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PHRAGMEN-LINDELÖF THEOREM FOR A CLASS OF

NON-UNIFORMLY ELLIPTIC EQUATION

FARMAN MAMEDOV AND NARMIN AMANOVA

Abstract. The non-divergent structure elliptic equations of second or-
der with non-uniform degeneration at infinity is considered in this paper.
For a class of non-uniformly elliptic equation we obtain sufficient condi-
tions on a domain, subordinate term coefficients, degeneration behavior
of eigenvalues of the leading term coefficients of the equation near infin-
ity. This allows to obtain a version of the Phragmen-Lindelöf theorem.

1. Introduction

Let En be the n-dimensional Euclidean space of points x = (x1, ..., xn), n ≥ 2
and D be an unbounded domain in En with boundary ∂D ∈ C2 lied in the cone

G =

x :

(
n−1∑
i=1

x2i

)1/2

< kxn, 0 < xn < ∞, 0 < k ≤ 1

16

 .

Consider in D the problem

Lu =
n∑

i,j=1

aij(x)uij +
n∑

i=1

bi(x)ui + c(x)u(x) = 0, (1.1)

u|∂D = 0. (1.2)

Assume that for x ∈ D and ∀ξ ∈ En

γ
n∑

i=1

λi(x)ξ
2
i ≤

n∑
i,j=1

aij(x)ξiξj ≤ γ−1
n∑

i=1

λi(x)ξ
2
i , (1.3)

where γ ∈ (0, 1] is a constant, ∥aij(x)∥ is a real symmetric matrix, ui =
∂u(x)
∂xi

,

uij =
∂2u(x)
∂xi∂xj

, and

λi(x) =

(
ω−1
i (1 + ρ(x))

1 + ρ(x)

)2

, ρ(x) =

n∑
i=1

ωi(|xi|); i, j = 1, ..., n. (1.4)

Further, ωi(t), i = 1, .., n are strongly monotone positive functions on [0,∞) such
that ωi(t) → ∞ as t → +∞. By ω−1

i (t) denote the inverse function of ωi(t) on

2010 Mathematics Subject Classification. 35B09, 35B45, 35B65, 35D35, 35B50.
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[0,∞). Assume that ω−1
1 (t) ≥ ... ≥ ω−1

n (t). There exist constants α, p, η ∈ (1,∞)
and q > n, A > 0 such that for sufficiently large R > 0 and i = 1, .., n the
following inequalities hold

αωi(R) ≤ ωi(ηR) ≤ pωi(R), (1.5)

and (
ω−1
i (R)

R

)q−1
ω−1
i (R)∫
0

(
ωi(τ)

τ

)q

dτ ≤ AR. (1.6)

Also assume that

−C0 ≤ c(x) ≤ 0, (1.7)

where C0 is a positive constant. Denote

bR(x) =

(
b1(x)

(ω−1
1 (R))2

, ...,
bn(x)

(ω−1
n (R))2

)
.

Consider also the ”shortened” operator Lc = L− c(x). Let x0 ∈ En, R > 0, k > 0

and let Ex0

R (k) be the ellipsoid{
x :

n∑
i=1

(xi − x0i )
2

(ω−1
i (R))2

< k2

}
.

Denote by Ex0

R (k1, k2) the ellipsoid layer Ex0

R (k2)\Ex0

R (k1) with k2 > k1. Denote

DR = D ∩ E0
R(1, 17) and for z ∈ ∂E0

R(9) ∩ G set Dz
R = D ∩ Ez

R(8), x
0(z) ∈

∂Ez
R(1) ∩ ∂E0

R(9), AR = ∪
z
x0(z), and set

G
(R)
S (x) =

(
n∑

i=1

(xi − x0i )
2

(ω−1
i (R))2

)−s/2

, s > 0.

For the small term coefficients and the domain D we assume the condition

(bR(x), x− x0) ≤ 0, x ∈ DR, x0 ∈ AR. (1.8)

at infinity.
We derive a growth estimate from below for vanishing on boundary positive

solutions of the non-uniformly elliptic equations on the unbounded domain. Such
estimates are historically called Phragmen-Lindelöf type theorem. The Dirichlet
problem for elliptic equations is not unique solvable on unbounded domains. The
mentioned estimates depending on geometry of domain near infinity is a main
tool to prove the uniqueness theorems for elliptic equations.

