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INFIMAL CONVOLUTION AND DUALITY IN CONVEX

MATHEMATICAL PROGRAMMING

ELIMHAN N. MAHMUDOV AND MISIR J. MARDANOV

Abstract. In the paper it is considered a convex programming problem
(CPP) with functional and non-functional constraints. In contrast to
previous works, in the study of convex optimization problems, we do
not deal with the classical approach of perturbations. In particular,
thanks to the new representation of the indicator function on a convex
set, the successful use of the infimal convolution method in this work
plays a key role in proving duality results for problem CPP. Also, we
consider a convex mathematical programming problem with inequality
and linear equality constraints given by some matrix. In this case, it
turns out that the dual cone to the cone of tangent directions coincides
with the set of the image of the points of transposed matrix, taken with
a minus sign.

1. Introduction

Convex optimization of mathematical programming [1, 2, 3, 4, 7, 10, 11, 22,
23, 24, 28, 29, 30, 31] has wide applications in automatic control systems, signal
evaluation and processing, data analysis and modelling, finance electronic circuit
design, statistics and structural optimization, etc. With the latest advances in
computing and optimization algorithms, convex programming is almost as easy
as linear programming. The work [2] studies linear programming problems on
time scales. After a brief introduction to time scales, both the basic and dual
models of linear programming of time scales are formulated. Further, a weak
duality theorem and a theorem on optimality conditions for arbitrary time scales
are established and proved. In the work [1], quadratic programming problems
were formulated and solved using the time-scale approach. This approach com-
bines discrete and continuous quadratic programming models and extends them
to other cases. The formulation of the primal as well as the dual time scales qua-
dratic programming models has been successfully constructed on arbitrary time
scales. The new formulation provides an exact optimal solution for quadratic
programming models using isolated time scales. In the note [29], a convex math-
ematical programming problem is formulated, in which the usual definition of the
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feasible region is replaced by an essentially different strategy. Instead of specify-
ing the feasible region by a set of convex inequalities fi(x) ≤ bi, i = 1, . . . ,m, the
feasible region is defined via set containment. In accordance with the Pshenichny-
Rockafellar Lemmas [11], the necessary and sufficient optimality condition is valid
whenever the regularity condition is satisfied and an element a ∈ domf ∩C is the
optimal solution to minimize the function f(x) under the condition x ∈ C if and
only if 0 ∈ ∂f(a)−K∗

