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PHRAGMEN-LINDELOF THEOREM FOR A CLASS OF
NON-UNIFORMLY ELLIPTIC EQUATION

FARMAN MAMEDOV AND NARMIN AMANOVA

Abstract. The non-divergent structure elliptic equations of second or-
der with non-uniform degeneration at infinity is considered in this paper.
For a class of non-uniformly elliptic equation we obtain sufficient condi-
tions on a domain, subordinate term coefficients, degeneration behavior
of eigenvalues of the leading term coefficients of the equation near infin-
ity. This allows to obtain a version of the Phragmen-Lindel6f theorem.

1. Introduction

Let E,, be the n-dimensional Euclidean space of points x = (z1,...,zp),n > 2
and D be an unbounded domain in F, with boundary 9D € C? lied in the cone

n—1 1/2 1
G = m(lz_;xf) <kxn,0<xn<oo,0<k§1—6

Consider in D the problem

Lu = Z aij(x)usj + Z bi(x)u; + c(z)u(z) =0, (1.1)
ij=1 i—1
ulap = 0. (1.2)

Assume that for x € D and V€ € E,

WZ Xi(z)&f < Z aj(z)&& <v7! Z Xi(@)€F, (1.3)
=1 ij=1 =1
Ou(x)
ox;

where v € (0,1] is a constant, ||a;;(x)| is a real symmetric matrix, u; =

_ 9%u(x) d

U” - axi61j7 an

wit T 2 -
)\i(x):<z(1+ﬂ())>7 o) =S willwl); ij=1,n.  (14)
=1

1+ p(z)

Further, w;(t), i = 1, ..,n are strongly monotone positive functions on [0, c0) such
that w;(t) — 0o as t — +oco. By w; '(t) denote the inverse function of w;(t) on
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[0,00). Assume that w; () > ... > w;; }(t). There exist constants a,p,n € (1,00)
and ¢ > n, A > 0 such that for sufficiently large R > 0 and i = 1,..,n the
following inequalities hold

aw;(R) < w;(nR) < pw;(R), (1.5)

and
w; ' (R)

(“i(7>>qd7 < AR. (1.6)

o

Also assume that
—Cp < c¢(z) <0, (1.7)
where C is a positive constant. Denote
bi(x bn(x
br(z) = < 711( ) - 71( ) 2) .
(wy (R)) (wn(R))

Consider also the "shortened” operator L. = L —c(z). Let 2° € E,, R > 0,k > 0
and let E% (k) be the ellipsoid

7 iw < k2
S (W (R)? '

=1

Denote by E% (ki ko) the ellipsoid layer E% (ko)\E% (k1) with ko > k;. Denote
Dr = DN EY%(1,17) and for z € 0E%(9) NG set D} = DN E;(8), 2%(z) €
OF%(1) NOE%(9), Ar=U2"(z), and set

n :L“—CCQQ —s/2
G(SR)(QJ) = <Z(ZI(RZ)))2> , s> 0.

o
For the small term coefficients and the domain D we assume the condition
(br(z),z —2°) <0, x € Dg, 2° € Ap. (1.8)

at infinity.

We derive a growth estimate from below for vanishing on boundary positive
solutions of the non-uniformly elliptic equations on the unbounded domain. Such
estimates are historically called Phragmen-Lindel6f type theorem. The Dirichlet
problem for elliptic equations is not unique solvable on unbounded domains. The
mentioned estimates depending on geometry of domain near infinity is a main
tool to prove the uniqueness theorems for elliptic equations.

For elliptic equations the Pragmen-Lindel6f theorem was proved in [6] and
[8] for the first time. For further discussions of Phragmen-Lindel6f’s principle we
refer to the books [15], [1], [5], and [7]. Also we cite[10], [4], [11], [14], [13], [17] on
this subject; for the degenerate elliptic equations see e.g. [16], [12]. In [9, 2, 3], the
non-uniformly elliptic equation with power type degeneration \;(z) = |z|% was
considered without small term coefficients. In this paper, we consider a general
non-uniformly elliptic equation with small terms and a general form degeneration.
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2. Notation and auxiliary results

Definition 2.1. Let A = (A1(z), ..., A\n(z)) . Denote by WQQ,A(D) a Banach space
of functions u(x) in D having the finite norm

lullwg, o = | [ [+ oM@ + 3 xton(wnd; | do

D i=1 ij=1

D=

Set I/?/%A(D) closure of the functions class u(z) € C§°(D) under the norm
W3 A(D).

