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ON INTEGRATION OF THE LOADED KORTEWEG-DE VRIES

EQUATION IN THE CLASS OF RAPIDLY DECREASING

FUNCTIONS

AKNAZAR B. HASANOV AND UMID A. HOITMETOV

Abstract. In this work, the inverse scattering method is applied to
the integration of the loaded Korteweg-de Vries equation in the class of
rapidly decreasing functions. The multisoliton solutions of the loaded
Korteweg-de Vries equation are found.

1. Introduction

In this paper, we study the loaded Korteweg-de Vries (KdV) equation, namely,
we consider the following equation:

ut + β(t)u(x0, t)(uxxx − 6uux) + γ(t)u(x1, t)ux = 0, (1.1)

where β(t) and γ(t) are given continuously differentiable functions and x0, x1 ∈ R.
Equation (1.1) is considered with the initial condition

u(x, 0) = u0(x), x ∈ R, (1.2)

where the initial function u0(x) has the following properties:
1) ∫ ∞

−∞
(1 + |x|) |u0(x)| dx <∞; (1.3)

2) the operator L(0) := − d2

dx2
+ u0(x), x ∈ R has equally N negative eigen-

values λ1(0), λ2(0), . . . , λN (0).
It is required to find a function u(x, t) that is sufficiently smooth and tends to

its limits rather quickly at x→ ±∞, incl.∫ ∞
−∞

((
1 + |x|

)
|u(x, t)|+

∣∣∣∣∂ju(x, t)

∂xj

∣∣∣∣) dx <∞, j = 1, 2, 3. (1.4)

The purpose of this work is to develop an algorithm for constructing the solu-
tion u(x, t) to problem (1.1) - (1.4) using the inverse scattering problem method
for the self-adjoint Sturm-Liouville operator.
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The inverse scattering method dates back to the work of Gardner, Greene,
Kruskal, and Miura [5]. They succeeded in finding a global solution to the Cauchy
problem for the KdV equation by reducing it to the inverse scattering problem
for the self-adjoint Sturm-Liouville operator. This inverse scattering problem was
first solved in the work of L.D. Faddeev [3], then in the works of V.A. Marchenko
[18], B.M. Levitan [15], and others. In [13] P. Lax showed the universality of the
inverse scattering method and generalized the KdV equation by introducing the
concept of the higher KdV equation.

Interest in solitons was renewed in connection with research in plasma physics.
In 1958, R.Z. Sagdeev [22] showed that solitons can propagate in plasma, which
are quite similar to solitons on the surface of a liquid. Gardner and Morikawa
[6] established a direct analogy between the equations describing plasma in a
strong magnetic field and the equations of shallow water. From that time on,
the KdV equation acquired a general physical character, and soon the possibility
of its application to various wave problems was established. Problems in the
theory of solitons have been considered in many monographs and articles, of
which [1, 2, 23, 27] should be noted.

In recent years, in connection with the intensive study of the problems of
optimal management of the agroecosystem for example, the problem of long-term
forecasting and regulation of the level of groundwater and soil moisture, interest
in loaded equations has significantly increased. Loaded differential equations in
the literature are usually called equations containing in the coefficients or in the
right-hand side any functionals of the solution, in particular, the values of the
solution or its derivatives on manifolds of lower dimension. The study of such
equations is of interest both from the point of view of constructing a general
theory of differential equations and from that of applications. Among the works
devoted to loaded equations, the works by A.M.Nakhushev [20, 21], I.A.Kozhanov
[12] and others should be specially mentioned.

Equations of the form (1.1) without a loaded term are also encountered in ap-
plied mechanics. For example, in the works of A.A. Lugovtsov [16, 17], the system
of equations describing the propagation of one-dimensional nonlinear waves in an
inhomogeneous gas-liquid medium is reduced to one equation of the form

uτ + α(τ)uuη + β(τ)uηηη − µ(τ)uηη +

[
k

2τ
+ δ(τ)

]
u = 0.

In particular, for µ = 0, k = 1, δ = 0 it is shown that under certain conditions
cylindrical waves can exist in the form of solitons.

