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SCALABILITY OF G-FRAMES BY DIAGONAL OPERATORS

AHMAD AHMADI AND ASGHAR RAHIMI

Abstract. Tight frames are similar to orthogonal bases, except that
the frame coefficients are not unique, but they are stable in calculations
and numerical algorithms. Not all frames are tight frames, but some
have the ability to become tight frames. These frames are called scal-
able frames. In this article, we extend this good property of frames to
G-frames. For this purpose, we define the scalable G-frame based on the
diagonal operators, and obtain a preconditioner for its analysis operator
by block diagonal operator. We also provide the necessary and suffi-
cient conditions for the scalability of the G-frames based on the frames
induced by the G-frames.

1. Introduction

The frames are a generalization of orthogonal bases, with the difference that
they are not linearly independent. That is, unlike the bases, the coefficients of the
frames are not necessarily unique. Gabor [11] formulated a new method for signal
decomposition and signal expansion based on preliminary signals. According to
this study, Duffin and Schaeffer [8] provided frames for the Hilbert space to solve
the non-harmonic series. Until 1980, the importance of frames was not known.
After Daubechies, Grossmann, and Meyer [7] reintroduced the frames, a lot of
research was done on this subject. Various extensions and generalizations of
frames have been introduced so far, such as pseudo-frames [15] quasi projectors
[10] and oblique frames [5]. These frames are a special feature of G-frames, which
was first introduced by Sun [17].

The applications of frames can be divided into two categories. In the first
applications, the frame is used for data analysis. In this case, the goal is to
resist data deletion, data analysis, and compression. Other applications are data
extensions. The approach is used in summarizing methods such as compressing
sensors. In applications, there need to be stable numerical algorithms. Tight
frames are one of the best subclasses of frames in this situation. One may ask
how a tight frame can be obtained. One of the solutions that can be used to get

a tight frame from a frame is the effect of the operator S
− 1

2
F on vectors of the

frame F = {fk}, where SF is frame operator for F . But it’s not easy to get this
operator, and also make changes to the frame vectors. One of the most important
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ways to get a tight frame is to change the scale of each frame vector. For this
purpose, Kutyniok and et al. [13] introduced a type of frames, which by scaling
of its vectors, become Parseval frames. They called these type of frames scalable
frames. They showed that for transforming a frame F = {fk} into a scalable
frame, one should find a diagonal operator D such that the conditional number
of the operator DT ∗F , where T ∗F is analysis operator of F , is one. In addition,
they stated, with a geometric interpretation, that not all frames are necessarily
scalable. After that, scalable frames have been investigated by several researchers
[3, 13, 14].

In this study, we develop the concept of the scalability of frames to G-frames,
and state the scalability of G-frames using non-negative diagonal operators in-
stead of non-negative numbers for scale changes. Furthermore, we use block
diagonal operator to precondition G-frames.

The present paper is organized as follows: In Section 2, we fix the notations
of this paper and summarize some results needed for the rest of the paper. In
Section 3, we present the concept of scalability of G-frames and prove some of
the proper results for these G-frames. Finally, in the last section, we introduce
some explicit constructions of scalable G-frames.

2. Notation and Preliminaries

Throughout this paper K and H are two Hilbert spaces and {Hi, i ∈ I} and
{Ki, i ∈ I} are sequences of Hilbert spaces, where I ⊂ Z. L(K,H) is the collection
of all bounded linear operators from K to H and for brevity, we denote L(H,H)
by L(H). We also recall that the space(⊕

Hi

)
l2

=

{
{xi}|xi ∈ Hi, i ∈ I :

∑
i∈I
‖xi‖22 <∞

}
,

is a Hilbert space with pointwise operations and the inner product as

〈{xi}, {yi}〉 =
∑
i∈I
〈xi, yi〉.

Definition 2.1. An operator D defined on the (closed) linear span of a basis
{ei}i∈I in a normed space X is called diagonal operator whenever Dek = λkek,
where k ≥ 1 and λk’s are complex numbers. If D is a continuous operator, one
has

supk≥1 | λk |<∞.

‖ D ‖= supk≥1 | λk |<∞.

We denote the domain, the kernel, and the range of linear operator S by domS,
kerS and rangS, respectively.

Definition 2.2. Assume that Di is an operator on Hi; i ∈ I. We say that the
operator D on (

⊕
Hi)l2 is a block diagonal operator with {Di} as its diagonal,

whenever

D({fi}) = {Difi}, {fi} ∈ domD,
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where,

domD =
{
{fi} ∈

(⊕
Hi

)
l2

: {Difi} ∈
(⊕

Hi

)
l2

}
.