Definition 2.2. A function u(z) EV?/% L\ (D) is called a strong solution of problem
(1.1)-(1.2) if it satisfies (1.1) a.e. in D.

Lemma 2.1. Let z € OE%(9 )ﬂ G 2%(z) € OE%(1) N OE%(9) where R >
1, x?(z) > 0, xg(z) = ... = x _1(z) =0, 20(2) > 0. Then 2°(2) =

(x?(z), 9(2), ..., :C%(Z)) Eq.

Proof. To shorten the records we will write x? in place of a:?(z), 1=1,...,n. We
have
(29)* 4@ 2 - 81
(wy L (R))?2 <w;1<R)> ’

(29—21)? 271 (29 —2n)% _ 1
@ TRE T ( T e ®eE T et =5 (2.1)
2

2
oo mr Tt e @y 8

Inserting third equation into the second and subtracting it from the first equation,
we obtain

0 0
%flzl + 2”1: nfl 161,
(Wi (R)?  (wn (R))?
Therefore,
0 0
B gy 2l 2l
(wn (R))? (wn (R))?
On the other hand
’21| ‘21| kzn

wil(R) = wi(R) " wi(R)’

w;%R) - \/81 B <wnf9€R>>2‘

Zn

wn ' (R)

2w < 161 + 2kw/81 — v2. (2.2)

From the third equation it follows that

2 2
21 “n 2 2 2 2 2
81§<> +...+<> <k'w 4w’ = (k°+ 1w
wi ' (R) wa' (R)
9
B —————
VEkZ+1

= w we have

O
Denoting _I(R) =,

or
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Taking into the account this from (2.2) it follows that

o 89+ky0,94
v T
EEERRVAT

Also from the first equation of (2.1) it follows that

( 9 >2>81_(8,9+kw/0,94)2
wi'(R)) ~ 1+ k2 ’

or

2
8,9 + k\/0,94
29 > wl_l(R)\/Sl | ) >

1+ k2 -
8,9 + k+/0,94)2 V1+E2
> 81—( 9+ > r. * 0. (2.3)
1+Fk (8,9 + k/0,94)

In order to have 2°(2)€G it suffices that

81(1 + k2) — (8,9+k\/m>2 > k2 (8,9+ k:\/o,ﬂf.

Solving this inequality we obtain the condition k < ﬁ. Since K € (0, %} , the
last condition is verified.

This completes the proof of Lemma 2.1.
O

Lemma 2.2. Let 2° € Ar. Then for any = € D3, there exists a constant 3 =
B(k) > 0 such that

Proof. There are two possibilities:

" a2\
1) (ZW) >1+p,

= (w;

" (= )2 1/2
2) s <l
(; (w; 1(R))2>
where the constant p € (0,3) will be determined later.
Let the case 1) take place. Then using Minkowsky’s inequality, we get

— (z — 2f)? 2 " (2 — 2)? v "L (20 — z)? 1/2
(;W) - (;((,J;l(}z))?> _<;W> > 1+p—1=p.

Let now the case 2) take place. For x € D N E%(1 + ) we have

xi—2;)2
e < (L

-

1

1

|
—

n

2 2.2
Yoar < KPap.
i=1
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From the first inequality we get

2 2 2
n - 4n n 2 n<n - “n

wi t(R) wn ! (wn ' (R))?
Set T, = sup xn. Evidently, T, > z,. Therefore, the function ¢(z,) =
zeDNE%(1+p)
2Ty 2m — zTQL does not decrease. Also we have
z2 27, 9w, H(R) — 81(w; H(R))?
T (1 gy B () U (R
(wn™ (R)) (wn™ (R))
T
= (14 p)* +18—"— —81.
(14 p) (R
Denoting t = %?R)’ we obtain

t2—18t+ 81— (14 p?<o.

