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ON AN INVERSE PROBLEM FOR THE SYSTEM OF DIRAC

EQUATIONS WITH DISCONTINUITY CONDITIONS ON THE

WHOLE AXIS

GULSHAN M. AZIMOVA AND HIDAYAT M. HUSEYNOV

Abstract. The Dirac operator on the whole axis with conditions of
discontinuity at some point is considered. Basic equations of the inverse
problem are introduced. The uniqueness theorem of the solution of the
inverse problem is proved.

1. Introduction

Let us consider the system of Dirac equations

By′ + Ω(x)y = λy, −∞ < x < +∞ (1.1)

with discontinuity conditions at some point a ∈ (−∞,+∞)

y1(a− 0) = y1(a+ 0),

y2(a− 0) = αy2(a+ 0). (1.2)

Here

B =

(
0 1
−1 0

)
, Ω(x) =

(
p(x) q(x)
q(x) −p(x)

)
, y =

(
y1
y2

)
,

α is a real number, 0 < α 6= 1, p(x), q(x) are real-valued functions satisfying the
condition

∞∫
−∞

{|p(x)|+ |q(x)|} dx < +∞. (1.3)

In the present paper we study direct and inverse problems for the equation
(1.1) with the conditions (1.2). In the absence of the discontinuity condition,
i.e. when α = 1 in the condition (1.2), various variants of inverse problems were
studied in [4-9].

Similar problems for the equation (1.1) with discontinuity conditions were con-
sidered in [2,3,10,11].
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Note that problem (1.1)-(1.2) can be written in the form of the system of first
order differential equations with discontinuous coefficients{ 1

ρ(x) (ρ(x)y2)
′ + p(x)y1 + q(x)y2 = λy1,

−y′1 + q(x)y1 − p(x)y2 = λy2,
(1.4)

where the function ρ(x) = α for x > a and ρ(x) = 1 for x < a

2. The direct scattering problem

We will call the functions e±(x, λ) satisfying the equation (1.1), the disconti-
nuity condition (1.2) and the condition at the infinity

lim
x→±∞

e±(x, λ)e∓iλx =

(
1

∓i

)
(2.1)

the Jost solutions.
It is easy to show that if p(x) = q(x) = 0, then the functions

e±0 (x, λ) =

{ (
1
∓i
)
e±iλx, ±x > ±a,

1+α±1

2

(
1
∓i
)
e±iλx + 1−α±1

2

(
1
±i
)
e±iλ(2a−x), ±x < ±a

. (2.2)

are the Jost solutions. Under the condition (1.3) problem (1.1)-(1.2) for all λ ∈
(−∞,+∞) has the Jost solutions e±0 (x, λ) representable in the form

e±(x, λ) = e±0 (x, λ)±
±∞∫
x

K±(x, t)

(
1

∓i

)
e±iλtdt, (2.3)

where the kernels K±(x, t) satisfy the inequalities

±
±∞∫
x

∥∥K±(x, t)
∥∥ dt ≤ ecσ±(x) − 1,

where c is some positive constant,

σ±(x) = ±
±∞∫
x

‖Ω(t)‖ dt,

‖·‖ is an operator norm in the Euclidean space C2.
Furthermore, the following relations are fulfilled:

lim
t→±0

+∞∫
a

∥∥BK±(x, x+ t)−K±(x, x+ t)B ∓ Ω(x)
∥∥ dx = 0,

lim
t→±0

a∫
∞

∥∥∥∥BK±(x, x+ t)−K±(x, x+ t)B ∓ 1 + α±1

4
Ω(x)

∥∥∥∥ dx = 0. (2.4)

Note that the operator generated by the left hand side of the equation (1.4) is
a self-adjoint operator in the space L2,ρ(−∞,+∞;C2). The spectrum of this
operator is purely continuous and fills the whole real axis.
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For all real values of λ the pairs of functions e+(x, λ), e+(x, λ) and e−(x, λ),

e−(x, λ) form fundamental systems of the solutions of problem (1.1)-(1.2). Hence
we easily obtain that the problem (1.1)-(1.2) for all real λ has the solutions

u+(x, λ) = t(λ)e−(x, λ) = e+(x, λ) + r+(λ)e+(x, λ),

u−(x, λ) = t(λ)e+(x, λ) = e−(x, λ) + r−(λ)e−(x, λ),

where

r+(λ) = − b(λ)

a(λ)
, r−(λ) =

b(λ)

a(λ)
, t(λ) =

1

a(λ)
,

a(λ) =
W [e+(x, λ), e−(x, λ)]

2i
, b(λ) = −

W
[
e+(x, λ), e−(x, λ)

]
2i

, (2.5)

while W [y, z] = ỹ(x)Bz(x)ρ(x) is Wronskian of two solutions of problems (1.1)-
(1.2) independent of x in the intervals (−∞, a), (+∞, a) and

W [y; z]|x=a−0 = W [y; z]|x=a+0 .