Note that the KdV equation and the general KdV equation with self-consistent
sources in the class of rapidly decreasing and step-like functions were studied in
[8, 9, 11, 14, 19, 24] and the integration of the loaded KdV equation in the class
of periodic functions was investigated in [10, 25].

2. Preliminaries

Consider the Sturm-Liouville equation

L(0)y := −y′′ + u0(x)y = k2y, x ∈ R, (2.1)
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where the potential u0(x) satisfies condition (1.3). In this subsection, we provide
the information necessary for the further presentation concerning the direct and
inverse scattering problems for equation (2.1).

We denote by f(x, k) and g(x, k) the Jost solutions of Eq. (2.1) with the
asymptotics

f(x, k) = eikx + o(1), x→∞, (Imk = 0);

g(x, k) = e−ikx + o(1), x→ −∞, (Imk = 0).
(2.2)

Under condition (1.3), such solutions exist and are uniquely determined by
asymptotics (2.2).

The solutions f(x, k), g(x, k) satisfy the representations

f(x, k) = eikx +

∫ ∞
x

K+(x, z)eikzdz,

g(x, k) = e−ikx +

∫ x

−∞
K−(x, z)e−ikzdz,

(2.3)

where kernels K+(x, z), K−(x, z) are real functions related to the potential u0(x)
by the relations

u0(x) = ∓2
d

dx
K±(x, x). (2.4)

With respect to the variable k, the Jost solutions f(x, k) and g(x, k) continue
analytically into the upper half-plane Imk > 0.

For real k, pairs of functions {f(x, k), f(x,−k)} and {g(x, k), g(x,−k)} are
pairs of linearly independent solutions of equation (2.1), therefore

f(x, k) = b(k)g(x, k) + a(k)g(x,−k), (2.5)

g(x, k) = −b(−k)f(x, k) + a(k)f(x,−k). (2.6)

The functions r+(k) = −b(−k)

a(k)
and r−(k) =

b(k)

a(k)
are called reflection coef-

ficients (right and left, respectively). The coefficients a(k), b(k) and r+(k) have
the following properties (see [15], p.121):

A. For real k 6= 0

a(−k) = a(k), b(−k) = b(k), |a(k)|2 = 1 + |b(k)|2 ; (2.7)

a(k) = − 1

2ik
W {f(x, k), g(x, k)} , b(k) =

1

2ik
W {f(x, k), g(x,−k)} (2.8)

a(k) = 1 +O

(
1

k

)
, b(k) = O

(
1

k

)
, k → ±∞;

where

W {f(x, k), g(x, k)} ≡ f(x, k)g′(x, k)− f ′(x, k)g(x, k);

B. The function a(k) extends analytically to the half-plane Imk > 0 and there
it has a finite number of zeros kn = iχn, (χn > 0), n = 1, 2, . . . , N , these zeros
are simple, and λn = −χ2

n, n = 1, 2, . . . , N are the eigenvalues of the operator
L(0). In addition, following relation holds

g(x, iχj) = Bjf(x, iχj), j = 1, 2, . . . , N ; (2.9)
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C. For real k 6= 0, the function r+(k) is continuous,

r+(k) = r+(−k),
∣∣r+(k)

∣∣ < 1, r+(k) = o(k−1), |k| → ∞,

k2
[
1−

∣∣r+(k)
∣∣2]−1 = O(1), |k| → 0;

D. Function k(a(k)− 1), where a(k) is defined by the formula

a(k) =

N∏
j=1

k − iχj
k + iχj

exp

{
− 1

2πi

∫ ∞
−∞

ln
(

1− |r+(ξ)|2
)

ξ − k
dξ

}
, Imk > 0,

continuous and bounded in Imk ≥ 0 and

(a(k))−1 = O(1), |k| → 0, Imk ≥ 0,

lim
k→0

ka(k)
(
r+(k) + 1

)
= 0, Imk = 0;

E. Functions

R±(x) =
1

2π

∫ ∞
−∞

r±(k)eikxdk

for each a > −∞ satisfy the condition

(1 + |x|)|R±(±x)| ∈ L1(a,∞).