C(a). In the paper [8] the solution of nonlinear programming
problems by a Sequential Quadratic Programming trust-region algorithm is con-
sidered. The aim of the present work is to promote global convergence without
the need to use a penalty function.
Besides, various algorithms have been developed for solving the convex program-
ming problem, which iteratively go to the optimum by constructing a cutting
plane through the centre of the polyhedral approximation to the optimum. As a
result, a sequence of primal feasible points is generated, the limit points of which
satisfy the Kuhn-Tucker conditions of the problem. Additionally, are presented
simple, effective rule for dropping prior cuts, an easily calculated bound on the
objective function, and a rate of convergence. During the last decade, the field
of interior polynomial point techniques has become one of the dominant areas
of convex optimization. The goal of [22] is to present a general theory of algo-
rithms for polynomial interior points in convex programming. The theory makes
it possible to explain all known methods of this type and to extend them from
the original field of interior point technique - linear and quadratic programming
- to a wide range of essentially nonlinear classes of convex programs. In [31], to
study the behavior of interior point methods in very large-scale linear program-
ming problems, the application of such methods to continuous semi-infinite linear
programming problems in both primal and dual form is considered. Consider-
ing various ways of discretizing such problems, the author arrives at a certain
invariance property for (finite-dimensional) interior point methods. One of the
main questions in convex programming theory is what happens to the best cost
function when the constraint limits are changed from zero. It turns out that
the Lagrange multipliers in the optimal design provide information to answer the
sensitivity question. The study of this issue leads to a physical interpretation of
the Lagrange multipliers, which can be very useful in practical applications; with
relatively large values, they will have a significant impact on the optimal cost if
the corresponding constraints are changed.
Along with these the duality theory plays a fundamental role in the analysis of
optimization and variational problems. The reader can refer to [1, 8, 9, 25, 27] and
their references for more details on this topic. It not only provides a powerful the-
oretical tool in the analysis of these problems, but also paves the way to designing
new algorithms for solving them. Often, duality is associated with convex prob-
lems, yet it turns out that duality theory also has a fundamental impact even on
the analysis of nonconvex problems. Note that the duality in convex optimization,
in addition to the known ones, can be interpreted as a concept of the sensitivity
of the optimization problem to perturbations of its data. It should be noted that
in the works of Pshenichnyi [24], Bot [6, 7], Bonans [4], and many others, the per-
turbed problem is used for further research. Pshenichnyi’s book [24] provides an
overview of some recent and significant developments in the theory of perturbed
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optimization problems. Particular attention is paid to methods based on upper
and lower estimates of the objective function of perturbed problems. Conse-
quently, the proof of dual problems is based on not simple calculations associated
with additional auxiliary set-valued mappings. In recent works by the authors
Mahmudov and Mardanov [19], the concept of infimal convolution has been ap-
plied to an evolutionary dynamical problem with second-order differential inclu-
sions. For the first time in the presented article, it is shown that due to the result
of the representability of indicator functions described by convex inequalities the
concept of infimal convolution can also be successfully applied in convex/linear
programming problems. In the papers [12, 13, 14, 15, 16, 17, 18, 19, 20, 21],
for optimal control problems of discrete processes and differential inclusions the
necessary and sufficient conditions of optimality are formulated and the dual
problems are constructed. The work [18] investigates the Mayer’s problem with
evolutionary differential inclusions and functional constraints of the theory of
convex optimization; For this, first used an interesting auxiliary problem with
second-order discrete time and discrete approximate inclusions. Necessary and
sufficient conditions are proved, including the Euler-Lagrange inclusion, Hamil-
tonian inclusion, transversality and additional slackness conditions. This ap-
proach and results serve as a bridge between the problem of convex optimization
theory with differential inclusion and mathematical programming problems with
constraints in finite-dimensional spaces. The article [27] investigates the theory
of optimal control of second-order polyhedral discrete and differential inclusions
with state constraints. In terms of Euler-Lagrange inclusions and special condi-
tions of ”transversality” are formulated optimality conditions for posed problems.
Despite the external dissimilarities, by nature the convex problem of mathemat-
ical programming and the problems associated with polyhedral inclusions are
closely related to each other.
In the present work, the optimality conditions for a CPP are formulated with-
out perturbed approach [5, 6, 7, 24]. Also,without going over to the perturbed
problem we treat the dual results according to the dual operations of addition
and infimal convolution of convex functions [12, 13, 14, 17, 21, 26]. Note that
the paper [5] presents an overview of some recent, and significant, progress in the
theory of optimization problems with perturbations.
The duality approach for posed problems are new. The paper is organized in the
following order:
In Section 2, the needed facts and supplementary results from the book of Mah-
mudov [13] are given; infimal convolution of proper convex functions, conjugate
function, etc. are introduced and the CPP with functional and non-functional
constraints is formulated.
In Section 3 necessary and sufficient conditions of optimality for the problem
CPP are formulated and new proofs are offered for this. In particular, we con-
sider the convex optimization problem (PDL) with inequality and linear equality
constraints defined by C : Rn → Rm. In this case, it turns out that in the con-
ditions of Theorem 3.1 obtained for problems CPP, the dual cone to the cone of
tangent directions coincides with the image set of points of the transposed matrix
C∗, taken with a minus sign. Many applications including numerical algorithms
to solve problem CPP require so-called effective Slater’s constraint qualification
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conditions that ensure y∗0 = 1 in Theorem 3.1.
In Section 4 the duality theorems are proved and duality relation is established.
Use of infimal convolution throughout this work plays a key role in proofs of
duality results for problems CPP. The aim of the work is to establish conditions
under which strong duality can be guaranteed. To this purpose, convexity is a
compulsory requirement over the involved functional constraints and set in the
primal problem. At the end of the section, we establish a dual theorem for the
classical linear programming problem. In turn, this succeeds in new represen-
tations of the indicator function on the convex set. In what follows, we prove
that if α and α∗ are the values of primary and dual problems, respectively, then
there is weak duality, i.e., α ≥ α∗ for all feasible solutions. Moreover, if there is a
”strictly feasible point”, then the above statement can be strengthened, and the
existence of a solution to one of these problems implies the existence of a solution
to another problem in which strong duality holds, i.e., α = α∗, and in the case of
finiteness of α , the dual problem has a solution.