For elliptic equations the Pragmen-Lindelöf theorem was proved in [6] and
[8] for the first time. For further discussions of Phragmen-Lindelöf’s principle we
refer to the books [15], [1], [5], and [7]. Also we cite[10], [4], [11], [14], [13], [17] on
this subject; for the degenerate elliptic equations see e.g. [16], [12]. In [9, 2, 3], the
non-uniformly elliptic equation with power type degeneration λi(x) = |x|αi

α was
considered without small term coefficients. In this paper, we consider a general
non-uniformly elliptic equation with small terms and a general form degeneration.
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2. Notation and auxiliary results

Definition 2.1. Let λ = (λ1(x), ..., λn(x)) . Denote by W 2
2,λ(D) a Banach space

of functions u(x) in D having the finite norm

∥u∥W 2
2,λ(D) =

∫
D

u2 +
n∑

i=1

λi(x)u
2
i +

n∑
i,j=1

λi(x)λj(x)u
2
i,j

 dx

 1
2

.

Set
◦
W 2

2,λ(D) closure of the functions class u(x) ∈ C∞
0 (D) under the norm

W 2
2,λ(D).

Definition 2.2. A function u(x) ∈
◦
W2

2,λ(D) is called a strong solution of problem

(1.1)-(1.2) if it satisfies (1.1) a.e. in D.

Lemma 2.1. Let z ∈ ∂E0
R(9) ∩ G, x0(z) ∈ ∂Ez

R(1) ∩ ∂E0
R(9) where R ≥

1, x01(z) > 0, x02(z) = ... = x0n−1(z) = 0, x0n(z) > 0. Then x0(z) =(
x01(z), x

0
2(z), ..., x

0
n(z)

)
∈G.

Proof. To shorten the records we will write x0i in place of x0i (z), i = 1, ..., n. We
have 

(x0
1)

2

(ω−1
1 (R))2

+ (x0
n)

2

(ω−1
n (R))2

= 81,

(x0
1−z1)2

(ω−1
1 (R))2

+
z22

(ω−1
2 (R))2

+ ...+
z2n−1

(ω−1
n−1(R))2

+ (x0
n−zn)2

(ω−1
n (R))2

= 1,

z21
(ω−1

1 (R))2
+ ...+ z2n

(ω−1
n−1(R))2

= 81.

(2.1)

Inserting third equation into the second and subtracting it from the first equation,
we obtain

2x01z1

(ω−1
1 (R))2

+
2x0nz1

(ω−1
n (R))2

= 161.

Therefore,
2x0nzn

(ω−1
n (R))2

≤ 161 +
2x01 |zn|

(ω−1
n (R))2

.

On the other hand
|z1|

ω−1
1 (R)

≤ |z1|
ω−1
n (R)

<
kzn

ω−1
n (R)

,

x01
ω−1
1 (R)

=

√
81−

(
x0n

ω−1
n (R)

)2

.

Denoting x0
n

ω−1
n (R)

= v, zn
ω−1
n (R)

= ω we have

2vω ≤ 161 + 2kω
√

81− v2. (2.2)

From the third equation it follows that

81 ≤
(

z1

ω−1
1 (R)

)2

+ ...+

(
zn

ω−1
n (R)

)2

≤ k2ω2 + ω2 = (k2 + 1)ω2,

or

ω ≥ 9√
k2 + 1

.
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Taking into the account this from (2.2) it follows that

v ≤ 8, 9 + k
√
0, 94√

1 + k2
.

Also from the first equation of (2.1) it follows that(
x01

ω−1
1 (R)

)2

≥ 81−
(
8, 9 + k

√
0, 94

)2
1 + k2

,

or

x01 ≥ ω−1
1 (R)

√
81−

(
8, 9 + k

√
0, 94

)2
1 + k2

≥

≥

√
81− (8, 9 + k

√
0, 94)2

1 + k2
·

√
1 + k2(

8, 9 + k
√
0, 94

)x0n. (2.3)

In order to have x0(z)∈G it suffices that

81(1 + k2)−
(
8, 9 + k

√
0, 94

)2
> k2

(
8, 9 + k

√
0, 94

)2
.

Solving this inequality we obtain the condition k < 1√
94
. Since K ∈

(
0, 1

16

]
, the

last condition is verified.
This completes the proof of Lemma 2.1.

□

Lemma 2.2. Let x0 ∈ AR. Then for any x ∈ Dz
R there exists a constant β =

β(k) > 0 such that (
n∑

i=1

(xi − x0i )
2

(ω−1
i (R))2

)1/2

≥ β.

