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SYMMETRY SOLUTIONS AND CONSERVED VECTORS FOR

A GENERALIZED SHORT PULSE EQUATION

CHAUDRY MASOOD KHALIQUE AND ANILA MEHMOOD

Abstract. This work investigates a generalized short pulse equation.
The short pulse equation governs the generation of ultra short optical
pulses in nonlinear media. Firstly, we find its Lie symmetries and later
utilize them to secure an optimal system of one-dimensional subalgebras
(OSOSs). Thereafter, invariant solutions are determined under each el-
ement of the OSOSs. Three different cases for the constants a and b in
the equation are discussed, viz., a and b not zero simultaneously; a = 0
but b ̸= 0; a ̸= 0 but b = 0. We also depict graphically the 3D and 2D
representations of some of the gained solutions for the underlying equa-
tion. Secondly, by invoking the general multiplier method we acquire
conserved vectors for the generalized short pulse equation.

1. Introduction

Most natural phenomena, for example in plasma physics, applied physics, fluid
dynamics, oceanography, nonlinear optics, are modelled by partial differential
equations (PDEs). To better understand these natural phenomena one needs to
find explicit solutions of the PDEs that describe them. One of the key problems in
the study of PDEs in the eighteenth and nineteenth century was seeking solutions
to PDEs in closed form, that is finding their explicit solutions. Possibly the first
explicit (special) solution to a PDE was the travelling wave solution that appeared
in the work of d’Alembert as a solution to the linear wave equation. In the study
of heat conduction equations, Fourier developed the method of separation of
variables, which was generalized later by Sturm and Liouville in 1830s. Similarity
solutions materialized in the works of Weierstrass around 1870, and later in 1890
of Bolzman.

Many of the fascinating phenomena of the world are administered by nonlinear
partial differential equations (NPDEs). For example, many semi-conductor ap-
pliance models are described by a nonlinear Poisson equation for the electrostatic
potential, together with convection-diffusion-reaction equations [2], the extended
2D Boussinesq equation that governs shallow water waves [14], the two impor-
tant physical models, the Hirota equation and the Hirota-Maccari System [10],
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the Schrödinger equation that has applications in optical fibers [23], the (2+1)-
dimensional ZK modified equal width equation and the Chafee-Infante equation
[15], the PLMP equation that describes incompressible fluid [13], the Hamilton-
ian amplitude equation which describes instabilities of modulated wave trains
[41], and the Boussinesq-Burgers-type equations that characterizes shallow water
waves in lakes and ocean beaches [22]. For more NPDE models, see for instance
[4, 65, 63, 31, 16, 21, 20, 24, 32, 46, 47, 33].

Finding explicit solutions to NPDEs is a dreadful exercise as there are no
structured techniques that can be invoked to determine their solutions. Never-
theless, over the years researchers have made valuable efforts in developing certain
techniques that could be used to get special solutions for NPDEs. Some of these
special techniques are (G′/G)−expansion method [61], trial equation method [30],
bifurcation technique [64], modified hyperbolic tangent function method [17], in-
verse scattering transform method [1], Hirota’s technique [25], simplest equation
technique [34], Kudryashov’s technique [35], homogeneous balance technique [62],
the power series method [39], Lie group theoretic method [49, 60, 28, 27] and so
on.

Among the techniques mentioned above, Lie group analysis technique is com-
pletely algorithmic and efficient in finding explicit solutions of NPDEs. This
technique was introduced by the eminent Norwegian scholar Sophus Lie (1842-
1899) in the late nineteenth century. S. Lie took great inspiration from the works
of Galois (1811-1832), who pioneered Galois theory and group theory [37, 38].

In investigating differential equations (DEs), conservation laws are very advan-
tageous. As an example, conservation laws can be utilized to reduce the order of
PDEs and to find their solutions, acquire numerical schemes, discover the scope of
integrability of DEs and so on. In classical physics, conservation laws administer
energy, momentum, angular momentum, electric charge, etc. For further infor-
mation, see for instance [48, 6, 36, 29, 9, 45] and the references therein. DEs that
come from variational principle, Noether’s theorem [48] provides an effective way
of establishing conservation laws as it offers a technique for finding conservation
laws. However, for DEs that may or may not have Lagrangian formulation, the
multiplier method can be employed to derive conservation laws [49].