2. Needed Facts and Problem Statement

Further, for the convenience of the reader, all the necessary concepts, defi-
nitions of a convex analysis can be found in the book of Mahmudov [13]. Let
Rn be a n-dimensional Euclidean space, ⟨x, y⟩ be an inner product of elements
x, y ∈ Rn and (x, y) be a pair of x, y; xk, yk(k = 1, . . . , n) are the components
of vectors x and y, respectively. The convex cone KA(x

0), is called the cone of
tangent directions at a point x0 ∈ A to the set A if from x̄ ∈ KA(x

0) it follows
that x̄ is a tangent vector to the set A at point x0 ∈ A, i.e., there exists such
function η : R1 → Rn that x0 + λx̄ + η(λ) ∈ A for sufficiently small λ > 0 and
λ−1η(λ) → 0, as λ ↓ 0. In the convexity case of the set A, it is easy to see that

KA(x
0) = {x̄ : x̄ = λ(x− x0), x ∈ A, λ > 0}

is a cone of tangent directions at a point x0 ∈ A . To do this, it suffices to
set η(λ) ≡ 0 in the definition of the cone KA(x

0). A function φ is called a
proper function if it does not assume the value −∞ and is not identically equal
to +∞ . Obviously, φ is proper if and only if domφ ̸= ∅ and φ(x) is finite for
x ∈ domφ = {x : φ(x) < +∞}.

Definition 2.1. A function φ(x) is said to be a closure if its epigraph epiφ =
{(x0, x) : x0 ≥ φ(x), x0 ∈ R} is a closed set.

Definition 2.2. The function φ∗(x∗) = supx
{
⟨x, x∗⟩ − φ(x)

}
is called the con-

jugate of φ. It is clear to see that the conjugate function is closed and convex.

Definition 2.3. For two proper functions f1 and f2, we associate the function f
by the formula

f(x) = inf
{
f1(x

1) + f2(x
2) : x1 + x2 = x, x1, x2 ∈ Rn

}
= infx1∈Rn

{
f1(x

1) + f2(x− x1)
}

and call the function f the infimal convolution of the functions f1, f2 and denote
by f = f1□f2.
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In the mathematical literature, sometimes the infimal convolution is also de-
noted as f = f1⊕f2 or f = f1▽f2. Throughout this article, we will adhere to the
notation f = f1□f2. The terminology infimal convolution arises from the classi-
cal formula for integral convolution. Note that the operation □ is commutative
and associative, i.e., f1□f2 = f2□f1 and (f1□f2)□f3 = f1□f2□f3, respectively.
The infimal convolution f1□f2 is said to be exact provided the infimum above
is attained for every x ∈ Rn. One has dom(f1□f2) = domf1 + domf2. Besides
for a proper convex closed functions fi, i = 1, 2 their infimal convolution f1□f2
is convex and closed (but not necessarily proper). If fi, i = 1, 2 are functions not
identically equal to +∞, then (f1□f2)

∗ = f∗
1 +f∗

2 . Thus, the conjugate of infimal
convolution is the sum of the conjugates and this holds without any requirement
on the convex functions. The operations + and □ are thus dual to each other with
respect to taking conjugates. Section 3 is concerned with the following convex
programming problem CPP labelled as (CPP):

infimum φ(x), (2.1)

(CPP) subject to fk(x) ≤ 0, k = 1, . . . , N, x ∈ M, (2.2)

where objective function φ and fk, k = 1, . . . , N are convex functions, M is a
convex set and M ⊂ domfk, k = 1, . . . , N,M ⊂ domφ. It is required find a point
x0 to a problem CPP, satisfying (2.2) and minimizing φ. In what follows, to
this end our further strategy is as follows: first to derive necessary and sufficient
conditions of optimality for problem CPP and then to derive duality results for
them.

3. The optimality conditions for a convex CPP

Let us introduce the Lagrange function for problem CPP depending only the
cost and functional constraints by

L(x, y∗) = φ(x) + ⟨y∗, f(x)⟩, y∗ = (y∗1, . . . , y
∗
N ) ∈ RN

and the active index set denoting by I(x) = {k ∈ {1, . . . , N} : fk(x) = 0}.