Proof. There are two possibilities:

1)

(
n∑

i=1

(xi − zi)
2

(ω−1
i (R))2

)1/2

≥ 1 + µ,

2)

(
n∑

i=1

(xi − zi)
2

(ω−1
i (R))2

)1/2

< 1 + µ,

where the constant µ ∈ (0, 3) will be determined later.
Let the case 1) take place. Then using Minkowsky’s inequality, we get(
n∑

i=1

(xi − x0i )
2

(ω−1
i (R))2

)1/2

≥

(
n∑

i=1

(xi − zi)
2

(ω−1
i (R))2

)1/2

−

(
n∑

i=1

(x0i − zi)
2

(ω−1
i (R))2

)1/2

≥ 1+µ−1 = µ.

Let now the case 2) take place. For x ∈ D ∩ Ez
R(1 + µ) we have

n∑
i=1

(xi−zi)
2

(ω−1
i (R))2

< (1 + µ)2,

n−1∑
i=1

x2i < K2x2n.
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From the first inequality we get(
xn − zn

ω−1
n (R)

)2

< (1 + µ)2 and

(
xn

ω−1
n (R)

)2

< (1 + µ)2 +
2xnzn − z2n
(ω−1

n (R))2
.

Set xn = sup
x∈D∩Ez

R(1+µ)
xn. Evidently, xn ≥ zn. Therefore, the function φ(zn) =

2xnzn − z2n does not decrease. Also we have

x2n
(ω−1

n (R))2
≤ (1 + µ)2 +

2xn9ω
−1
n (R)− 81(ω−1

n (R))2

(ω−1
n (R))2

=

= (1 + µ)2 + 18
xn

ω−1
n (R)

− 81.

Denoting t = xn

ω−1
n (R)

, we obtain

t2 − 18t+ 81− (1 + µ)2 ≤ 0.

Solving this inequality we obtain that t ≤ 10+µ or xn ≤ (10+µ)ω−1
n (R). From

the second inequality (2.1) we get

|x1| < k(10 + µ)ω−1
n (R) ≤ k(10 + µ)ω−1

1 (R).

From (2.3) it follows that(
n∑

i=1

(xi − x0i )
2

ω−1
i (R))2

)1/2

≥ x01 − |x1|
ω−1
1 (R)

≥

√
81− (8, 9 + k

√
0, 94)2

1 + k2
− k(10 + µ).

It easily seen that for k ∈
(
0, 1

16

]
J(k) =

√
81− (8, 9 + k

√
0, 94)2

1 + k2
> 10k.

Therefore, there exists ε0 = ε0(k) > 0 such that J(k) = (10 + ε0)k. Choose
µ = ε0/2 and fix it. Then in case 2)(

n∑
i=1

(xi − x0i )
2

(ω−1
i (R))2

)1/2

≥ kε0 −
kε0
2

=
kε0
2

Set β = kε0
2 and the proof of Lemma 2.2 is ready. □

Lemma 2.3. Let the conditions (1.3)-(1.8) be satisfied . Then for any fixed
x0 ∈ AR there exists s = s(γ, n) > 0 such that for any x ∈ DR we have

LcG
(R)
s (x) ≥ 0.

Proof. Denote r(x) =

(
n∑

i=1

(xi−x0
i )

2

(ω−1
i (R))2

)1/2

. For G
(R)
s (x) = r−s it is easily seen

that ∂G
(R)
s (x)
∂xi

= −sr−s−2 · xi−x0
i

(ω−1
i (R))2

, ∂2G
(R)
s (x)
∂x2

i
= s(s + 2)r−s−4 · (xi−x0

i )
2

(ω−1
i (R))4

−

sr−s−2. 1
(ω−1

i (R))2
, ∂2G

(R)
s (x)

∂xi∂xj
= s(s+ 2)r−S−4.

(xi−x0
i )(xj−x0

j )

(ω−1
i (R))2(ω−1

j (R))2
.
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Therefore,

LcG
(R)
s (x) = sr−s−2

s+ 2

r2

n∑
i,j=1

aij(x)
(xi − x0i )(xj − x0j )

(ω−1
i (R))2(ω−1

j (R))2
−

−
n∑

i=1

aii(x)
1

(ω−1
i (R))2

−
n∑

i=1

bi(x)
xi − x0i

(ω−1
i (R))2

]
.

Make use the conditions (1.3) and (1.8). Then we have

LcG
(R)
s (x) ≥ sr−s−2

(
γ(s+ 2)

r2

n∑
i=1

λi(x)(xi − x0i )
2

(ω−1
i (R))4

− γ−1
n∑

i=1

λi(x)

(ω−1
i (R))2

)
.