For the block diagonal operator D, we recall that ‖D‖ = supi∈I‖Di‖.

Definition 2.3. An operator S : H → K will be called ICR (Injective Closed
Range), whenever S has the following properties

i) S is closed linear operator,

ii) there exists r > 0 such that ‖Sf‖ ≥ r‖f‖, ∀f ∈ H.

An operator P on the Hilbert space H is called non-negative operator if
〈Pf, f〉 ≥ 0. If P is non-negative, then its eigenvalues are non-negative real
numbers [6].

2.1. Scalable frames. Here’s a brief overview of topics on frames and scalable
frames. For more information on frames see [2, 4] and for scalable frames see
[1, 13, 14, 16, 18].

Definition 2.4. A sequence {fn} in a Hilbert space H is called a frame if there
exist two constants 0 < A ≤ B <∞ such that

A‖f‖2 ≤
∑
n∈N
|〈f, fn〉|2 ≤ B‖f‖2 ∀f ∈ H.

If A = B the sequence {fn} is called tight frame and if A = B = 1, it is called
Parseval frame.
Let F = {fn} be a frame, the map

TF : l2(N)→ H; TF ({cn}) =
∑
n∈N

cnfn,

is called the synthesis operator of the frame F . This operator is bounded and
onto. The adjoint TF denoted by

T ∗F : H → l2(N); T ∗F (f) = {〈f, fn〉} ,

is called analysis operator of F . The operator

SF : H → H; SF f = TFT
∗
F f =

∑
n∈N
〈f, fn〉fn,

is called frame operator. For the frame F , the frame operator is bounded, self-
adjoint, positive and invertible.

Definition 2.5. A frame F = {fi}i∈I is called scalable frame whenever there
exists a sequence of non-negative real numbers {αi}i∈I such that {αifi}i∈I is a
Parseval frame. Also, if αi’s are positive numbers then the frame F = {fi}i∈I is
called strictly scalable.

Let F = {fi}i∈I be a frame for Hilbert spaceH. Then F is scalable if and only if
there exists a non-negative diagonal operatorD on l2(I) such that T ∗FDDTF = IH,
[13].
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Theorem 2.1. [13] Let F = {fi}Mi=1 ⊂ RN \{0} be a frame for RN . Then F is not
scalable if and only if there exists a symmetric matrix Y ∈ RN×N with tr(Y ) < 0
such that fTj Y fj ≥ 0 for all j = 1, ...,M , where fTj denotes the transpose of the
matrix fj.

2.2. G-frames. In this section, we present the basic concepts of the G-frames.
As we mentioned earlier, this notation has been introduced by Sun [17]. For more
details see [5, 12, 17].

A sequence {Gi ∈ L(H,Hi)}i∈I is called G-frame for H with respect to {Hi}i∈I
whenever there exist two constants A,B such that 0 < A ≤ B <∞ and

A ‖ f ‖2≤
∑
i∈I
‖ Gif ‖2≤ B ‖ f ‖2, ∀f ∈ H. (2.1)

The sequence {Gi}i∈I is called tight G-frame whenever A = B, if A = B = 1,
then {Gi}i∈I is called Parseval G-frame. Also, if the right hand (2.1) holds then
the sequence {Gi}i∈I is called G-Bessel.

We recall that the synthesis operator for G-frame G = {Gi}i∈I is

TG :
(⊕

Hi

)
l2
→ H; TG({fi}i∈I) =

∑
i∈I

G∗i fi

and the analysis operator is

T ∗G : H →
(⊕

Hi

)
l2

; T ∗Gf = {Gif}i∈I .

Now we are ready to recall the definition of G-frame operator

SG : H → H; SGf =
∑
i∈I

G∗iGif.

A G-frame operator is bounded, self-adjoint and invertible operator and the fam-
ily {GiS

−1}i∈I is called the canonical G-dual frame.
Suppose that {Gj}j∈I is a G-frame and {ej,k : k ∈ Kj}, where Ki ⊆ Z, is an

orthonormal basis for Hj . The sequence {uj,k = G∗jej,k : j ∈ I, k ∈ Kj} is called

the frame induced by {Gj}j∈I with respect to {ej,k : k ∈ Kj} [Theorem 3.1 [17]].