In this work, we study a NPDE called the generalized short pulse (gSP) equa-
tion, which was first introduced and studied in [55] and is given by

utx − au2uxx − buu2x = 0 (1.1)

with a, b constants, not equal to zero at the same time. It was shown in [55]
that equation (1.1) is integrable in two unconnected cases; the first one being
when a/b = 1/2 and the second a/b = 1. These cases conform to the nonlinear
equations

utx =
1

6
(u3)xx (1.2)

and

utx =
1

2
u(u2)xx, (1.3)

respectively. It was further shown in [55] that equations (1.2) and (1.3) are
transformable to linear Klein-Gordon equations. Recently, the integrability of
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the SP equation

utx = u+ au2uxx + buu2x (1.4)

was studied in [54] and it was shown that for a/b = 1/2 and a/b = 1 equation
(1.4) is integrable. These two cases correspond to

utx = u+
1

6
(u3)xx (1.5)

and

utx = u+
1

2
u(u2)xx, (1.6)

via scale transformations of variables. Equation (1.5) first appeared in differential
geometry [3, 53] and later came across in optics [59, 11]. Equations (1.5) and (1.6)
have been widely studied by researchers, see for example [56, 7, 8, 57, 58, 42, 43,
50, 40, 52, 51, 19, 44, 18]. The SP equation (1.5) narrates the generation of ultra
short optical pulses in non-linear media. In [56] the authors showed that (1.5)
is integrable. Recently, Hone et al. [26] studied certain generalized short pulse
equations from the standpoint of integrability.

In this work, we investigate the gSP equation (1.1) from the Lie group analysis
viewpoint. In Section 2, we find Lie symmetries of (1.1) and using these sym-
metries we build up an optimal system of one-dimensional subalgebras (OSOSs).
Thereafter, invariant solutions of (1.1) are derived under each of the elements
of OSOSs. Various cases of the constants a and b are considered. In Section 3,
conservation laws are established by invoking the general multiplier method for
various a and b values. Lastly, concluding remarks are delivered in Section 4.

2. Solutions of the gSP equation (1.1)

We first consider the gSP equation (1.1) for the case when a, b ̸= 0.

2.1. Solutions of the gSP equation (1.1) when a, b ̸= 0. Here we find Lie
symmetries, optimal system and symmetry reductions of equation (1.1). Exact
solutions of the reduced ODEs are presented in certain cases.

2.1.1. Lie symmetries of (1.1). We work out Lie symmetries for the gSP equa-
tion (1.1) when a, b ̸= 0. Equation (1.1) is unchanged under symmetry group
which has the generator

X = τ(t, x, u)
∂

∂t
+ ξ(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
(2.1)

on condition that

X [2]F |F=0 = 0, (2.2)

where F ≡ utx − au2uxx − buu2x and X [2] is the 2nd prolongation [49] of X that
is defined by

X [2] = τ
∂

∂t
+ ξ

∂

∂x
+ η

∂

∂u
+ ζ2

∂

∂ux
+ ζ12

∂

∂utx
+ ζ22

∂

∂uxx
(2.3)
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with ζ2, ζ12 and ζ22 determined as follows:

ζ1 = Dt(η)− utDt(τ)− uxDt(ξ),

ζ2 = Dx(η)− utDx(τ)− uxDx(ξ),

ζ12 = Dx(ζ1)− uttDx(τ)− utxDx(ξ),

ζ22 = Dx(ζ2)− utxDx(τ)− uxxDx(ξ), (2.4)

where Dt and Dx are the total derivatives given by

Dt =
∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ utx

∂

∂ux
+ · · · ,

Dx =
∂

∂x
+ ux

∂

∂u
+ uxt

∂

∂ut
+ uxx

∂

∂ux
+ · · · .

From equation (2.2) we obtain[
τ
∂

∂t
+ ξ

∂

∂x
+ η

∂

∂u
+ ζ2

∂

∂ux
+ ζ12

∂

∂utx
+ ζ22

∂

∂uxx

] (
utx − au2uxx − buu2x

)
= 0

on (1.1), which on expansion gives

η(−2auuxx − bu2x) + ζ2(−2buux) + ζ12 + ζ22(−au2)
∣∣∣
(1.1)

= 0.

Substituting the values of ζ2, ζ12 and ζ22 in the above equation, replacing utx
by au2uxx + buu2x and splitting on appropriate derivatives of u gives

τu = 0, τx = 0, ξu = 0, ηuu = 0, ηxu = 0, ηtx − au2ηxx = 0,

η + u(ηu + τt − ξx) = 0, 2auη + au2τt − au2ξx + ξt = 0,

ηtu + au2ξxx − ξtx − 2buηx = 0,

whose solution is

τ = C1 − 2C3t+ C4, ξ = C1x+ C2, η = C3u.

Thus, the Lie symmetries of (1.1) are

X1 =
∂

∂t
, time translation

X2 =
∂

∂x
, space translation

X3 = t
∂

∂t
+ x

∂

∂x
, dilation

X4 =2t
∂

∂t
− u

∂

∂u
, dilation,

which give rise to a four dimensional Lie algebra L4.

2.1.2. One-parameter transformation groups of Lie algebra of (1.1). Using the
Lie equations together with the initial conditions, viz.,

dt̄

da
= τ(t, x, u), t̄|a=0 = t,

dx̄

da
= ξ(t, x, u), x̄|a=0 = x,

dū

da
= η(t, x, u), ū|a=0 = u
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the one-parameter transformation groups Gi generated by the symmetries Xi are
given by

G1 : (t̄, x̄, ū) −→ (t+ a1, x, u), G2 : (t̄, x̄, ū) −→ (t, x+ a2, u),

G3 : (t̄, x̄, ū) −→ (ea3t, ea3x, u), G4 : (t̄, x̄, ū) −→ (e2a4t, x, e−a4u).