It is possible to show that (see [3, Lemma 1]) there exist positive constants C1(n)
and C2(n) such that

C1(n)

(
ω−1
i (R)

R

)2

≤ λi(x) ≤ C2(n)

(
ω−1
i (R)

R

)2

, i = 1, ..., n.

From this we deduce that

LcG
(R)
s (x) ≥ s

R2rs+2

(
γ(s+ 2)C1(n)−

C2(n)n

γ

)
.

To finish the proof it suffices to choose s ≥ C2(n)n
C1(n)γ2 − 2.

This completes the proof of Lemma 2.3. □

Corollary 2.1. Let z ∈ D ∩ ∂E0
R(9), x0 = x0(z), x ∈ D ∩ Ez

R(8), g
(R)
s (x) =

βsG
(R)
s (x). Then g

(R)
s (x) ≤ 1.

Lemma 2.4. Let z ∈ D∩E0
R(9), x0 = x0(z) and in HR = D∩Ez

R(8) a positive

solution u(x) of equation (1.1) is defined, which is continuous in HR and vanishes
on the part Γ of the boundary ∂HR lied strongly interior in Ez

R(8). Then if the
conditions (1.3)-(1.8) are fulfilled there exists a constant η = η(γ, n) such that

sup
HR

u(x) ≥ (1 + η) sup
HR∩Ez

R(1)
u(x).

Proof. First, show that if Lu(x) = 0 then Lcu
2(x) ≥ 0. Indeed,

Lcu
2(x) = 2u(x)

n∑
i,j=1

aij(x)uij + 2

n∑
i,j=1

aij(x)uiuj+

+2u(x)

n∑
i,j=1

bi(x)ui ≥ 2u(x)

 n∑
i,j=1

aij(x)uij +

n∑
i=1

bi(x)ui

 =

= 2u(x)(−c(x)u(x)) = −2c(x)u2(x) ≥ c0u
2(x) ≥ 0.

Set sup
HR

u2(x) = M. Consider the auxiliary function

U(x) = M

[
1− g(R)

s (x) + sup
x∈HR∩∂Ez

R(8)

g(R)
s (x)

]
.
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It is easily seen that

Lc(U(x)−u2(x)) ≤ 0 in HR, (U(x)− u2(x))
∣∣
Γ
≥ 0, (U(x)− u2(x))

∣∣
∂HR\Γ ≥ 0.

Using the maximum principle we have U(x) ≥ u2(x) in HR and, in particular,

sup
HR∩Ez

R(1)
u2(x) ≤ M

(
1−

(
inf

HR∩Ez
R(1)

g(R)
s (x)− sup

x∈HR∩∂Ez
R(8)

g(R)
s (x)

))
.

Let x ∈ HR ∩ ∂Ez
R(8). Then(

n∑
i=1

(xi − x0i )
2

(ω−1
i (R))2

)1/2

≥

(
n∑

i=1

(xi − zi)
2

(ω−1
i (R))2

)1/2

−

(
n∑

i=1

(x0i − zi)
2

(ω−1
i (R))2

)1/2

≥ 8− 1 = 7.

Therefore, sup
HR∩Ez

R(8)
g
(R)
s (x) ≤ 7−sβs. If x ∈ HR ∩ Ez

R(1) then

(
n∑

i=1

(xi − x0i )
2

(ω−1
i (R))2

)1/2

≤

(
n∑

i=1

(xi − zi)
2

(ω−1
i (R))2

)1/2

+

+

(
n∑

i=1

(zi − x0i )
2

(ω−1
i (R))2

)1/2

≤ 1 + 1 = 2.

Hence

inf
HR∩Ez

R(1)
g(R)
s (x) ≤ 2−sβs,

We get

sup
HR∩Ez

R(1)
u2(x) ≤ M(1− βs(2−s − 7−s)).

This completes the proof of Lemma 2.4. □

Lemma 2.5. Let u(x) be a positive solution of the equation (1.1) in H1
R =

D ∩ E0
R(17) which is continuous in H

1
R and vanishes on the part of boundary

∂H1
R that lies strongly interior in E0

R(1.17). If the conditions (1.3)-(1.8) are
fulfilled then

sup
H1

R

u(x) ≥ (1 + η) sup
H1

R∩∂E0
R(9)

u(x).

Proof. Let z be a point from the setH
1
R∩∂E0

R(9) for which u(z) = sup
H1

R∩∂E0
R(9)

u(x).