The set {r+(k), χ1 , χ2 , . . . , χN , B1, B2, . . . , BN} is called the scattering data
for problem (1.3) + (2.1). The direct scattering problem is to determine the
scattering data from the potential u0(x), and the inverse problem is to reconstruct
the potential u0(x) from the scattering data of Eq. (2.1).

The kernelK+(x, y) in representation (2.3) is a solution to the Gelfand-Levitan-
Marchenko integral equation

K+(x, y) + F+(x+ y) +

∫ ∞
x

K+(x, z)F+(z + y)dz = 0, (y > x), (2.10)

where

F+(x) =
N∑
j=1

α+
j e
−χjx +

1

2π

∫ ∞
−∞

r+(k)eikxdk, (2.11)

α+
j =

Bj

ida(z)dz

∣∣∣
z=iχj

and a(z) is the analytic continuation of the function a(k) to the upper half-plane
Imk > 0.

The following theorem is true [7, 26].

Theorem 2.1. Specifying the scattering data uniquely determines the potential
u0(x).
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3. Evolution of scattering data

Consider the following KdV equation

ut + β(t)u(x0, t)(uxxx − 6uux) = G(x, t), (3.1)

where
G(x, t) = −γ(t)u(x1, t)ux. (3.2)

For equation (3.1), we will seek a Lax pair [4] in the form

−Φxx + (u− k2)Φ = 0, (3.3)

Φt = β(t)u(x0, t)(−ux + 4ik3)Φ + β(t)u(x0, t)(2u+ 4k2)Φx + F (x, t). (3.4)

Using the identity Φxxt = Φtxx, based on equalities (3.1) - (3.4), we obtain

−Fxx + (u(x, t)− k2)F = −G(x, t)Φ. (3.5)

Letting Φ(x, t) = g(x, k; t), we seek a solution to Eq. (3.5) in the form

F = B(x)g(x, k; t) + C(x)g(x,−k; t).

Then, to determine B(x) and C(x), we obtain the following system of equations

B′(x)g(x, k; t) + C ′(x)g(x,−k; t) = 0,

B′(x)g′(x, k; t) + C ′(x)g′(x,−k; t) = G(x, t)g(x, k; t),

which has the solution as

B(x) = − 1

2ik

∫ x

−∞
g(s, k; t)g(s,−k; t)G(s, t)ds,

C(x) =
1

2ik

∫ x

−∞
g2(s, k; t)G(s, t)ds.

Therefore, using expression (3.2), the equation (3.4) can be rewritten as follows

∂g(x, k; t)

∂t
= β(t)u(x0, t)(−ux + 4ik3)g(x, k; t)

+β(t)u(x0, t)(2u+ 4k2)
∂g(x, k; t)

∂x

+
γ(t)u(x1, t)g(x, k; t)

2ik

∫ x

−∞
g(s, k; t)g(s,−k; t)us(s, t)ds

−γ(t)u(x1, t)g(x,−k; t)

2ik

∫ x

−∞
g2(s, k; t)us(s, t)ds. (3.6)

Passing in equality (3.6) to the limit x → ∞, by virtue of (2.8), (2.7) and the
asymptotics of the Jost solution, we derive

da(k; t)

dt
=
γ(t)u(x1, t)a(k; t)

2ik

∫ ∞
−∞

g(s, k; t)g(s,−k; t)us(s, t)ds

+
γ(t)u(x1, t)b(k; t)

2ik

∫ ∞
−∞

g2(s, k; t)us(s, t)ds, (3.7)

db(−k; t)

dt
= 8ik3α(t)u(x0, t)b(−k; t)

+
γ(t)u(x1, t)b(−k; t)

2ik

∫ ∞
−∞

g(s, k; t)g(s,−k; t)us(s, t)ds
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+
γ(t)u(x1, t)a(−k; t)

2ik

∫ ∞
−∞

g2(s, k; t)us(s, t)ds. (3.8)

Multiplying (3.8) by a(k, t) and subtracting from it equality (3.7) multiplied by
b(−k, t), according to (2.11), we obtain

dr+(k, t)

dt
= 8ik3β(t)u(x0, t)r

+(k, t)− γ(t)u(x1, t)

2ika2(k; t)

∫ ∞
−∞

g2(s, k; t)us(s, t)ds.