3. Scalibility of G-frames

In this section, we provide a new definition for the scalability of G-frames. For
this definition, we use diagonal operators and block diagonal operators.
At first the question arises: if any sequence of operators which affects a G-frame
creates a G-frame again. The answer to this question is certainly no. Below, we
describe the conditions under which after the effect of a sequence of operators on
a G-frame, a new G-frame is created.

A positive diagonal operator D ∈ L(H) is invertible, thus there exist two
constants K,K ′ such that

K ‖ f ‖≤‖ Df ‖≤ K ′ ‖ f ‖ ∀f ∈ H.

Definition 3.1. A sequence of positive diagonal operators {Di ∈ L(Hi)}i∈I is
called semi-normalized whenever

0 < infi∈IKi ≤ supi∈IK ′i <∞,
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where Ki and K ′i are the lower bound and the upper bound for Di, i ∈ I,
respectively.

Lemma 3.1. Let {Gi ∈ L(H,Hi)}i∈I be a G-frame for the Hilbert space H with
respect to {Hi}i∈I with bounds A,B and {Di ∈ L(Hi)}i∈I be a sequence of semi-
normalized diagonal operators. Then {DiGi}i∈I is a G-frame.

Proof. Let f ∈ H. Then∑
i∈I
‖ DiGif ‖2≤

∑
i∈I
‖ Di ‖2‖ Gif ‖2≤

supi∈IK
′
i

∑
i∈I
‖ Gif ‖2≤ Bsupi∈IK ′i ‖ f ‖2 .

On the other hand, ∑
i∈I
‖ DiGif ‖2≥ infi∈IKi

∑
i∈I
‖ Gif ‖2

≥ infi∈IKiA ‖ f ‖2 .
Therefore, the sequence {DiGi} is a G-frame. �

Definition 3.2. A G-frame {Gi ∈ L(H,Hi)}i∈I is called scalable G-frame for H
with respect to {Hi} whenever there exists a sequence of non-negative diagonal
operators {Di ∈ L(Hi)}i∈I such that {DiGi} is a Parseval G-frame. Also, if
Di’s are positive operators then the G-frame {Gi}i∈I is called strictly scalable
G-frame.

Here are some examples of the scalability of G-frames for better understand-
ing of the definition. The following example shows that the new definition of
scalability is a generalization of the definition of scalability.

Example 3.1. Let {fi}i∈I be a scalable frame for H with the sequence of positive
scalars {αi}i∈I. For each i ∈ I, set Di = [αi], where [αi] is an one-by-one matrix.
Then the G-frame {Gi} where Gi : H → C defined by Gif = 〈f, fi〉 for each
f ∈ H, is a scalable G-frame for H with respect to C with diagonal operators
{Di}, because ∑

i∈I
‖DiGif‖2 =

∑
i∈I
|αi〈f, fi〉|2 = ‖f‖2 ∀f ∈ H.

Example 3.2. Let H be a separable Hilbert space and {Hi} be a sequence of
separable Hilbert subspaces such that H =

⊕
iHi. Also, let {fij}j∈Ki be a scal-

able frame for Hi. Then {Gi ∈ L(H,Hi)}i∈I such that Gif =
∑

j∈Ki
〈f, fi,j〉fi,j

for each f ∈ H, is a scalable G- frame.

Example 3.3. Let H = C3, and H1 = H2 = H3 = C2. Define

G1 =

[
−1 0 0
1 0 0

]
G2 =

[
0 1 0
0 −1 0

]
G3 =

[
0 0 1
0 0 1

]
and

D1 =

[
0 0
0 1

]
D2 =

[
1 0
0 0

]
D3 =

[
1√
2

0

0 1√
2

]
.
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Now, we have

3∑
i=1

‖DiGif‖2 = |z1|2 + |z2|2 + |z3|2 = ‖f‖2, ∀f = (z1, z2, z3) ∈ C3.

To answer the question that was first raised in the section, we present a theorem
that states the necessary and sufficient conditions for G-framing with the help of
a block diagonal operator.

Theorem 3.1. Let G = {Gi ∈ L(H,Hi)}i∈I be a G-frame for the Hilbert space
H with respect to {Hi}i∈I with analysis operator T ∗G . Also, assume that {Di ∈
L(Hi)}i∈I is a sequence of non-negative diagonal operators. Then H = {DiGi}i∈I
is a G-frame if and only if rangT ∗G ⊆ domD , D|rangT ∗G is ICR, where D is a

bounded block diagonal operator on (
⊕
Hi)l2 such that {Di}i∈I is as its diagonal.