Furthermore, if u = f(t, x) is a solution of the gSP equation (1.1), then so are
the functions

u1 = f(t− a1, x), u2 = f(t, x− a2),

u3 = f(e−a3t, e−a3x), u4 = e−a4f(e−2a4t, x),

where ai are any real numbers.

2.1.3. Optimal system of one-dimensional subalgebras (OSOSs) of (1.1). In this
section we construct an OSOSs. Commutators of the four symmetries of (1.1) are
designated in Table 1 and the adjoint representation of subalgebras is provided
in Table 2.

Table 1. Commutators of symmetries of (1.1)

[Xi, Xj ] X1 X2 X3 X4

X1 0 0 X1 2X1

X2 0 0 X2 0
X3 −X1 −X2 0 0
X4 −2X1 0 0 0

Table 2. Adjoint representation of subalgebras

Ad X1 X2 X3 X4

X1 X1 X2 −εX1 +X3 −2εX1 +X4

X2 X1 X2 −εX2 +X3 X4

X3 eεX1 eεX2 X3 X4

X4 e2εX1 X2 X3 X4

Subsequently, invoking the method in [49] we can conclude that an OSOSs is
given by

{X1, X2, X3, X4, X1 + cX2, X2 + νX4, X3 +X4} , (2.5)

where c, ν = ±1.

2.1.4. Symmetry reductions and invariant solutions. We utilize OSOSs obtained
above to carry out symmetry reductions and construct invariant solutions for
(1.1).

Case 1.1. Subalgebra: X1 = ∂/∂t
The characteristic equations associated with the symmetry X1 are

dt

1
=

dx

0
=

du

0
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and these yield two invariants J1 = x, J2 = u. Hence, invariant solution is
u = h(x). Substituting this value of u into (1.1), we get

ah2h′′ + bhh′2 = 0.

Since h(x) ̸= 0, we obtain ahh′′ + bh′2 = 0, whose solution is

h(x) = C1(ax+ bx− aC2)
a/(a+b)

with C1, C2 constants. If we take b = a, we get hh′′ + h′2 = 0, or (hh′)′ = 0,
which gives hh′ = C1, where C1 is constant of integration. Solving this equation,
we get h(x) = ±

√
2C1x+ 2C2, where C2 is an integration constant. Hence

u(t, x) = ±
√
2C1x+ 2C2

is the invariant solution of (1.1) with b = a corresponding to the symmetry X1.
Case 1.2. Subalgebra: X2 = ∂/∂x
The characteristic equations of X2 give the invariants J1 = t, J2 = u and so

the solution is u = ϕ(t), with ϕ being arbitrary function of t. Proceeding as in
Case 1.1 we conclude that the invariant solution of (1.1) corresponding to X2 is
u = ϕ(t).

Case 1.3. Subalgebra: X3 = t∂/∂t+ x∂/∂x
The characteristic equations for X3 provide two invariants J1 = t/x, J2 = u

and the solution u = ϕ(ζ), ζ = t/x with ϕ being arbitrary function of ζ. Inserting
this u in (1.1) we gain the nonlinear ordinary differential equation (NODE)

ϕ′ + ζϕ′′ + 2aζϕ2ϕ′ + aζ2ϕ2ϕ′′ + bζ2ϕϕ′2 = 0.

If we let b = 2a the above equation becomes

ϕ′ + ζϕ′′ + 2aζϕ2ϕ′ + aζ2ϕ2ϕ′′ + 2aζ2ϕϕ′2 = 0,

which on integration gives

ζϕ′ + aζ2ϕ2ϕ′ = C1, (2.6)

where C1 is an integration constant. The solution to equation (2.6), using Maple
is

C1ϕ(ζ) + ln
{
(aC2

1ζϕ
2 − 2aC1ζϕ+ 2aζ + C2

1 )/ζ
}
= C2

1C2/(2a)

and hence solution of equation (1.1) with b = 2a under symmetry X3 in implicit
form is

C1u(ζ) + ln
{
(aC2

1ζu
2 − 2aC1ζu+ 2aζ + C2

1 )/ζ
}
= C2

1C2/(2a),

where ζ = t/x and C1, C2 are constants.
When C1 = 0 in equation (2.6), we get ϕ′(1 + aζϕ2) = 0. Hence, ϕ′ = 0 or

1 + aζϕ2 = 0, which on integration yields ϕ = C2 or ϕ = ±
√

−1/(aζ). Thus, we
conclude that

u(t, x) = ±
√

−x

at
,

is a solution of (1.1) with b = 2a under X3 provided a < 0.
Case 1.4. Subalgebra: X4 = 2t∂/∂t− u∂/∂u
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The symmetry X4 provides two invariants J1 = x, J2 =
√
tu and the solution

u = ϕ(x)/
√
t with ϕ an arbitrary function of x. Inserting this expression of u in

(1.1), we get the NODE ϕ′ + 2aϕ2ϕ′′ + 2bϕϕ′2 = 0.
For b = 2a the above equation integrates to ϕ+2aϕ2ϕ′ = C1 with C1 a constant.