Let us calculate the integral on the right-hand side of the previous equality. To
do this, we use formula (2.7) and we have∫ ∞

−∞
g2(s, k; t)us(s, t)ds

= −2

∫ ∞
−∞

(
g′′(s, k; t) + k2g(s, k; t)

)
g′(s, k; t)ds = 4k2a(k)b(−k).

According to this and equality (3.7), we have at(k, t) = 0. Therefore, we deduce
that

dλj(t)

dt
= 0, (3.9)

dr+(k, t)

dt
=
(
8ik3β(t)u(x0, t)− 2ikγ(t)u(x1, t)

)
r+(k, t). (3.10)

We now turn to find the evolution of the normalizing numbers Bn, n = 1, 2, . . . , N
corresponding to the eigenvalues λn, n = 1, 2, . . . N . For this, we rewrite equality
(3.6) in the following form

∂g(x, k; t)

∂t
= β(t)u(x0, t)(−ux + 4ik3)g(x, k; t) + β(t)u(x0, t)(2u+ 4k2)

∂g(x, k; t)

∂x

+
γ(t)u(x1, t)g(x, k; t)

2ik
[g(x, k; t)g(x,−k; t)u(x, t)

−
∫ x

−∞
u(s, t)(g′(s, k; t)g(s,−k; t) + g(s, k; t)g′(s,−k; t))ds]

−γ(t)u(x1, t)g(x,−k; t)

2ik
[g2(x, k; t)u(x, t)−

∫ x

−∞
2g′(s, k; t)g(s, k; t)u(s, t)ds]

= β(t)u(x0, t)(−ux + 4ik3)g(x, k; t) + β(t)u(x0, t)(2u+ 4k2)
∂g(x, k; t)

∂x
−γ(t)u(x1, t)g

′(x, k; t)− ikγ(t)u(x1, t)g(x, k; t).

Using equality (2.9), setting k = kn, taking into account the asymptotics of the
Jost solution for x → +∞ and equating the coefficients for e−χnx, we find an
analogue of the Gardner-Greene-Kruskal-Miura equations

dBn(t)

dt
=
(
8χ3

nβ(t)u(x0, t) + 2χnγ(t)u(x1, t)
)
Bn(t),

n = 1, 2, . . . , N.
(3.11)

Thus, the following theorem has been proved.

Theorem 3.1. If the function u(x, t) is a solution to the problem (1.1) - (1.4),
then the scattering data

{
r+(k, t), λn(t), Bn(t), n = 1, N

}
of the operator L(t)

with the potential u(x, t) satisfy differential equations (3.9), (3.10) and (3.11).
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Remark 3.1. Consider the kernel of the Gelfand-Levitan-Marchenko integral equa-
tion

F+(x, t) =
N∑
j=1

α+
j (t)e−χjx +

1

2π

∫ ∞
−∞

r+(k, t)eikxdk

with the scattering data from Theorem 3.1. Then the data {r+(k, t), χ1(t), χ2(t), ...,
χN (t), B1(t), B2(t), ..., BN (t)} satisfy conditions A-E. Therefore, according to
Theorem 2.1, the potential u(x, t) in the operator L(t) is uniquely determined.

Remark 3.2. The obtained relations completely determine the evolution of the
scattering data for the operator L(t) and thus make it possible to apply the inverse
scattering method to solve problem (1.1)-(1.4). Let a function (1 + |x|)u0(x) ∈
L1(R) be given. Then the solution to the problem is found using the following
algorithm.

• We solve the direct scattering problem with the initial function u0(x) and
obtain the scattering data {r+(k), χ1 , χ2 , . . . , χN , B1, B2, . . . , BN} for
the operator L (0).
• Using the results of the Theorem 3.1, we find the scattering data for t > 0:

{r+(k, t), χ1(t), χ2(t), ..., χN (t), B1(t), B2(t), ..., BN (t)}.
• Using the method based on the Gelfand-Levitan-Marchenko integral equa-

tion, we solve the inverse scattering problem, i.e. find u(x, t) from the
scattering data for t > 0 obtained in the previous step.