Theorem 3.1. Let x0 be an optimal solution to CPP. Then there are multipliers
y∗0 ≥ 0 and y∗ = (y∗1, . . . , y

∗
N ) ∈ RN , not all equal to zero simultaneously, such

that y∗k ≥ 0, k = 0, . . . , N ,

0 ∈ y∗0∂φ(x
0) +

N∑
k=1

y∗k∂fk(x
0)−K∗

M (x0),

where K∗
M (x0) is the dual cone to the cone of tangent directions KM (x0) at a

point x0 ∈ M and y∗kfk(x
0) = 0, k = 1, . . . , N .

Proof. Let us construct a function

f(x) = sup{φ(x)− φ(x0), f1(x), . . . , fN (x)},

for which obviously x0 solves the following problem with a non-functional con-
straint

infimum f(x) subject to x ∈ M.
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By Theorem 3.2 [13] ∂f(x0) ∩K∗
M (x0) ̸= ∅ or

0 ∈ ∂f(x0)−K∗
M (x0). (3.1)

Now, according to Theorem 1.32 [13] we have

∂f(x0) = co
[
∂φ(x0) ∪

(
∪k∈I(x0) ∂fk(x

0)
)]

,

where I(x0) = {k : fk(x
0) = 0} is a set of active indexes. Then from (3.1) we

derive that

0 ∈ co
[
∂φ(x0) ∪

(
∪k∈I(x0) ∂fk(x

0)
)]

−K∗
M (x0).

It follows that there are y∗0 ≥ 0 and y∗k ≥ 0, k ∈ I(x0) such that y∗0+
∑

k∈I(x0) y
∗
k =

1, and

0 ∈ y∗0∂φ(x
0) +

N∑
k=1

y∗k∂fk(x
0)−K∗

M (x0). (3.2)

Setting y∗k = 0, k /∈ I(x0) we obtain y∗kfk(x
0) = 0, k = 1, . . . , N , where (y∗0, y

∗
k) ̸=

0. □

Corollary 3.1. Suppose we are considering the following problem without func-
tional constraints

infimum φ(x), subject to x ∈ M.

Then the condition of Theorem 3.1 is converted as follows

∂φ(x0) ∩K∗
M (x0) ̸= ∅.

Proof. In fact, the absence of functional constraints is ensured, for example, in
the case when fk, k = 1 . . . , N are functions with negative values in the entire
space. Then the conditions y∗kfk(x

0) = 0, k = 1, . . . , N is ensured, if the Lagrange
multipliers are equals to zero, i.e., y∗k = 0 for all k = 1, . . . , N . On the other hand,
since not all y∗0, y

∗
1, . . . , y

∗
n equal to zero simultaneously, then y∗0 > 0. As a result,

by condition of Theorem 3.1 we have 0 ∈ y∗0∂φ(x
0)−K∗

M (x0). Dividing the left
and right sides of this relationship by y∗0 and considering that (1/y∗0)K

∗
M (x0) =

K∗
M (x0) , we derive 0 ∈ ∂φ(x0)−K∗

M (x0) or ∂φ(x0) ∩K∗
M (x0) ̸= ∅ . □

Theorem 3.2. Let’s in problem CPP the Slater’s constraint qualification holds,
i.e. there exists x̄ ∈ M such that fk(x̄) < 0 for all k = 1, . . . , N . Then x0

is an optimal solution to CPP if and only if there exist nonnegative Lagrange
multipliers (y∗1, . . . , y

∗
N ) ∈ RN such that

0 ∈ ∂φ(x0) +
N∑
k=1

y∗k∂fk(x
0)−K∗

M (x0). (3.3)

y∗kfk(x
0) = 0, k = 1, . . . , N .

Proof. To establish the necessary condition, it suffices to show that in (3.2) y∗0 ̸=
0. Suppose on the contrary that y∗0 = 0 and find (y∗1, . . . , y

∗
N ) ̸= 0, xk∗ ∈ ∂fk(x

0),
and x∗ ∈ K∗

M (x0) satisfying

N∑
k=1

y∗kx
k∗ − x∗ = 0
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or
N∑
k=1

y∗k⟨xk∗, x− x0⟩ − ⟨x∗, x− x0⟩ = 0.