When C1 = 0, the integration of the above equation yields ϕ = ±
√

(C2 − x)/a.
Thus,

u(t, x) = ±
√

C2 − x

at
(2.7)

is the solution of (1.1) with b = 2a under X4, where C2 is an arbitrary constant.
Case 1.5. Subalgebra: X1 + cX2 = ∂/∂t+ c∂/∂x, c = ±1
The symmetry X5 = X1 + cX2 provides the solution

u = f(ξ), ξ = x− ct

with f arbitrary function of ξ. Insertion of u in (1.1) leads to cf ′′+af2f ′′+bff ′2 =
0. By letting b = 2a, we get

cf ′′ + af2f ′′ + 2aff ′2 = 0,

which on integration gives

cf ′ + af2f ′ + C1 = 0 (2.8)

with C1 an arbitrary constant. The solution of (2.8) via Maple is

f(ξ) =

1

2a

{
4a2
√
9C2

1C
2
2 + 18C2

1C2ξ + 9C2
1ξ

2 + 4c3/a− 12a2C1C2 − 12a2C1ξ

}1/3

− 2c{
4a2
√

9C2
1C

2
2 + 18C2

1C2ξ + 9C2
1ξ

2 + 4c3/a− 12a2C1C2 − 12a2C1ξ
}1/3

.

Hence

u(t, x) =

1

2a

{
4a2
√
9C2

1C
2
2 + 18C2

1C2ξ + 9C2
1ξ

2 + 4c3/a− 12a2C1C2 − 12a2C1ξ

}1/3

− 2c{
4a2
√

9C2
1C

2
2 + 18C2

1C2ξ + 9C2
1ξ

2 + 4c3/a− 12a2C1C2 − 12a2C1ξ
}1/3

,

(2.9)

where ξ = x− ct, is the solution of (1.1) with b = 2a under X5, with C1 and C2

being arbitrary constants. The wave profile depicting the travelling wave solution
(2.9) is presented in Figure 1 using parametric values a = 100, c = 1, C1 = 10,
C2 = 0.4 with −10 ≤ t, x ≤ 10.

Case 1.6. Subalgebra: X2 + νX4 = ∂/∂x+ 2νt∂/∂t− νu∂/∂u, ν = ±1
The symmetry X6 = X2 + νX4 gives the invariant solution

u =
ϕ(ζ)√

t
, ζ =

eνx√
t
.
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Figure 1. Wave profile of travelling wave solution (2.9) for−10 ≤
t, x ≤ 10.

Inserting this u into (1.1) gives

ϕ′ +
1

2
ζϕ′′ + aνϕ2ϕ′ + aνζϕ2ϕ′′ + bνζϕϕ′2 = 0. (2.10)

For b = 2a, the above equation can be written as

ϕ′ +
1

2
ζϕ′′ + aν(ζϕ2ϕ′)′ = 0,

whose solution in the implicit form is

2aC1νϕ(ζ) +
(
2aC1

2ν + 1
)
ln {ϕ(ζ)− C1}+ aνϕ(ζ)2 + ln(ζ) + C2 = 0

for C1, C2 arbitrary constants. Consequently, solution of (1.1) with b = 2a under
X6 is u = ϕ(ζ)/

√
t, where ζ = eνx/

√
t, and ϕ solves

2aC1νϕ(ζ) +
(
2aC1

2ν + 1
)
ln {ϕ(ζ)− C1}+ aνϕ(ζ)2 + ln(ζ) + C2 = 0.

Case 1.7. Subalgebra: X3 +X4 = 3t∂/∂x+ x∂/∂x− u∂/∂u
The symmetry X7 = X3 +X4 leads to the solution

u = t−1/3ϕ(ζ), ζ = t−1/3x

with ϕ being a function of ζ. Inserting this expression of u in (1.1), we get

2

3
ϕ′ +

1

3
ζϕ′′ + aϕ2ϕ′′ + bϕϕ′2 = 0.

