2.15) belongs to the class of
problems of control synthesis for systems with distributed parameters, in which
the sought for is the finite-dimensional vector y ∈ Rn. The specifics of the
problem are: integro-differential equations describing the process under study;
the dependence of the values of the objective functional on the set of solutions
of the initial-boundary value problem, since the initial condition of the rod and
the ambient temperature can take values from the sets B and Θ. Note that the
dimension of the resulting finite-dimensional optimization problem to which the
original problem is reduced is determined by the double product of the number of
sources and sampling points. This dimension can be considered acceptable, given
the current state of computer technology and numerical optimization methods.

3. Approach and formulas for solving the problem

First of all, note the convexity in q(t) the source optimal control problem
(2.1)−(2.6) (without feedback). It is clear that the functional of the control
problem (2.14), (2.15) with both continuous (2.10) and discrete (2.11) feedback
is not convex with respect to the optimized feedback parameters y. Note also the
non-convexity of the permissible parameter range y, defined by formulas (2.16).
This follows the non-linearity of the dependence of the solution to the initial-
boundary value problem u(x, t) from parameters y = (α, ω, ξ). The formulas for
the gradients of the functional given below in the theorems can be useful for
the numerical solution of the problem of determining the locally optimal sought-
for feedback parameters or for local clarification of their values specified by the
expert. In general, to optimize the feedback parameters, global optimization
methods can be used in combination with local methods of conditional gradient
optimization.

To solve the resulting finite-dimensional parametric optimal control problem
(2.1)−(2.6), we apply the penalty function method to take into account con-
straints (2.17) [19]. Taking into account, as indicated above, the multi-extremality
of the problem in terms of feedback parameters for both continuous and discrete
feedback, the solution of the problem can be solved using the method of penalty
functions with different initial search points relative to the vector of parameters
y.

The external penalty functional with respect to functional (2.14), (2.15) is
written in the form:

JT,R(y) =

∫
B

∫
Θ

IT (y; b, θ)ρB(b)ρΘ(θ)dθdb, (3.1)
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IT,R(y; b, θ) =

l∫
0

ζ(x) [u(x, T )− U(x)]2dx+ ε||y − ŷ||2Rn +RGq(y), (3.2)

Gq(y) =

Ns∑
i=1

T∫
0

[
gi+ (t; y)

]2
dt.

Here the coefficient R tends to infinity, and the function gi+ (t; y) = 0, if gi (t; y) ≤
0, and gi+ (t; y) = gi (t; y), if gi (t; y) > 0.

Theorem 3.1. With continuous feedback (2.10), the functional JT,R(y) of prob-
lem (2.12), (2.2), (2.3), (2.4), (3.1), (3.2) for each value of the coefficient R
differentiable by y = (α, ω, ξ), and the components of its gradient have the for-
mulas

∂JT,R(y)

∂αji
=

∫
B

∫
Θ

{
−

T∫
0

[ zi(t)+σs∫
zi(t)−σs

ψ(x, t)µσs(x; zi (t))dx+

+ 2Rgi+(t; y)sgn(gi0(t; y))

][ ξj+σc∫
ξj−σc

u(γ, t)νσc(γ; ξj)dγ

]
dt+

+ 2ε
(
αji − α̂

j
i

)}
ρB (b) ρΘ (θ) dθdb, (3.3)

∂JT,R(y)

∂ωi
=

∫
B

∫
Θ

{ T∫
0

[ zi(t)+σs∫
zi(t)−σs

ψ(x, t)µσs(x; zi (t))dx+

+ 2Rgi+(t; y)sgn(gi0(t; y))

]
dt+ 2ε

(
ωi − ω̂i

)}
ρB (b) ρΘ (θ) dθdb, (3.4)

∂JT,R(y)

∂ξj
=

∫
B

∫
Θ

{
−

Ns∑
i=1

T∫
0

[ zi(t)+σs∫
zi(t)−σs

ψ(x, t)µσs(x; zi (t))dx+

+ 2Rgi+(t; y)sgn(gi0(t; y))

][ ξj+σc∫
ξj−σc

uγ(γ, t)νσc(γ; ξj)dγ

]
dt+

+ 2ε
(
ξj − ξ̂j

)}
ρB (b) ρΘ (θ) dθdb, (3.5)
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i = 1, . . . , Ns, j = 1, . . . , Nc. Here the function ψ (x, t) = ψ (x, t; y, b, θ,R) is the
solution for the following conjugate initial-boundary value problem:

ψt(x, t) = −a2ψxx(x, t) + λ0ψ(x, t)−
Nc∑
j=1

νσc(x; ξj)· (3.6)