Solving this inequality we obtain that ¢t < 10+ u or Z,, < (10 + p)w,, *(R). From
the second inequality (2.1) we get

21| < k(10 + p)w, ' (R) < k(10 + p)w; (R).
From (2.3) it follows that

" (x; — 20)? s ) — |z ?
b
1

It easily seen that for k € (0, 1—16]

J(k:):\/81 (89““09) > 10k

k2

Therefore, there exists eg = o(k) > 0 such that J(k) = (10 + g9)k. Choose
p = €o/2 and fix it. Then in case 2)

n 1/2
Z (z; — 29)? / > ke keo ke
0= (& T 5
* (W (R))? 2 2
Set 8 = k% and the proof of Lemma 2.2 is ready. O

Lemma 2.3. Let the conditions (1.3)-(1.8) be satisfied . Then for any fizved
20 € Ap there exists s = s(y,n) > 0 such that for any x € Dr we have

LG (z) > 0.

n 1/2
Proof. Denote r(z) = <Zw> . For GgR)(:c) = r~% it is easily seen

96" (@) 52 @iz 260 (@) 9)2

_ —s5— (337,_13
that 575 = = o e = ST g -
—s-2 1 26 (@) _ N . )
ST T @ omon, ST TS TR)2(w, (R
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Therefore,

LGP (z) = sp—2 s+2 iz (xi — 7)) (zj — ) -
= 723;J“wfmwwfmw
" €Ty — SU?

Zan z_l R)? — ZZ;bl(gv)(WZ_I(R))2

Make use the condltlons (1.3) and (1.8). Then we have

s n)\xasz—x _
Lﬁgmmmﬁg<ﬂ;m23<&( 531»9.

i=1 (wi

45

It is possible to show that (see [3, Lemma 1]) there exist positive constants C(n)

and C(n) such that
2 -1 2

Ci(n) (“’i_;(R)> < \i(z) < Cs(n) <“’iR(R)) i=1,0n

From this we deduce that

L6 @) 2 725 (1664 2000 - 2

To finish the proof it suffices to choose s > CQ(n)nQ — 2.
Ci(n)y

This completes the proof of Lemma 2.3.

Corollary 2.1. Let z € DN OE%(9), 2°=2%2), z € DN FE3;(8), §R>

BSGgR) (). Then ggR) (x) < 1.

O
(z) =

Lemma 2.4. Let z € DNE%(9), 2°=2°2) and in Hr = DN E%(8) a positive
solution u(x) of equation (1.1) is defined, which is continuous in Hg and vanishes
on the part T of the boundary OHg lied strongly interior in E%(8). Then if the

conditions (1.3)-(1.8) are fulfilled there exists a constant n = n(y,n) such that

supu(xz) > (1+mn) sup u(x).
Hg HpNE%(1)

Proof. First, show that if Lu(z) = 0 then L.u?(z) > 0. Indeed,

n

Lcu2(x) = 2u(x) Z aij(z)ui; + 2 Z aij(T)uiu+

3,j=1 4,j=1

+2u(x) z”: bi(z)u; > 2u(x Z aij(z)us; + Zn:bz(x)uZ =
=1

i,j=1 i,j=1
= 2u(z)(—c(x)u(z)) = —2¢(z)u?(z) > cou?(x) > 0.

Set sup u?(x) = M. Consider the auxiliary function
Hp

Uw)=M|1-gP @)+ sup ¢"(x)
x€H gpNIFE%(8)
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It is easily seen that

LC(U(Z')—’U,Q(m)) <0 in Hp, (U(x)— u2(x))‘ >0, (Ux)—u

r> > 0.