When b = 2a, the above equation becomes

2

3
ϕ′ +

1

3
ζϕ′′ + a(ϕ2ϕ′)′ = 0,
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which on integration gives

1

3
ϕ+

1

3
ζϕ′ + aϕ2ϕ′ + C1 = 0 (2.11)

with C1 being a constant. The solution of (2.11) via Maple is

ϕ(ζ) =

1

6a

{
12a2

√
729C2

1ζ
2 − 486C1C2 ζ + 81C2

2 + 12ζ3/a− 324C1a
2ζ + 108C2a

2

} 1
3

− 2ζ{
12a2

√
729C2

1ζ
2 − 486C1C2 ζ + 81C2

2 + 12ζ3/a− 324C1a2ζ + 108C2a2
} 1

3

,

where C2 is a constant. Thus, the solution of (1.1) with b = 2a under X7 is

u(t, x) =

t−
1
3

6a

{
12a2

√
729C2

1ζ
2 − 486C1C2ζ + 81C2

2 + 12ζ3/a− 324C1a
2ζ + 108C2a

2

} 1
3

− 2t−1/3ζ{
12a2

√
729C2

1ζ
2 − 486C1C2ζ + 81C2

2 + 12ζ3/a− 324C1a2ζ + 108C2a2
} 1

3

,

where ζ = t−1/3x.

2.2. Solutions of the gSP equation (1.1) when a = 0, b ̸= 0. In this case,
the equation (1.1) becomes

utx − buu2x = 0. (2.12)

Using the Lie algorithm, we find that Lie symmetries of (2.12) are

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = t

∂

∂t
+ x

∂

∂x
, X4 = 2t

∂

∂t
− u

∂

∂u
,

which are the same as for the case when a, b ̸= 0. Consequently, the OSOSs is
also the same, that is

{X1, X2, X3, X4, X1 + cX2, X2 + νX4, X3 +X4} , (2.13)

where c, ν = ±1.

2.2.1. Symmetry reductions and invariant solutions of (2.12). Case 2.1. Sub-
algebra: X1 = ∂/∂t

The symmetry X1 provides the invariant solution as u(t, x) = C1, with C1

being a constant.
Case 2.2. Subalgebra: X2 = ∂/∂x
The symmetry X2 gives u = ϕ(t) as a solution of (2.12), where ϕ is a function

of t.
Case 2.3. Subalgebra: X3 = t∂/∂t+ x∂/∂x
The symmetry X3 yields the invariant solution u = ϕ(ζ), ζ = t/x, where ϕ

satisfies the NODE ϕ′ + ζϕ′′ + bζ2ϕϕ′2 = 0.
Case 2.4. Subalgebra: X4 = 2t∂/∂t− u∂/∂u
The symmetry X4 gives the invariant solution u = ϕ(x)/

√
t. Inserting the

value of u in (2.12), we get ϕ′ + 2bϕϕ′2 = 0, which on integration gives ϕ(x) =
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Figure 2. Wave profile of travelling wave solution (2.14) for−8 ≤
t, x ≤ 8.

C1 orϕ(x) = ±
√

(C2 − x)/b, with C1, C2 constants and consequently, solution
of (2.12) based on symmetry X4 is

u(t, x) =
C1√
t
or u(t, x) = ±

√
C2 − x

bt
.

Case 2.5. Subalgebra: X1 + cX2 = ∂/∂t+ c∂/∂x, c = ±1
The symmetry X5 = X1 + cX2 provides the invariant solution

u = f(ξ), ξ = x− ct

and after inserting u in (2.12), we get cf ′′ + bff ′2 = 0, whose solution via Math-
ematica is

f(ξ) = −
√
−2c

b
erf−1

(√
− 2b

πc
C1(ξ + C2)

)
, c/b < 0,

and accordingly, the solution of (2.12) corresponding to symmetry X5 is

u(t, x) = −
√

−2c

b
erf−1

(√
− 2b

πc
C1(x− ct+ C2)

)
, c/b < 0 (2.14)

with C1, C2 constants and erf−1 being the inverse error function [5]. The wave
profile representing the travelling wave solution (2.14) is given in Figure 2 using
constant values b = 0.02, c = −1, C1 = −1, C2 = 0, π = 3, where −8 ≤ t, x ≤ 8.

Case 2.6. Subalgebra: X2 + νX4 = ∂/∂x+ 2νt∂/∂t− νu∂/∂u, ν = ±1
The symmetry X6 = X2 + νX4 gives the invariant solution

u =
ϕ(ζ)√

t
, ζ =

eνx√
t
.
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Utilizing this value of u in (2.12), we get

ϕ′ +
1

2
ζϕ′′ + bνζϕϕ′2 = 0.

Using Mathematica the solution of the above NODE is

ϕ(ζ) = − 1√
−bν

erf−1

(√
−4bν

π

(
C1ζ + C2

ζ

))
, bν < 0 (2.15)

and hence the invariant solution of (2.12) based on symmetry X6 is

u(t, x) = − 1√
−bνt

erf−1

(√
−4bν

π

(
C1ζ + C2

ζ

))
, bν < 0, (2.16)

where ζ = eνx/
√
t, C1, C2 are constants and erf−1 is the inverse error function

[5].
Case 2.7. Subalgebra: X3 +X4 = 3t∂/∂x+ x∂/∂x− u∂/∂u

The symmetry X7 = X3 +X4 provides the solution u = t−1/3ϕ(t−1/3x), where
ϕ satisfies the NODE 2ϕ′ + ζϕ′′ + 3bϕϕ′2 = 0.