·
Ns∑
i=1

{
αji

zi(t)+σs∫
zi(t)−σs

ψ (γ, t)µσs(γ; zi (t))dγ + 2Rgi+ (t; y) sgn
(
gi0(t; y)

)}
dt,

x ∈ (0, l) , t ∈ [0, T ) ,

ψ(x, T ) = −2ζ(x) [u(x, T )− U(x)] , x ∈ [0, l] , (3.7)

ψx(0, t) = λψ(0, t), ψx(l, t) = −λψ(l, t), t ∈ [0, T ) . (3.8)

Proof. From the independence of the initial temperature of the rod and the
temperature of the external environment from the vector of its parameters, it
follows:

gradyJT,R(y) = grad

∫
B

∫
Θ

IT,R(y; b, θ)ρΘ (θ) ρB (b) dθdb =

=

∫
B

∫
Θ

gradyIT,R(y; b, θ)ρΘ (θ) ρB (b) dθdb.

Taking this into account, further we will deal with the differentiability of func-
tional (2.15) at given temperatures b and θ.

In equation (2.12) we use the notation:

F (x, t;u, y) =

Ns∑
i=1

 Nc∑
j=1

αji

ξj+σc∫
ξj−σc

u(γ, t)νσc(γ; ξj)dγ − ωi

µσs(x; zi (t)), (3.9)

and equation (2.12) is written as follows:

ut(x, t) = a2uxx(x, t)− λ0 [u(x, t)− θ] + F (x, t;u, y). (3.10)

Further, we will apply the increment method for independent variables y. Sup-
pose the parameters y = (α, ω, ξ) got an increment ∆y, let denote y1 = y+ ∆y =
(α+ ∆α, ω + ∆ω, ξ + ∆ξ). It is clear that the influence F (x, t;u, y) will be in-
creased:

∆F (x, t;u, y) = F (x, t;u, y1)− F (x, t;u, y) (3.11)

and phase variable

∆u(x, t; y) = u(x, t; y1)− u(x, t; y). (3.12)

Then the function ∆u(x, t; y) is the solution to the problem:

∆ut(x, t) = a2∆uxx(x, t)− λ0∆u(x, t) + ∆F (x, t;u, y), (3.13)

x ∈ (0, l) , t ∈ (0, T ] ,

∆u(x, 0) = 0, x ∈ [0, l] , (3.14)

∆ux(0, t) = λ∆u(0, t), ∆ux(l, t) = −λ∆u(l, t), t ∈ (0, T ], (3.15)
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For the first term of the increment of functional (3.2):

∆IT,R(y; b, θ) = ∆IT (y; b, θ) +R∆Gq (y) , (3.16)

taking into account (3.13)−(3.15), we have:

∆IT (y; b, θ) = IT (y1; b, θ)− IT (y; b, θ) = (3.17)

=

l∫
0

2ζ (x) [u(x, T )− U(x)] ∆u (x, T ) dx+ 2ε〈y − ŷ,∆y〉.

Let us multiply both sides of equation (3.13) by the still arbitrary function
ψ (x, t), integrate by x, x ∈ [0, l] and by t, t ∈ [0, T ], and move all terms to the
left. Adding the obtained relation to (3.17), we obtain

∆IT (y; b, θ) =

l∫
0

2ζ (x) [u(x, T )− U(x)] ∆u (x, T ) dx+ 2ε〈y − ŷ,∆y〉+ (3.18)

+

T∫
0

l∫
0

ψ (x, t)
(
∆ut(x, t)− a2∆uxx(x, t) + λ0∆u(x, t)−∆F (x, t;u, y)

)
dxdt.

Integrating by parts we get:

∆IT (y; b, θ) =

l∫
0

2ζ (x) [u(x, T )− U(x)] ∆u (x, T ) dx+ 2ε〈y − ŷ,∆y〉+ (3.19)

+

l∫
0

ψ (x, T ) ∆u (x, T )dx−
l∫

0

ψ (x, 0) ∆u (x, 0)dx− a2

T∫
0

ψ (l, t) ∆ux (l, t)dt+

+a2

T∫
0

ψ (0, t) ∆ux (0, t)dt+ a2

T∫
0

ψx (l, t) ∆u (l, t)dt− a2

T∫
0

ψx (0, t) ∆u (0, t)dt−

−
T∫

0

l∫
0

(
ψt(x, t) + a2ψxx(x, t)− λ0ψ(x, t)

)
∆u (x, t) dxdt−

−
T∫

0

l∫
0

ψ(x, t)∆F (x, t;u, y)dxdt.