Proof. Let H = {DiGi}i∈I be a G-frame and T ∗G be analysis operator of G =
{Gi}i∈I .

(T ∗Gf)j = DjGjf = (DGjf)j

Thus, T ∗H = DT ∗G . Since domT ∗H = H then rangT ∗G ⊆ domD. Also, since G is
a G-frame, then rangT ∗G is closed. On the other hand, due to H is a G-frame,
there exist A1, B1 > 0 such that for each f ∈ H

A1‖f‖2 ≤ ‖T ∗Hf‖2l2 ≤ B1‖f‖2.
Set ν = T ∗Gf ∈ rangT ∗G so,

‖Dν‖2 = ‖DT ∗Gf‖2 ≥ A1‖f‖2 ≥ A1‖T ∗G‖−2‖ν‖2.
Thus D|rangT ∗G is ICR.

Conversely, let D|rangT ∗G be ICR and rangT ∗G ⊂ domD. Due to the closed

graph theorem, the operator D|rangT ∗G is a bounded operator and since D|rangT ∗G
is ICR, there exist two constants a, b > 0 such that

a‖y‖2 ≤ ‖Dy‖2 ≤ b‖y‖2, ∀y ∈ rangT ∗G . (3.1)

On the other hand, we know that T ∗G is bounded and ICR, thus there exist two
constants a′, b′ > 0 such that

a′‖f‖2 ≤ ‖T ∗Gf‖2 ≤ b′‖f‖2, ∀f ∈ H. (3.2)

By using (3.1) and ( 3.2) we have

aa′‖f‖2 ≤ ‖DT ∗Gf‖2 ≤ bb′‖f‖2, ∀f ∈ H.
Therefore H is a G-frame.

Also, due to the boundedness of DT ∗G , it is proved that (DT ∗G)∗ = TGD, which
completes the proof. �

The block diagonal operator is not necessarily bounded. In the next propo-
sition, we state the necessary and sufficient conditions for this operator to be
bounded.

Proposition 3.1. Let G = {Gi ∈ L(H,Hi)}i∈I be a G-frame for the Hilbert space
H with respect to {Hi}i∈I such that Gi’s be bounded below and liminf‖Gi‖ > 0.
Also, assume that on {Di ∈ L(Hi)}i∈I is a sequence of non-negative diagonal
operators. Then F = {DiGi}i∈I is a G-frame if and only if the block diagonal
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operator D with Di as blocks is bounded and D|rangT ∗G is ICR. In this case SF =

TGD
2T ∗G .

Proof. Let F = {DiGi}i∈I be a G-frame. Then F = {DiGi}i∈I is G-Bessel. So,
there exists a positive constant B such that for each f ∈ H,∑

i∈I
‖DiGif‖2 ≤ B‖f‖2. (3.3)

Now,
‖Gif‖2 ≤ ‖Di‖−2‖DiGif‖2 ≤ ‖Di‖−2B‖f‖2. (3.4)

Since Gi’s are bounded below so, for each i ∈ I, there exists a Ai > 0 such that
Ai‖f‖2 ≤ ‖Gif‖2 for each f ∈ H. Also, due to liminf‖Gi‖ > 0 there exists a

δ > 0 and j ∈ I such that Ai ≥ δ for each i ≥ j. So, by (3.4), ‖Di‖ ≤ (Bδ)1/2

for each i ≥ j. Therefore, there exists an M > 0 such that for each i, ‖Di‖ ≤M.
That is ‖D‖ <∞. By Theorem 3.1, the converse is clear. �

Using the results of Proposition 3.1 and Theorem 3.1, the following proposition
is obtained.

Proposition 3.2. Let G = {Gi}i∈I be a G-frame with the assumptions of Propo-
sition 3.1 and analysis operator T ∗G . Then G is scalable G-frame if and only if
there exists a bounded block diagonal operator D on (

⊕
Hi)l2 such that

TGD
2T ∗G = IH.

Proof. Let G = {Gi}i∈I be a scalable G-frame, so there exists a sequence {Di ∈
L(Hi)}i∈I of non-negative diagonal operators such that F = {DiGi}i∈I is a Par-
seval G-frame.
We define D as a block diagonal operator on (

⊕
Hi)l2 which {Di}i∈I is as its

diagonal blocks. By Theorem 3.1 we have

rangT ∗G ⊆ domD,SF = TGD
2T ∗G

Since F is a Parseval frame then SF = IH.
Conversely, assume that there exists a block diagonal operator D on (

⊕
Hi)l2

with blocks {Di ∈ L(Hi)}i∈I such that TGD
2T ∗G = IH. This concludes that

rangT ∗G ⊆ domD. Also, DT ∗G is closed operator from H into (
⊕
Hi)l2 due to D

and T ∗G are bounded operators. This implies that D|rangT ∗G is ICR.