Example 3.1. Consider the following problem

ut + β(t)u(0, t)(uxxx − 6uux) + γ(t)u(1, t)ux(x, t) = 0, (3.12)

u(x, 0) = − 2

ch2x
, x ∈ R, (3.13)

where

β(t) = t2 + 1 +

√
t2 + 1

8
, γ(t) = −

(√
t2 + 1 + t

e
+

e√
t2 + 1 + t

)2

.

It is easy to find the scattering data for the operator L(0):

λ(0) = (iχ1(0))2 = −1; r+(k, 0) = 0, B1(0) = 1.

By Theorem 3.1, we have

λ(t) = λ(0) = −1; r+(k, t) = 0, B1(t) = eµ(t),

where

µ(t) = 8

∫ t

0
β(τ)u(0, τ)dτ + 2

∫ t

0
γ(τ)u(1, τ)dτ.

Substituting these data into the formula (2.11), we find the kernel

F+(x, t) = 2e−x+µ(t)

integral equation of Gelfand-Levitan-Marchenko. Further, solving the integral
equation

K+(x, y; t) + 2eµ(t) · e−(x+y) + 2eµ(t) · e−y
∫ ∞
x

K+(x, s; t)e−sds = 0,
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we get

K+(x, y; t) = −2eµ(t) · e−(x+y)

1 + eµ(t) · e−2x
.

Whence we find the solution to the Cauchy problem (3.12) - (3.13):

u(x, t) = −2
d

dx
K+(x, x, t) = − 2

ch2(x− arcsht)
.

It is known that the solution of the KdV equation satisfying the initial condition
(3.13) looks as follows:

u(x, t) = − 2

ch2(x− 4t)
.

The difference between these two solutions is shown in the following figures:
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4. Multisoliton solutions

One of the remarkable properties of nonlinear evolution equations that are in-
tegrable by the inverse problem method is the existence of multisoliton solutions.
A remarkable feature of these solutions is that they can be integrated as solutions
describing the interaction of N solitons, which after interaction do not change
their shape, but only undergo a certain phase shift.

We know that if the function u(x, t) is a solution to problem (1.1) - (1.4), then

λn(t) = λn(0),

r+(k, t) = r+(k, 0) exp

{∫ t

0
(8ik3β(τ)u(x0, τ)− 2ikγ(τ)u(x1, τ))dτ

}
,

α+
n (t) = α+

n (0) exp

{∫ t

0
(8χ3

nβ(τ)u(x0, τ) + 2χnγ(τ)u(x1, τ))dτ

}
, n = 1, N.

Let us now consider the case without reflective potentials: r+(k) ≡ 0. In this case,
the Gelfand-Levitan-Marchenko integral equation is solved explicitly. Suppose all
kj : a (kj) = 0 are on the imaginary axis, so kj = iχj , 0 < χ1 < χ2 < . . . < χN .
Then equation (2.10) can be rewritten as

K+(x, y, t) +

N∑
j=1

α+
j (t)e−χj(x+y) +

N∑
j=1

α+
j (t)e−χjy

∫ ∞
x

K+(x, z)e−χjzdz = 0
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or

K+(x, y, t) +
N∑
j=1

α+
j (t)e−χjy

(
e−χjx +

∫ ∞
x

K+(x, z)e−χjzdz

)
= 0.

We put

K+(x, y, t) =
N∑
n=1

Kn(x, t)e−χny.