Bracket 〈·, ·〉 denotes scalar product operation.
For the last term (3.19), taking into account (3.9), (3.11), after transformations

we obtain:

T∫
0

l∫
0

ψ(x, t)∆F (x, t;u, y)dxdt =

T∫
0

l∫
0

ψ(x, t) [F (x, t;u, y1)− F (x, t;u, y)] dxdt =
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=

Ns∑
i=1

Nc∑
j=1

∆αji

T∫
0

zi(t)+σs∫
zi(t)−σs

ψ(x, t)µσs(x; zi (t))dx

ξj+σc∫
ξj−σc

u(γ, t)νσc(γ; ξj)dγdt−

−
Ns∑
i=1

∆ωi
T∫

0

zi(t)+σs∫
zi(t)−σs

ψ(x, t)µσs(x; zi (t))dxdt+

+

Nc∑
j=1

∆ξj
Ns∑
i=1

αji

T∫
0

zi(t)+σs∫
zi(t)−σs

ψ(x, t)µσs(x; zi (t))dx

ξj+σc∫
ξj−σc

uγ(γ, t)µσc

(
γ; ξj

)
dγdt+

+

Nc∑
j=1

Ns∑
i=1

αji

T∫
0

zi(t)+σs∫
zi(t)−σs

ψ(x, t)µσs(x; zi (t))dx

ξj+σc∫
ξj−σc

∆u(γ, t)νσc(γ; ξj)dγdt.

For the second term in formula (3.16), after simple transformations, we have:

∆Gq(y) = Gq(y1)−Gq(y) =

Ns∑
i=1

T∫
0

{[
gi+ (t; y1)

]2 − [gi+ (t; y)
]2}

dt =

=

Ns∑
i=1

T∫
0


[
|gi0(t; y1)| −

qi − qi

2

]2

−

[
|gi0(t; y)| −

qi − qi

2

]2
 dt =

= −2

Ns∑
i=1

Nc∑
j=1

∆αji

T∫
0

gi+(t; y)sgn
(
gi0 (t; y)

) ξj+σc∫
ξj−σc

u(γ, t)νσc(γ; ξj)dγdt+

+2

Ns∑
i=1

∆ωi
T∫

0

gi+(t; y)sgn
(
gi0 (t; y)

)
dt−

−2

Nc∑
j=1

∆ξj
Ns∑
i=1

αji

T∫
0

gi+(t; y)sgn
(
gi0 (t; y)

) ξj+σc∫
ξj−σc

uγ(γ, t)νσc(γ; ξj)dγdt−

−2

Nc∑
j=1

Ns∑
i=1

αji

T∫
0

gi+(t; y)sgn
(
gi0 (t; y)

) ξj+σc∫
ξj−σc

∆u(γ, t)νσc(γ; ξj)dγdt.

It’s clear that:

∆IT,R(y; b, θ) =

l∫
0

2ζ (x) [u(x, T )− U(x)] ∆u (x, T ) dx+ (3.20)

+

l∫
0

ψ (x, T ) ∆u (x, T )dx−
l∫

0

ψ (x, 0) ∆u (x, 0)dx− a2

T∫
0

ψ (l, t) ∆ux (l, t)dt+
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+a2

T∫
0

ψ (0, t) ∆ux (0, t)dt+ a2

T∫
0

ψx (l, t) ∆u (l, t)dt− a2

T∫
0

ψx (0, t) ∆u (0, t)dt−

−
T∫

0

l∫
0

(
ψt(x, t) + a2ψxx(x, t)− λ0ψ(x, t)

)
∆u (x, t) dxdt−

−
Ns∑
i=1

Nc∑
j=1

∆αji

{ T∫
0

 zi(t)+σs∫
zi(t)−σs

ψ(x, t)µσs(x; zi (t))dx+ 2Rgi+(t; y)sgn
(
gi0 (t; y)

) ·

·

 ξj+σc∫
ξj−σc

u(γ, t)νσc(γ; ξj)dγ

 dt+ 2ε
(
αji − α̂

j
i

)}
+

+

Ns∑
i=1

∆ωi

{ T∫
0

 zi(t)+σs∫
zi(t)−σs

ψ(x, t)µσs(x; zi (t))dx+ 2Rgi+(t; y)sgn
(
gi0 (t; y)

) dt+

+2ε
(
ωi − ω̂i

)}
−

−
Nc∑
j=1

∆ξj

{
Ns∑
i=1

T∫
0

 zi(t)+σs∫
zi(t)−σs

ψ(x, t)µσs(x; zi (t))dx+ 2Rgi+(t; y)sgn
(
gi0 (t; y)