Then since fk(x)− fk(x
0) ≥ ⟨xk∗, x− x0⟩ and ⟨x∗, x− x0⟩ ≥ 0,∀x ∈ M , immedi-

ately we have

0 =

N∑
k=1

y∗k⟨xk∗, x− x0⟩ − ⟨x∗, x− x0⟩ ≤
N∑
k=1

y∗k
(
fk(x)− fk(x

0)
)
,

from which it follows that
N∑
k=1

y∗kfk(x) ≥ 0, ∀x ∈ M. (3.4)

On the other hand, since by Slater’s condition

N∑
k=1

y∗kfk(x̄) < 0, x̄ ∈ M.

The inequality (3.4) contradicts the Slater condition.
Let us prove the sufficiency of condition (3.3) of theorem; choose x0∗ ∈ ∂φ(x0),

xk∗ ∈ ∂fk(x
0), x∗ ∈ K∗

M (x0) such that x0∗ +
∑N

k=1 y
∗
kx

k∗ − x∗ = 0, y∗kfk(x
0) = 0,

with y∗k ≥ 0, k = 1, . . . , N . We now show, that optimality of x0 in the problem
CPP follows immediately from the definitions of cone of tangent directions and
subdifferential. Actually, for any x ∈ A we have

0 =
∑N

k=1 y
∗
k⟨xk∗, x− x0⟩ − ⟨x∗, x− x0⟩ ≤

∑N
k=1 y

∗
k

(
fk(x)− fk(x

0)
)
,

+φ(x)− φ(x0) =
∑N

k=1 y
∗
kfk(x) + φ(x)− φ(x0) ≤ φ(x)− φ(x0),

that is φ(x)−φ(x0) ≥ 0 or φ(x) ≥ φ(x0) for all x ∈ A. The proof of the theorem
is complete. □

The previous theorems allow for further detailing if we concretize the way of
specifying the set M . On this occasion we consider the convex optimization
problem (PDL) with inequality and linear equality constraints

infimum φ(x),

(PDL) subject to fk(x) ≤ 0, k = 1, . . . , N,

Cx = d,

where C : Rn → Rm is an m× n matrix and d ∈ Rn .

Theorem 3.3. Suppose that Slater’s constraint qualification holds for problem
CPP with the set

M = {x ∈ Rn : Cx− d = 0}.
Then, for x0 to be an optimal solution of (PDL), it is necessary and sufficient
that there exist nonnegative multipliers y∗1, . . . , y

∗
N such that

0 ∈ ∂φ(x0) +

N∑
k=1

y∗k∂fk(x
0) + imC∗ and y∗kf

∗
k (x

0) = 0, k = 1, . . . , N.
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Proof. First of all we prove that

−K∗
M (x0) = imC∗ = {x∗ ∈ Rn : x∗ = C∗y, y ∈ Rm}, (3.5)

where the adjoint mapping C∗ : Rm → Rn defined by ⟨Cx∗, y⟩ = ⟨x∗, C∗, y⟩, x∗ ∈
Rn, y ∈ Rm corresponds to the matrix transposition.). For all x ∈ M we have

KM (x0) = {x̄ : x̄ = λ(x− x0), Cx = d, λ > 0}
= {x̄ : x̄ = λ(x− x0), C(x− x0) = 0, λ > 0} = {x̄ : Cx̄ = 0}.

In order to verify the inclusion ” ⊃ ” in (3.5) take any x∗ ∈ Rn with x∗ = C∗y for
some y ∈ Rm. Then considering KM (x0) = {x̄ : Cx̄ = 0} , we have ⟨x∗, x−x0⟩ =
⟨C∗y, x − x0⟩ = ⟨y, Cx − Cx0⟩ = 0, from which it follows that x̄ ∈ KM (x0) and
consequently, x∗ ∈ −K∗

M (x0) for all x̄ ∈ −KM (x0). Now we need to check the
opposite inclusion ” ⊂ ”. Take x∗ ∈ −K∗