Besides, since TGD
2T ∗G = IH then DT ∗G is isometric. Now using by Proposition

3.1, we conclude that F is a Parseval G-frame. �

As we have seen [17], a frame induced by a G-frame inherits the desired prop-
erties of the G-frame. In the following, we will describe another of these desirable
properties that inherits the frame induced by G-frame.

Theorem 3.2. Let {Gi ∈ L(H,Hi)}i∈I be a G-frame for the Hilbert space H
with respect to {Hi}i∈I and {ui,j}i∈I,j∈Ki be the frame induced by the G-frame
{Gi}i∈I , then {Gi}i∈I is scalable G-frame if and only if {ui,j}i∈I,j∈Ki is scalable
frame.

Proof. Let {Gi}i∈I be a scalable G-frame. Then there exists a sequence of non-
negative diagonal operators {Di}i∈I such that {DiGi}i∈I is a Parseval frame. By
definition of diagonal operators there exists {αi,j}i∈I,j∈Ki of non-negative scalars
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such that Diei,j = αi,jei,j for all i ∈ I and j ∈ Ki, where, for each i ∈ I, the
sequence {ei,j}j∈Ki is an orthonormal basis for Hi.
Thus

‖ f ‖2=
∑
i∈I
‖ DiGif ‖2=

∑
i∈I

∑
j∈Ki

|〈f, αi,jui,j〉|2.

That is the desired result.
For the converse, let {ui,j}i∈I,j∈Ki be a scalable frame for the Hilbert space

H, then there exists a sequence of non-negative scalars {αi,j}i∈I,j∈Ki such that
{αi,jui,j}i∈I,j∈Ki is a Parseval frame for Hilbert spaceH. Set Diei,j = αi,jei,j ; i ∈
I, j ∈ Ki, thus

‖ f ‖2=
∑
i∈I
‖ DiGif ‖2=

∑
i∈I

∑
j∈Ki

|〈f, αi,jui,j〉|2.

�

In analogy to Theorem 2.1, we prove an equivalent condition to show that a
G-frame is not scalable G-frame.

Proposition 3.3. Let G = {Gi ∈ L(RN ,R)}Mi=1 be a G-frame for the Hilbert space
RN with respect to R. Then G is not a scalable G-frame if and only if there exists
a symmetric matrix Y on RN×N such that tr(Y ) < 0 and [G∗i eij ]

TY [G∗i eij ] ≥ 0,
where [G∗i eij ]

T denotes the transpose of the matrix [G∗i eij ].

Proof. {Gi}Mi=1 is not a scalable G-frame if and only if the frame {uij} is not
scalable frame for RN . By Theorem 2.1 there exists a symmetric matrix Y on
RN×N such that tr(Y ) < 0 and [uij ]

TY [uij ] ≥ 0. This means there exists a
symmetric matrix Y on RN×N such that tr(Y ) < 0 and [G∗i eij ]

TY [G∗i eij ] ≥ 0. �

4. New structures of scalable G-frames

In this section, we will describe new structures for scalable G-frames.

Proposition 4.1. Let {Gi ∈ L(H,Hi)}i∈I be a scalable G-frame for the Hilbert
space H with respect to {Hi}i∈I and U : H → H be a bounded linear operator then
{GiU}i∈I is scalable G-frame if and only if U : H → H is a unitary operator.

Proof. Since {Gi}i∈I is a scalable G-frame, then there exists a sequence {Di ∈
L(Hi)}i∈I of non-negative diagonal operators such that {DiGi}i∈I is Parseval
G-frame.
Therefore, ∑

i∈I
‖ DiGiUf ‖2=‖ Uf ‖2 .

Thus, {GiU}i∈I is scalable G-frame if and only if ‖ Uf ‖=‖ f ‖. This completes
the proof. �

Let H and K be two Hilbert spaces. The direct sum of Hilbert spaces H and
K is denoted by H⊕K = {(h, k) : h ∈ H, k ∈ K}, which is a Hilbert space with
pointwise operations and inner product

〈(f, g), (f ′, g′)〉 = 〈f, f ′〉H + 〈g, g′〉K, ∀f, f ′ ∈ H, ∀g, g′ ∈ K.
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If U and W are Hilbert spaces and G ∈ L(H, U), T ∈ L(K,W ), we recall that

G⊕ T ∈ L(H⊕K, U ⊕W ) by G⊕ T (h, k) = (Gh, Tk) ∀h ∈ H, k ∈ K.