2.3. Solutions of the gSP equation (1.1) when a ̸= 0, b = 0. In this case,
equation (1.1) becomes

uxt − au2uxx = 0. (2.17)

It has the same symmetries as for the previous two cases, namely

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = t

∂

∂t
+ x

∂

∂x
, X4 = 2t

∂

∂t
− u

∂

∂u

and consequently has the same OSOSs

{X1, X2, X3, X4, X1 + cX2, X2 + νX4, X3 +X4} , (2.18)

where c, ν = ±1.

2.3.1. Symmetry reductions and invariant solutions of (2.17). Case 3.1. Sub-
algebra: X1 = ∂/∂t

The symmetry X1 gives the group invariant solution u(t, x) = C1x + C2 with
C1, C2 arbitrary constants.

Case 3.2. Subalgebra: X2 = ∂/∂x
The symmetry X2 provides u(t, x) = ϕ(t), with ϕ being a function of t, as the

solution of (2.17).
Case 3.3. Subalgebra: X3 = t∂/∂t+ x∂/∂x
The symmetry X3 gives the invariant solution u = ϕ (t/x), where ϕ solves the

NODE

ϕ′ + ζϕ′′ + aϕ2
(
2ζϕ′ + ζ2ϕ′′) = 0.

Case 3.4. Subalgebra: X4 = 2t∂/∂t− u∂/∂u
The subalgebra X4 gives the invariant solution u = ϕ(x)/

√
t. Inserting u in

(2.17), we get ϕ′ + 2aϕ2ϕ′′ = 0, whose solution via Mathematica is

ϕ(x) = − 1

2aC1

{
W
(
−e−2aC1

2(C2+x)−1
)
+ 1
}
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Figure 3. Wave profile of Lambert function solution (2.19) for
−10 ≤ t, x ≤ 10.

with C1, C2 constants and W being the Lambert W function (also known as
Product Log function) [12]. Hence, the invariant solution of (2.17) based on
symmetry X4 is

u(t, x) = − 1

2aC1

√
t

{
W
(
−e−2aC1

2(C2+x)−1
)
+ 1
}
. (2.19)

The wave profile of Lambert function solution (2.19) is given in Figure 3 with
parameter values a = 200, C1 = 0.1, C2 = 0.2 for −10 ≤ t, x ≤ 10.

Case 3.5. Subalgebra: X1 + cX2 = ∂/∂t+ c∂/∂x, c = ±1
The symmetry X5 = X1 + cX2 provides the invariant solution u = f(x − ct).

Substituting u in (2.17), we obtain

cf ′′(ξ) + af2(ξ)f ′′(ξ) = 0, ξ = x− ct,

which on integration gives f(ξ) = K1ξ + K2, where K1 and K2 are arbitrary
constants. Consequently, we have u(t, x) = K1(x− ct) +K2 as a group invariant
solution of (2.17) under X5.

Case 3.6. Subalgebra: X2 + νX4 = ∂/∂x+ 2νt∂/∂t− νu∂/∂u, ν = ±1
Now consider the symmetry X6 = X2 + νX4. This symmetry provides the

invariant solution u = ϕ(ζ)/
√
t, ζ = eνx/

√
t, where ϕ solves the NODE

ϕ′ +
1

2
ζϕ′′ + aνϕ2ϕ′ + aνζϕ2ϕ′′ = 0.

Case 3.7. Subalgebra: X3 +X4 = 3t∂/∂x+ x∂/∂x− u∂/∂u

The subalgebra X7 = X3 +X4 gives the solution u = t−1/3ϕ(t−1/3x), where ϕ
satisfies the NODE

2

3
ϕ′ +

1

3
ζϕ′′ + aϕ2ϕ′′ = 0.
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2.4. Solutions of the gSP equation (1.1) when a, b = 0. This equation is
very well studied in the literature so we shall not discuss it here. However, its
Lie symmetries are

X1 = A(t)
∂

∂t
, X2 = B(x)

∂

∂x
, X3 = C1u

∂

∂u
, X4 = F (x)

∂

∂u
, X5 = G(t)

∂

∂u

with A(t), G(t) functions of t and B(x), F (x) functions of x, while C1 is an
arbitrary constant.

3. Conservation laws of the gSP equation (1.1)

We now derive conservation laws of the gSP equation (1.1) by invoking the
general multiplier method. Four different cases for the coefficients a and b are to
be considered.

3.1. Conservation laws of (1.1) when a, b ̸= 0. Let us seek first-order mul-
tiplier Q = Q(t, x, u, ut, ux) for

utx − au2uxx − buu2x = 0

with a, b ̸= 0. The determining equation for the multiplier is [6]

δ

δu

{
Q
(
utx − au2uxx − buu2x

)}
= 0 (3.1)

with δ/δu being the Euler-Lagrange operator [28]

δ

δu
=

∂

∂u
−Dt

∂

∂ut
−Dx

∂

∂ux
+DtDx

∂

∂utx
+D2

x

∂

∂uxx
+ · · · .