M (x0) and get ⟨−x∗, x − x0⟩ ≥ 0 for all
x such that Cx = d. Fixing any x̄ ∈ kerC = {x̄ ∈ Rn : Cx̄ = 0}, it is easy to see
that C(x0−x̄) = Cx0 = d, which yields ⟨x∗, x̄⟩ ≥ 0 as x̄ ∈ kerC. Obviously, −x̄ ∈
kerC and it follows that ⟨x∗, x̄⟩ = 0 for all x̄ ∈ kerC. Arguing by contradiction,
assume that there is no y ∈ Rm with x∗ = C∗y. Hence, x∗ /∈ Ω = C∗Rm ⊂ Rn ,
where Ω is nonempty, closed, and convex set. Then by separation Theorem 1.5
[13] there exists nonzero point x̄0 ∈ Rn satisfying

sup
{
⟨x̄0, v⟩ : v ∈ Ω

}
< ⟨x̄0, x∗⟩.

But since 0 ∈ Ω it follows that ⟨x̄0, x∗⟩ > 0 . On the other hand

γ⟨x̄0, C∗y⟩ = ⟨x̄0, C∗(γy)⟩ < ⟨x̄0, x∗⟩, γ ∈ R, y ∈ Rm.

Therefore ⟨x̄0, C∗y⟩ = 0 or ⟨Cx̄0, y⟩ = 0 as y ∈ Rm, i.e., Cx̄0 = 0. As a result x̄0 ∈
kerC, while ⟨x̄0, x∗⟩ > 0. This contradiction justifies the inclusion x∗ ∈ imC∗

in (3.5) or what is the same ” ⊂ ”. This completes the proof of (3.5). Now we
return to the proof of Theorem 3.3; the required proof follows immediately from
Theorem 3.1 and formula (3.5), where the cone of tangent directions is calculated
in terms of the image of the adjoint operator C∗ taken with a minus sign. □

The result below is a classical version of the Lagrange multiplier rule for convex
problems with differentiable properties.

Theorem 3.4. Suppose that φ and fk, k = 1, . . . , N are differentiable functions
at x0 and that the gradient vectors

{
f ′
k(x

0) : k ∈ I(x0)
}
are linearly independent.

Then, for x0 to be an optimal solution to problem CPP, with M = Rn it is
necessary and sufficient that there exist nonnegative multipliers y∗1, . . . , y

∗
N such

that

0 = φ′(x0) +
N∑
k=1

y∗kf
′
k(x

0) = Lx(x
0, y∗) and y∗kfk(x

0) = 0, k = 1, . . . , N.

Proof. SinceM = Rn it follows thatKM (x0) = Rn and as a resultK∗
M (x0) = {0}.

Then the formula (3.3) implies y∗0 = 0, which contradicts the linear independence
of the gradient vectors

{
f ′
k(x

0) : k ∈ I(x0)
}
. □
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4. Infimal Convolution and Duality for a convex CPP

First, we formulate the following proposition, with the help of which we con-
struct the dual problem and prove the duality theorems. We recall from convex
analysis that the indicator function of a set is defined as follows:

δA(x) =

{
0, x ∈ A,

+∞, x /∈ A.

Proposition 4.1. Let f(x) = (f1(x), f2(x), . . . , fN (x)) be vector-function and
A = {fk(x) ≤ 0, k = 1, . . . , N, x ∈ M}. Then the indicator function δA(x) of the
set can be represented as follows

δA(x) = sup
y∗≥0

⟨y∗, f(x)⟩.

Proof. Let us denote D = {fk(x) ≤ 0, k = 1, . . . , N}. Obviously, A = D ∩ M .
Then, if x ∈ A, we have x ∈ D = {fk(x) ≤ 0, k = 1, . . . , N} and x ∈ M . Hence,
the supremum of the inner product ⟨y∗, f(x)⟩ is attained at y∗ = 0. It means
that δA(x) = 0,∀x ∈ A. Suppose now x /∈ A. Then there are two cases: (2.1)
either x /∈ D or x /∈ M , (2.2) x /∈ D and x /∈ M . In both the first and second
cases, if x /∈ D, then there is at least one k0 for which fk(x) > 0. Therefore,
δA(x) = supy∗k≥0