Refer to [9, 12] for more information.

Theorem 4.1. Let {Gi ∈ L(H,Hi)}i∈I be a scalable G-frame for H with respect
to {Hi}i∈I and {G′i ∈ L(K,Ki)}i∈I be a scalable G-frame for K with respect to
{Ki}i∈I . Then {Gi ⊕G′i ∈ L(H⊕K,Hi ⊕Ki)}i∈I is scalable G-frame.

Proof. Since {Gi}i∈I is a scalableG-frame, there exists a sequence {Di ∈ L(Hi)}i∈I
of non-negative diagonal operators such that {DiGi}i∈I is a Parseval G-frame.
Also, there exists a sequence {D′i ∈ L(Ki)}i∈I of non-negative diagonal operators
such that {D′iG′i}i∈I is a Parseval G-frame.

Now, set Si =

[
Di 0
0 D′i

]
, i ∈ I. The sequence {Si ∈ L(Hi ⊕Ki)}i∈I is a sequence

of non-negative diagonal operators on Hi ⊕Ki.
Therefore ∑

i∈I
‖SiGi ⊕G′i(f, g)‖2 =

∑
i∈I
‖DiGi(f)‖2 +

∑
i∈I
‖D′iG′i(g)‖2

= ‖f‖2 + ‖g‖2 = ‖(f, g)‖2 ∀(f, g) ∈ H ⊕K.
�

Corollary 4.1. Let {Gi ∈ L(H,Hi)}i∈I be scalable G-frame for H with re-
spect to{Hi}i∈I and {G′i ∈ L(K,Ki)}i∈I be A-tight G-frame for K with respect
to {Ki}i∈I . Then {Gi ⊕G′i ∈ L(H⊕K,Hi ⊕Ki)}i∈I is a scalable G-frame.

Theorem 4.2. Let {Gi ∈ L(H,Hi)}i∈I be a G-frame for H with respect to
{Hi}i∈I and for each i ∈ I, {Ti,j ∈ L(Hi,Ki,j)}j∈J be a scalable G-frame for
Hi with respect to {Ki,j}j∈J by a sequence of non-negative diagonal operators
{Di,j ∈ L(Ki,j)}j∈J . Then {Ti,jGi}i∈I,j∈J is a scalable G-frame for H with re-
spect to {Ki,j}i∈I,j∈J by the sequence {Di,j ∈ L(Ki,j)}i∈I,j∈J if and only if {Gi}i∈I
is a Parseval G-frame.

Proof. Let i ∈ I. Under the above assumptions, {Ti,j}j∈J is a scalable G-frame
for Hi with respect to {Ki,j}j∈J by a sequence of non-negative diagonal operators
{Di,j ∈ L(Ki,j)}j∈J . Then

‖f‖2 =
∑
j∈J
‖Di,jTi,jf‖2 ∀f ∈ Ki,j . (4.1)

Now, assume that {TijGi}i∈I,j∈J is a scalable G-frame for H with respect to
{Kij}i∈I,j∈J and the sequence {Di,j}i∈I,j∈J of non-negative diagonal operators,
for which the G-frame {Di,jTi,jGi}i∈I,j∈J is Parseval G-frame. Hence, by (4.1)

‖f‖2 =
∑

i∈I,j∈J
‖Di,jTi,jGif‖2 =

∑
i∈I
‖Gif‖2 ∀f ∈ H.

Therefore {Gi}i∈I is Parseval G-frame.
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Conversely, assume that {Gi}i∈I is ParsevalG-frame. For each i ∈ I, {Ti,jGi}j∈J
is a scalable G-frame by a sequence of non-negative diagonal operators {Di,j ∈
L(Ki,j)}j∈J for Hi with respect to {Ki,j}j∈J ; thus for all f ∈ H,∑

i∈I,j∈J
‖Di,jTi,jGif‖2 =

∑
i∈I
‖Gif‖2 = ‖f‖2.

This completes the proof. �

Using the previous theorem, we can say that if any Hilbert space Hi has a scal-
able frame, then there exists a scalable G-frame for H with respect to {Hi}i∈I .
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