2(m))|8HR\F =

Using the maximum principle we have U(z) > u?(z) in Hg and, in particular,

sup u2(ac) <M|[1- inf ggR) (x) — sup ggR) (x) )
HgrNE%(1) HrNER(1) w€H RNIE%(8)

Let x € Hp N OF%(8). Then

(2 — af)? 2 " (g — 2)? 2 "L (20 — z)? 1/2
<ZW> - (Z(w—l(R))?> B (ZW) >8-1=T1.

i=1 i=1\"1 1=1
Therefore,  sup ggR) (x) <T77°p% If x € HR N E%(1) then
HRrNE%(8)
n 1/2 " 1/2
(=" (i =2\ "
Z “1Rp))2 < Z 1 Rp))2 +
i=1 (wi ( )) i=1 (wi ( ))
n 1/2
(21 —a7)?
+ — <1+41=2
<§ (w; '(R))?
Hence
inf (R) < 9—838
ik 95 (x) <27°5°,
We get
sup u2(z) < M(1— B2~ —77)),
HRrNE%(1)
This completes the proof of Lemma 2.4. O

Lemma 2.5. Let u(x) be a positive solution of the equation (1.1) in H}, =

Dn E%(l?) which is continuous in H}R and vanishes on the part of boundary
OH}, that lies strongly interior in E%(1.17). If the conditions (1.3)-(1.8) are
fulfilled then

supu(z) > (14+n) sup u(x).
H} HLNOEY(9)

Proof. Let z be a point from the set F}?’OOE%(Q) for which u(z) = sup u(z).
HENOEY(9)
By Lemma 2.4,

sup u(x) > (14+n) sup u(x).
HENE%(8) HLNOE%(1)

On the other hand,

sup  u(z) >u(z) and FE3(8) C E%(1:17).
HLNOE%(1)

This completes the proof of Lemma 2.5. 0
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Corollary 2.2. Let in H3 = D N E%(17) it is defined a positive solution u(z)

of the equation (1.1), which is continuous in F2R and vanishes on the part of the
boundary OH?% that lies strongly interior in E%(17). If the conditions (1.3)-(1.8)
are fulfilled then

supu(z) > (14+n) sup u(z).
H? H%NEY(9)

Proof. According to Lemma 2.5
sup  u(z)>(1+4+n) sup u(x).

H%NEY(1:17) H%NOEY(9)

On the other hand,
sup  u(z)= sup u(z)
H%NOEY(9) H%NEY(9)
and
sup  u(x) <supu(x).
HZNEY(1:17) H%

This completes the proof of Corollary 2.2. U

3. Main result

Theorem 3.1. Let the coefficients of operator L are defined on a domain D C G
and satisfy the conditions (1.3)-(1.8). Let u(x) be a solution of the problem (1.1)-
(1.2). Then for M(r) = sup |u(x)| we have:

DNOE?Q(1)

M(r)

1) either wu(z)=0 dn D or 2) lm—

r—oo T

> 0,

where § > 0 depend on v,n, k.

Proof. Let there exists a point y € D on which u(y) = m1 # 0, ;1 = const.
Without loss of generality we may assume that 7, > 0. Let DT = {z : x €
D,u(x) > 0} and D’ be a connected component of Dt that contains the point
y. It follows from the maximum principle that this component is an unbounded
set, on boundary of which u(z) vanishes. Let vy < p, then for any R > 0 the
inclusion ES (1) C E%(9/17) takes place. Hence, for any R > 1 Corollary 2.2
asserts the inequality

sup u(z) > (1+mn) sup u(x).

DNEY (1) DNES (1)

Let mg be a minimal natural number such that y € EO_mo (1)Nn D’. Let further,

r > 1 be arbitrary real number and the natural number m > myg be such that

Y <r <y
i.e.

1 1

mln — <Inr < (m+1)ln—

Y0 Y0

and hence
Inr
m > — 1.

1

Y0
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We assume also r is so large that

Inr Inr
InL ~2lnt’
Y0 Y
Denote N(r) = sup wu(x). Applying sequentially Corollary 2.2, we get
D'NEY(1)
_ _ — M
N(r)> (1 m=mo N (47™0) > (1 m=mop, = (1 m____ =
(r) > (1+n) (™) = (1+mn) m = (1+n) e

Inr

-
=1 +n)™n =no(1+n)*"% =nony" =noexp(lnmnpInr) =

= o exp(lnr?) = nor?,

where

1
21n L

n 70, 0 =Inns.

= T M= NG = (1)

Mo (1_|_77

Therefore, for sufficiently large r it holds the inequality

N(r

r

Using the maximum principle, this completes the proof of Theorem 3.1.
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