∑
k ̸=k0

y∗kfk(x) + y∗kfk0(x) and recalling that fk(x) ≤ 0, k ̸= k0
by assumption, we derive that y∗k = 0, k ̸= k0 and δA(x) = y∗k0fk0(x). Tending
now y∗k0 to +∞ here, we have supy∗≥0⟨y∗, f(x)⟩ = +∞ i.e., δA(x) = +∞ when
x /∈ A . Note that in the case x ∈ D,x /∈ M as above the inner product ⟨y∗, f(x)⟩
is attained at y∗ = 0. On the definition of the indicator function the required
formula is proved. □

According to the results of convex analysis, it is known that the operations
of addition and infimal convolution of convex functions are dual to each other
[13, 26]. To this end, if there exists a point x0 ∈ A where φ is continuous (φ
is continuous on the relative interior ridomφ, however, φ may have a point of
discontinuity in its boundary), the problem (2.1), (2.2) can be converted as follows

infx∈A φ(x) = infx∈A
{
φ(x) + δA(x)

}
= − supx∈Rn

{
− φ(x)− δA(x)

}
= − supx∈Rn

{
⟨x, 0⟩ − [φ(x) + δA(x)]

}
= −(φ+ δA)

∗(0) = −
(
φ∗□δ∗A

)
(0) = − infx∗

{
φ∗(x∗) + δ∗A(−x∗)

}
= supx∗

{
− φ∗(x∗)− δ∗A(−x∗)

}
(4.1)

where δA(·) is the indicator function of A. In general, it can be noticed that
(φ+ δA)

∗(0) ≤ (φ∗□δ∗A)(0) and so

inf
x∈A

φ(x) ≥ sup
x∗

{−φ∗(x∗)− δ∗A(−x∗)}.

Then it is reasonable to announce that the dual problem to the primary problem
(2.1), (2.2) has the form

sup
x∗

{−φ∗(x∗)− δ∗A(−x∗)}. (4.2)

In addition, if the value of the primal problem CPP is finite, then the supremum
in the problem (4.2) is attained for all x∗. Thus, first of all, to ensure strong
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duality, it is necessary to check the fulfilment of the following equality

(φ+ δA)
∗(0) = (φ∗□δ∗A)(0) (4.3)

Denote now by G(y∗) the infimum of the Lagrange function, i.e.,

G(y∗) = inf
x∈M

L(x, y∗).

The problem of maximizing G(y∗) over all y∗ ≥ 0 is called the dual problem.

Theorem 4.1. (Duality theorem) Suppose that φ and fk, k = 1, . . . , N are closed,
proper and convex functions and all functions except possibly one are continuous
at x0 and these functions are finite at x0. In addition, suppose that M is closed
set. Then

inf
x
{φ(x) : x ∈ A} = sup

y∗
{G(y∗) : y∗ ≥ 0},

that is, the exact lower bound in the primal problem coincides with the exact upper
bound of the objective function in the dual problem.

Proof. From (4.1) we see that

sup
x∗

{−φ∗(x∗)− δ∗A(−x∗)} = −(φ∗□δ∗A)(0). (4.4)

On the other hand, it is easy to see that under the conditions of theorem, δA is
closed proper convex function and according to Theorem 3.15 [13] the equality
(4.4) holds and, as a consequence (see (4.3)),

sup
x∗

{−φ∗(x∗)− δ∗A(−x∗)} = −(φ+ δA)
∗(0). (4.5)

Therefore, for each x∗ the supremum is attained, i.e.,

(φ+ δA)
∗(0) = sup

x

{
⟨x, 0⟩ −

(
φ(x) + δA(x)

)}
= − inf

x
{φ(x) + δA(x)}. (4.6)

Now applying Proposition 4.1 from (4.5), (4.6), according to the definition of the
Lagrange function we obtain

supx∗
{
− φ∗(x∗)− δ∗A(−x∗)

}
= infx{φ(x) + δA(x)}

infx

{
φ(x) + supy∗≥0⟨y∗, f(x)⟩

}
= supy∗≥0 infx

{
φ(x) + ⟨y∗, f(x)⟩

}
= supy∗≥0G(y∗). (4.7)

In (4.7) considering that

inf
x
{φ(x) + δA(x)} = inf

x
{φ(x) : x ∈ A}

we have the desired result, i.e.,

inf
x
{φ(x) : x ∈ A} = sup

y∗≥0

{
G(y∗) : y∗ ≥ 0

}
.