This gives linear algebraic equations for Kn:

N∑
m=1

(
δnm + α+

n (t)
e−(χn+χm)x

χn + χm

)
Km(x, t) = −α+

n (t)e−χnx, n = 1, 2, . . . , N, (4.1)

where δmn is the Kronecker symbol. We denote by D the determinant of the
main matrix of the system of linear algebraic equations (4.1):

D = det

(
δnm + α+

n (t)
e−(χn+χm)x

χn + χm

)
≡ det(Dnm). (4.2)

Then the solution to the system (4.1) can be written in the form

Kn(x, t) =
detD(n)

D
, (4.3)

where D(n) is the matrix obtained from Dnm by replacing the nth column with
the column that forms the right-hand side of (4.1). It’s obvious that

dD

dx
=

N∑
n=1

e−χnx detD(n). (4.4)

From (4.2) - (4.4) it follows

K+(x, x, t) =
1

D

N∑
n=1

detD(n)e−χnx =
1

D

dD

dx
=

d

dx
lnD.

Finally, for the N -soliton solution of problem (1.1) - (1.4), we obtain the formula

u(x, t) = −2
d2

dx2
lnD.

Thus, we arrive at the following theorem.

Theorem 4.1. Problem (1.1) - (1.4) has multisoliton solutions

u(x, t) = −2
d2

dx2
lnD,

where D is defined by formula (4.3) with

α+
n (t) = α+

n (0) exp

{∫ t

0
(8χ3

nβ(τ)u(x0, τ) + 2χnγ(τ)u(x1, τ))dτ

}
, n = 1, N,

and
(
χj , α

+
j (0)

)
are the scattering data for the Sturm-Liouville operator with a

reflectionless potential u0(x).
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Example 4.1. Consider the following problem

ut + β(t)u(0, t)(uxxx − 6uux) + γ(t)u(1, t)ux = 0, (4.5)

u(x, 0) = − 6

ch2x
, x ∈ R (4.6)

where

β(t) = −(
√
t2 + 1 + 1)(ch(72t+ 78a(t)) + 9ch(56t+ 58a(t))

+12ch(36t+ 39a(t))ch(28t+ 29a(t)) + 10)

×(24
√
t2 + 1(8ch2(4t+ 5a(t)) + 2sh2(32t+ 34a(t))))−1,

γ(t) = −(ch(72t+ 78a(t)− 6) + 9ch(56t+ 58a(t)− 2)

+12ch(36t+ 39a(t)− 3)ch(28t+ 29a(t)− 1) + 10)

×(24
√
t2 + 1(8ch2(4t+ 5a(t)− 1) + 2sh2(32t+ 34a(t)− 2)))−1,

and a(t) = arcsht.

In this case, the scattering data of the operator is as follows:

λ1(0) = (iχ1(0))2 = −1, λ2(0) = (iχ2(0))2 = −4;

r+(k, 0) = 0, α+
1 (0) = 6, α+

2 (0) = 12.

By Theorem 3.1, we have

λ1(t) = −1, λ2(t) = −4; r+(k, t) = 0, α+
1 (t) = 6eµ1(t), α+

2 (t) = 12eµ2(t),

where

µ1(t) = 8

∫ t

0
β(τ)u(0, τ)dτ + 2

∫ t

0
γ(τ)u(1, τ)dτ,

µ2(t) = 64

∫ t

0
β(τ)u(0, τ)dτ + 4

∫ t

0
γ(τ)u(1, τ)dτ.

Using Theorem 4.1, we find a two-soliton solution to problem (4.5) - (4.6):

u(x, t) = −12
3 + 4ch(2x− 8t− 10a(t)) + ch(4x− 64t− 68a(t))

(ch(3x− 36t− 39a(t)) + 3ch(x− 28t− 29a(t)))2
.

It is known that the solution of the KdV equation satisfying the initial condition
(4.6) looks as follows:

u(x, t) = −12
3 + 4ch(2x− 8t) + ch(4x− 64t)

(ch(3x− 36t) + 3ch(x− 28t))2
.

The difference between these two solutions is shown in the following figures:
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Thus, the following effect has been discovered: in the presence of a loaded
coefficient or a term in the KdV equation, the propagation velocity of a soliton,
depending on the coefficients β(t) and γ(t), will increase or decrease, but the
amplitude does not change. However, if a pulse propagates in the form of a soliton
of a loaded KdV equation of the form (1.1), then it can transfer information over
long distances without distortion and without noticeable loss of intensity than a
conventional soliton.
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