Expanding (3.1) we get

∂

∂u

(
Qutx − aQu2uxx − bQuu2x

)
−Dx

(
Quxutx − au2uxxQux − buu2xQux − 2bQuux

)
+DtDx (Q) +DxDx

(
−au2Q

)
= 0. (3.2)
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Applying the total derivatives to the equation (3.2) gives

Quutx − au2uxxQu − 2auuxxQ− buu2xQu − bu2xQ− utxxQux − utxQxux

− uxutxQuux − utxuxxQuxux − u2txQuxut + 2auuxuxxQux + au2Quxuxxx

+ au2uxxQxux + au2uxuxxQuux + au2uxxutxQuxut + au2u2xxQuxux + b(ux)
2Qux

+ 2buuxuxxQux + buu2xQxux + buu3xQuux + buu2xutxQuxut + buu2xuxxQuxux

+ 2bu2xQ+ 2buuxxQ+ 2buuxQx + 2buu2xQu + 2buuxutxQut + 2buuxuxxQux

+Qtx + utQxu + utxQxux + uttQxut + utxQu + uxQtu + uxutQuu + uxutxQuux

+ uxuttQuut + uttxQut + utxQtut + ututxQuut + u2txQutux + utxuttQutut

+ uxxQtux + utuxxQuux + uxxutxQuxux + uxxuttQuxut − 2au2xQ− 2auuxxQ

− 2auuxQx − 2auu2xQu − 2auuxutxQut − au2Qxx − 2auuxuxxQux − 2auuxQx

− au2uxQxu − au2utxQxut − au2uxxQxux − 2auu2xQu − au2uxxQu − au2uxQxu

− au2u2xQuu − au2uxutxQuut − au2uxuxxQuux − 2auuxuxtQut − au2utxxQut

− au2utxQxut − au2uxutxQuut − au2u2txQutut − au2utxuxxQutux − 2auuxuxxQux

− au2uxxxQux − au2uxxQxux − au2uxuxxQuux − au2uxxutxQuxut

− au2u2xxQuxux = 0.

Splitting on appropriate derivatives of u gives

Qt = 0, Qx = 0, Qu = 0, Qut = 0, buxQux + (b− 2a)Q = 0.

Solving these PDEs, we obtain one multiplier that is given by

Q = u
2a−b

b
x . (3.3)

We now proceed to find the conserved vector corresponding to this multiplier. A
multiplier for gSP equation (1.1) has the property that

Q(utx − au2uxx − buu2x) = DtT
t +DxT

x, (3.4)

where T t = T t(t, x, u, ux) represents the conserved density and T x = T x(t, x, u, ux)
the spatial flux. Thus, after some calculations, we obtain the corresponding con-
served vector (T t, T x) whose components are

T t =
b

2a
u

2a
b
x , T x = −1

2
bu2u

2a
b
x .

It should be noted that when b = 2a, we see from (3.3) that the multiplier
becomes Q = 1 and T t = ux, T x = −au2ux, which shows that the gSP equation
with b = 2a is itself in the conserved form.

3.2. Conservation laws of (1.1) when b = 2a. In this case, the gSP equation
(1.1) becomes

utx − au2uxx − 2auu2x = 0. (3.5)

To look for the first-order multiplier Q, we invoke the determining equation

δ

δu

{
Q
(
utx − au2uxx − 2auu2x

)}
= 0, (3.6)
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where

δ

δu
=

∂

∂u
−Dx

∂

∂ux
+DtDx

∂

∂utx
+DxDx

∂

∂uxx
+ · · ·

is Euler-Lagrange operator. Writing out equation (3.6) and splitting on appro-
priate derivatives of u, we get

Qu = 0, Qxx = 0, Qxux = 0, Qtux = 0, uxQuxux+3Qux = 0, Qtx+2au3xQux = 0,

whose solution is

Q = C1xt+ C2x+ F (t) +
C1

4au2x
. (3.7)

Thus, we obtain three conservation law multipliers

Q1 = F (t), Q2 = tx+
1

4au2x
, Q3 = x,

The conserved vectors of equation (3.5) are constructed using the divergence
identity

Q
(
utx − au2uxx − 2auu2x

)
= DtT

t +DxT
x,

where T t represents the conserved density and T x is spatial flux. Thus, after some
calculations, we obtain conserved vectors corresponding to the three multipliers
Q1, Q2 and Q3, respectively as

T t = uxF (t), T x = −au2uxF (t)− uF ′(t);

T t = xtux −
1

4aux
, T x =

1

3
atu3 +

(
1

4ux
− atxux

)
u2 − xu;

T t = xux, T x =
1

3
au3 − axu2ux.

3.3. Conservation laws of (1.1) when a = 0, b ̸= 0. In this case, equation
(1.1) becomes

utx − buu2x = 0.