) ·

·

 ξj+σc∫
ξj−σc

uγ(γ, t)νσc(γ; ξj)dγ

 dt+ 2ε
(
ξj − ξ̂j

)}
−

−
Ns∑
i=1

Nc∑
j=1

{ T∫
0

 zi(t)+σs∫
zi(t)−σs

ψ(x, t)µσs(x; zi (t))dx+ 2Rgi+(t; y)sgn
(
gi0 (t; y)

) ·

·

 ξj+σc∫
ξj−σc

∆u(γ, t)νσc(γ; ξj)dγ

 dt}.
It is known [19] that the components of the functional gradient are deter-

mined from (3.20) by the linear parts of its increment with respect to each of
the components. Hence we have formulas (3.3)−(3.5) and the conjugate problem
(3.6)−(3.8). The theorem is proved.

For discrete in time feedback (2.11), the theorem is valid.
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Theorem 3.2. Functional JT,R(y) with discrete time feedback at each value of
the penalty coefficient R differentiable by parameters y = (α, ω, ξ), and for the
components of its gradient the following formulas hold:

∂JT,R(y)

∂αji
=

∫
B

∫
Θ

{
−

Nt∑
k=0

tk+1∫
tk

[ zi(t)+σs∫
zi(t)−σs

ψ(x, t)µσs(x; zi (t))dx+

+ 2Rgi+(tk; y)sgn(gi0(tk; y))

][ ξj+σc∫
ξj−σc

u(γ, tk)νσc(γ; ξj)dγ

]
dt+

+ 2ε
(
αji − α̂

j
i

)}
ρB (b) ρΘ (θ) dθdb,

∂JT,R(y)

∂ωi
=

∫
B

∫
Θ

{
Nt∑
k=0

tk+1∫
tk

[ zi(t)+σs∫
zi(t)−σs

ψ(x, t)µσs(x; zi (t))dx+

+ 2Rgi+(tk; y)sgn(gi0(tk; y))

]
dt+ 2ε

(
ωi − ω̂i

)}
ρB (b) ρΘ (θ) dθdb,

∂JT,R(y)

∂ξj
=

∫
B

∫
Θ

{
−

Ns∑
i=1

Nt∑
k=0

tk+1∫
tk

[ zi(t)+σs∫
zi(t)−σs

ψ(x, t)µσs(x; zi (t))dx+

+ 2Rgi+(tk; y)sgn(gi0(tk; y))

][ ξj+σc∫
ξj−σc

uγ(γ, tk)νσc(γ; ξj)dγ

]
dt+

+ 2ε
(
ξj − ξ̂j

)}
ρB (b) ρΘ (θ) dθdb,

i = 1, . . . , Ns, j = 1, . . . , Nc. Function ψ (x, t) = ψ (x, t; y, b, θ,R) with the cur-
rent vector of parameters y, admissible initial conditions b ∈ B, ambient temper-
ature θ ∈ Θ and the penalty coefficient R is a solution to the following conjugate
initial-boundary value problem:

ψt(x, t) = −a2ψxx(x, t) + λ0ψ(x, t)−
Nc∑
j=1

νσc(x; ξj)·

·
Ns∑
i=1

{
αji

zi(tk)+σs∫
zi(tk)−σs

ψ (γ, tk)µσs(γ; zi (tk))dγ + 2Rgi+ (tk; y) sgn
(
gi0(tk; y)

)}
dt,

x ∈ (0, l) , t ∈ [tk, tk+1) , k = 0, . . . , Nt,

ψ(x, T ) = −2ζ(x) [u(x, T )− U(x)] , x ∈ [0, l] ,

ψx(0, t) = λψ(0, t), ψx(l, t) = −λψ(l, t), t ∈ [0, T ) .
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4. Conclusion

The article investigates the problem of synthesis of power control of moving
sources when heating a rod. The current values of the power of the source are
distributed in the neighbourhood of the points of their location and the moments
of time of influence. To synthesize the power values of the sources, their de-
pendence on the rod temperature values measured at the measurement points
is constructed. At the same time, the locations of the measurement points are
also optimized in the problem. Formulas are proposed for the components of the
gradient in terms of the feedback parameters and the coordinates of the mea-
surement points. The formulas obtained will make it possible to apply effective
first-order optimization methods for the numerical solution of the problem.

The proposed approach can be easily extended to problems of optimal control
of lumped sources described by other types of initial-boundary value problems.
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