By Lemma 2.4,

sup
H1

R∩Ez
R(8)

u(x) ≥ (1 + η) sup
H1

R∩∂Ez
R(1)

u(x).

On the other hand,

sup
H1

R∩∂Ez
R(1)

u(x) ≥ u(z) and Ez
R(8) ⊂ E0

R(1 : 17).

This completes the proof of Lemma 2.5. □
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Corollary 2.2. Let in H2
R = D ∩ E0

R(17) it is defined a positive solution u(x)

of the equation (1.1), which is continuous in H
2
R and vanishes on the part of the

boundary ∂H2
R that lies strongly interior in E0

R(17). If the conditions (1.3)-(1.8)
are fulfilled then

sup
H2

R

u(x) ≥ (1 + η) sup
H2

R∩E0
R(9)

u(x).

Proof. According to Lemma 2.5

sup
H2

R∩E0
R(1:17)

u(x) ≥ (1 + η) sup
H2

R∩∂E0
R(9)

u(x).

On the other hand,
sup

H2
R∩∂E0

R(9)

u(x) = sup
H2

R∩E0
R(9)

u(x)

and
sup

H2
R∩E0

R(1:17)

u(x) ≤ sup
H2

R

u(x).

This completes the proof of Corollary 2.2. □

3. Main result

Theorem 3.1. Let the coefficients of operator L are defined on a domain D ⊂ G
and satisfy the conditions (1.3)-(1.8). Let u(x) be a solution of the problem (1.1)-
(1.2). Then for M(r) = sup

D∩∂E0
r (1)

|u(x)| we have:

1) either u(x) ≡ 0 in D or 2) lim
r→∞

M(r)

rδ
> 0,

where δ > 0 depend on γ, n, k.

Proof. Let there exists a point y ∈ D on which u(y) = η1 ̸= 0, η1 = const.
Without loss of generality we may assume that η1 > 0. Let D+ = {x : x ∈
D,u(x) > 0} and D′ be a connected component of D+ that contains the point
y. It follows from the maximum principle that this component is an unbounded
set, on boundary of which u(x) vanishes. Let γ0 < p, then for any R > 0 the
inclusion E0

γ0R
(1) ⊂ E0

R(9/17) takes place. Hence, for any R ≥ 1 Corollary 2.2
asserts the inequality

sup
D∩E0

R(1)

u(x) ≥ (1 + η) sup
D∩E0

γ0R
(1)

u(x).

Let m0 be a minimal natural number such that y ∈ E0

γ
−m0
0

(1) ∩D′. Let further,

r > 1 be arbitrary real number and the natural number m > m0 be such that

γ−m
0 ≤ r < γ−m−1

0 ,

i.e.

m ln
1

γ0
≤ ln r < (m+ 1) ln

1

γ0
and hence

m >
ln r

ln 1
γ0

− 1.
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We assume also r is so large that

ln r

ln 1
γ0

− 1 ≥ ln r

2 ln 1
γ0

.

Denote N(r) = sup
D′∩E0

r (1)

u(x). Applying sequentially Corollary 2.2, we get

N(r) ≥ (1 + η)m−m0N(γ−m0
0 ) ≥ (1 + η)m−m0η1 = (1 + η)m

η1
(1 + η)m0

=

= (1 + η)mη0 ≥ η0(1 + η)
ln r

2 ln 1
γ0 = η0η

ln r
2 = η0 exp(ln η2 ln r) =

= η0 exp(ln r
δ) = η0r

δ,

where

η0 =
η1

(1 + η)m0
, η1 = N(γ−m0

0 ), η2 = (1 + η)
1

2 ln 1
γ0 , δ = ln η2.

Therefore, for sufficiently large r it holds the inequality

N(r)

rδ
≥ η0.

Using the maximum principle, this completes the proof of Theorem 3.1.
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equations of divergence type with a positive right-hand side, Differ. Uravn., 26(11),
(1990), 1971–1978 (in Russian).

[14] V. G. Mazya, The behavior near the boundary of the solution of the Dirichlet prob-
lem for an elliptic equation of the second order in divergence form. Mat. Zametki.,
2(2), (1967), 209–220 (in Russian).

[15] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations,
Prentice-Hall., Englewood Cliffs., N.J., 1967

[16] A. B. Shapaval, Growth of solutions of nonlinear degenerating elliptic inequalities
in bounded domains Vestn. Moscow Univ., ser. math.-mech., 1(3), (2000), 3–7(in
Russian).
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