We apply the same algorithm to seek first-order multiplier Q. The multipliers
are determined by solving

δ

δu

{
Q
(
utx − buu2x

)}
= 0, (3.8)

where

δ

δu
=

∂

∂u
−Dx

∂

∂ux
+DtDx

∂

∂utx
+ · · ·

is the Euler-Lagrange operator. Expanding (3.8) and splitting on appropriate
derivatives of u gives

Qt = 0, Qx = 0, Qut = 0, uxQux +Q = 0,
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which yields one multiplier Q = C1/ux, where C1 is a constant. Conserved vector
corresponding to the multiplier Q is obtained by solving

1

ux

(
utx − buu2x

)
= DtT

t +DxT
x,

for T t and T x. Expanding the above equation, we find that the components of
the conserved vector (T t, T x) corresponding to the multiplier Q = 1/ux are given
by

T t = lnux, T x = −1

2
bu2.

3.4. Conservation laws of (1.1) when a ̸= 0, b = 0. In this case, we have
multiplier Q = 0, which implies that equation (1.1) when a ̸= 0, b = 0 has no
conserved vectors.

3.5. Conservation laws of (1.1) when a, b = 0. In this case, equation (1.1)
becomes

utx = 0. (3.9)

Following the above procedure, we obtain four multipliers

Q1 = I(ut), Q2 = J(ux), Q3 = C(x, ux), Q4 = E(t, ut)

and the corresponding conserved vectors, respectively, are

T t = 0, T x =

∫
I(ut)dut;

T t =

∫
J(ux)dux, T x = 0;

T t =

∫
C(x, ux)dux, T x = 0;

T t = 0, T x =

∫
E(t, ut)dut.

4. Concluding remarks

The generalized short pulse equation (1.1) was studied in this paper from the
group standpoint. Firstly, Lie symmetries of (1.1) were calculated and corre-
sponding one parameter Lie group of transformations were presented. Using the
Lie symmetries we constructed OSOSs and thereafter, group invariant solutions
were derived under each subalgebra. Three different cases for the values of a and
b were discussed in detail, namely, a and b not zero simultaneously; a = 0 but
b ̸= 0; a ̸= 0 but b = 0. Graphical presentation of the dynamical behaviour of
some of the obtained solutions was depicted in a bid to have a good apprehension
of the physical phenomena of equation (1.1). Finally, we computed the conserved
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vectors of the generalized short pulse equation for different case of the constants
a, b, by utilizing the general multiplier approach.
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[11] Y. Chung, C.K. Jones, T. Schäfer, C.E. Wayne, Ultra-short pulses in linear and
nonlinear media, Nonlinearity 18 (2005), 1351–1374.

[12] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.E. Knuth, On the Lambert
W Function, Adv. Comput. Math. 5 (1996), 329–359.

[13] C.J. Cui, X.Y. Tang, Y.J. Cui, New variable separation solutions and wave interac-
tions for the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Appl. Math.
Lett. 102 (2020), 106109.

[14] P. Cui, Bilinear form and exact solutions for a new extended (2+1)-dimensional
Boussinesq equation, Results Phys. 22 (2021), 103919.

[15] S.T. Demiray, S. Duman, MTEM to the (2+1)-dimensional ZK equation and Chafee-
Infante equation, Adv. Math. Models Appl. 6 (2021), 63–70.

[16] X.X. Du, B. Tian, Q.X. Qu, Y.Q. Yuan, X.H. Zhao, Lie group analysis, solitons, self-
adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in
an electron-positron-ion magnetoplasma, Chaos Solitons Fract. 134 (2020), 109709.

[17] X. Duan, J. Lu, The exact solutions for the (3+1)-dimensional Boiti-Leon-Manna-
Pempinelli equation, Results Phys. 21 (2021), 103820.

[18] B.F. Feng, An integrable coupled short pulse equation, J. Phys. A Math. Gen. 45
(2012), Article ID 085202, 14 pages.

[19] B.F. Feng, K.I. Maruno, Y. Ohta, Integrable discretizations of the short pulse equa-
tion, J. Phys. A Math. Theor. 43 (2010), Article ID 085203.



SYMMETRY SOLUTIONS AND CONSERVED VECTORS . . . 37

[20] M.L. Gandarias, M.R. Duran, C.M. Khalique, Conservation laws and travelling wave
solutions for double dispersion equations in (1+1) and (2+1) dimensions, Symmetry
12 (2020), 950.

[21] X.Y. Gao, Mathematical view with observational/experimental consideration on cer-
tain (2+1)-dimensional waves in the cosmic/laboratory dusty plasmas, Appl. Math.
Lett. 91 (2019), 165–172.

[22] X.Y. Gao, Y.J. Guo, W.R. Shan, Water-wave symbolic computation for the Earth,
Enceladus and Titan: The higher-order Boussinesq-Burgers system, auto and non-
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