□

Remark 4.1. Note that in the case of M ̸= Rn, in the dual problem (4.2) we
have to take, A = D ∩M , where D = {fk(x) ≤ 0, k = 2, . . . , N}, and calculate
δ∗A(−x∗). But given the well-known fact that δ∗A(−x∗) is a support function of i.e.,
δ∗A(x

∗) = sup{⟨x, x∗⟩ : x ∈ A} ≡ WA(x
∗) and WA(x

∗) ≤ min{WD(x
∗),WM (x∗)},

we can express the dual problem (4.2) in terms of support functions, which is
typical for representing dual problems (see, for example [12, 14, 16, 17, 19, 20]).
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Corollary 4.1. The duality relation, i.e., the strong duality of Theorem 4.1 is
equivalent to

inf
x∈M

sup
y∗≥0

L(x, y∗) = sup
y∗≥0

inf
x∈M

L(x, y∗).

Proof. It is not hard to see that

sup
y∗≥0

L(x, y∗) =

{
φ(x), if fk(x) ≤ 0, k = 1, . . . , N,

+∞, if fk(x) > 0, for some k

and the relation infx{φ(x) : x ∈ A} = supy∗{G(y∗) : y∗ ≥ 0}, of Theorem 4.1 is
satisfied if and only if

inf
x∈M

sup
y∗≥0

L(x, y∗) = sup
y∗≥0

inf
x∈M

L(x, y∗).

□

Definition 4.1. A vector y0∗ ≥ 0 is called a Kuhn-Tucker vector, if the relation

inf
x
{φ(x) : x ∈ A} = inf

x∈M
L(x, y0∗).

holds.

Corollary 4.2. Let the problem CPP has a vector Kuhn-Tucker y0∗. Then the
duality relations of Theorem 4.1 hold and, moreover,

inf
x
{φ(x) : x ∈ A} = G(y0∗) = sup

y∗≥0
G(y∗) = inf

x∈M
L(x, y0∗).

In particular, if x0 is a solution of problem CPP, then φ(x0) ≤ L(x, y0∗).

Proof. It was shown above that φ(x) ≥ G(y∗) for all y∗ ≥ 0 and x ∈ A . There-
fore,

G(y0∗) = inf
x
{φ(x) : x ∈ A} ≥ G(y∗), y∗ ≥ 0.

□

Suppose B is an m×n matrix and c ∈ Rm, d ∈ Rn. Setting φ(x) = ⟨d, x⟩, A =
{x : Bx ≤ c},M = Rn, instead of CPP, we have the following linear programming
problem,

minimize ⟨d, x⟩, subject to Bx ≤ c. (4.8)

Proposition 4.2. The indicator function δA of the set A = {x : Bx ≤ c} has
the form

δA(x) = sup
y∗≥0

⟨y∗, Bx− c⟩.

Proof. An elementary exercise. □

Return to the linear programming problem (4.8). Clearly

φ∗(x∗) = sup
x
⟨x∗ − d, x⟩ =

{
0, if x∗ = d,

+∞, if x∗ ̸= d.

On the other hand, by Proposition 4.2, it is not hard to see that

δ∗A(−x∗) = supx
{
⟨x,−x∗⟩ − δA(x)

}
= supx

{
⟨x,−x∗⟩ − supy∗≥0⟨y∗, Bx− c⟩

}
= supx infy∗≥0

{
⟨x,−x∗ −B∗y∗⟩+ ⟨y∗, c⟩

}
.
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Therefore,

δ∗A(−x∗) =

{
infy∗≥0⟨y∗, c⟩ if x∗ +B∗y∗ = 0,

+∞, if x∗ +B∗y∗ ̸= 0.

Now, since dom(φ∗□δ∗A) = domφ∗ + domδ∗A, it follows that if 0 ∈ dom(φ∗□δ∗A),
i.e., x∗ +B∗y∗ = 0, then

sup
x∗

{
− φ∗(x∗)− δ∗A(−x∗)

}
= −δ∗A(−d) = sup

y∗≥0

{
⟨−y∗, c⟩ : d+B∗y∗ = 0

}
.

In conclusion, the relation (4.1) can be rewritten as the following known duality
relation:

inf
x

{
⟨d, x⟩ : Bx ≤ c

}
= sup

y∗≥0

{
⟨−y∗, c⟩ : d+B∗y∗ = 0

}
.
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