These solutions are said to be eigen-functions of the left (u−(x, λ)) and the
right (u+(x, λ)) scattering problems, the coefficients r−(λ), r+(λ) and t(λ) are
called left and right reflection coefficients and transmission coefficient:

It is easy to show that in the case Ω(x) ≡ 0 we have

a0(λ) =
W
[
e+0 (x, λ), e−0 (x, λ)

]
2i

=
1 + α

2i
,

b0(λ) = −
W
[
e+0 (x, λ), e−0 (x, λ)

]
2i

=
1− α

2i
e2iλa,

r+0 (λ) = −1− α
1 + α

e−2iλa, r−0 (λ) =
1− α
1 + α

e2iλa.

From the representation (2.3) of the solutions e+0 (x, λ) and from formula (2.5) we
have the following lemma.

Lemma 2.1. The functions a(λ) and b(λ) have the following properties
1)

a(λ) = a0(λ) +

∞∫
0

ϕ(t)eiλtdt,

2)

b(λ) = b0(λ) +

∞∫
−∞

ψ(t)eiλtdt,

where ϕ(t) ∈ L1(0,∞), ψ(t) ∈ L1(−∞,+∞),
3) |a(λ)|2 − |b(λ)|2 = α
4) The function a(λ) is regular for Imλ > 0 and it does not have zeros in the

half-plane Imλ ≥ 0.
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3. The inverse scattering problem

The inverse problem of scattering theory for the problem (1.1)-(1.2) consists
of determination of the potential Ω(x) by the left and right scattering data, i.e.
by the functions r−(λ) or r+(λ). It turns at that these functions are related to
each other, exactly it is easy to see that the following relations hold

r−(λ) = −r+(λ)
a(λ)

a(λ)
,

moreover,

a(z) =
1 + α

2
exp

− 1

2πi

∞∫
−∞

ln
[
(1− |r+(λ)|2) (α+1)

4α

2]
λ− z

dλ

 .

Thus, it suffices to determine the potential by r+(λ).
Further, according to the definition of the function r±(λ) and lemma 2.1, these

functions are continuous on R and

|r±(λ)| < 1, λ ∈ R, (3.1)

r±(λ)− r±0 (λ) =

∞∫
−∞

ϕ±(t)e−iλtdx, (3.2)

where

r±0 (λ) = ∓α− 1

α+ 1
e∓2iλa, ϕ±(x) ∈ L1(−∞,+∞).

We have

Theorem 3.1. For every x 6= a the kernels K±(x, y) from the representations
(2.3) satisfy the integral equation

R±1 (x, y) +K±(x, y)±K±(x, 2a− y)
α− 1

α+ 1

(
1 0
0 −1

)
±

±
±∞∫
x

K±(x, t)R±(t+ y)dt = 0, ±y > ±x, (3.3)

where

R±1 (x+ y) =

{
R±(x+ y), ±x > ±a

1+α±1

2 R±(x+ y) + 1−α±1

2 R±(2a− x+ y), ±x < ±a, (3.4)

R±(x) =
1

2π
Re

+∞∫
−∞

[
r±(λ)− r±0 (λ)

]( 1 ∓i
∓i −1

)
e±iλxdλ

Integral equations (3.3) are called the main Marchenko integral equations of
the problem (1.1)-(1.2). These integral equations give an algorithm for finding
the potential Ω(x) by the right reflection coefficient r+(λ).

Indeed, by r+(λ) we find also r−(λ), and on them, according to (3.4) construct
the functions R±1 (x, y), R±(x) and solving the integral equation (3.3), find the
function R±(x, y), and consequently, by means of relations (2.4) determine the
potential Ω(x).
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The following theorem shows that the potential Ω(x) determined in such way
is unique (see [1,3,11,12]).

Theorem 3.2. Let the conditions (3.1), (3.2) be fulfilled and the functions R±(x, y)
be continuous and for all x′ > −∞

±
±∞∫
x′

∣∣R±(x)
∣∣ dx < +∞.

Then, for every fixed x the equation (3.3) has a unique solution K+(x, ·), K−(x, ·)
with the components from L1(x,+∞), L(−∞, x) respectively.
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