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ON SOME ASYMPTOTICALLY HALF-LINEAR EIGENVALUE
PROBLEM FOR ORDINARY DIFFERENTIAL EQUATIONS OF
FOURTH ORDER

MASUMA M. MAMMADOVA

Abstract. In this paper, we consider a half-linearizable at infinity eigen-
value problem for ordinary differential equations of fourth order. We
prove the existence of four families of global continua of nontrivial solu-
tions of this problem in R x C? emanating from the points in R x {oo}
and possessing the usual nodal properties in some neighborhoods of these
points. Moreover, we will demonstrate the existence of nodal solutions
of some boundary value problems that are half-linearizable at zero and
infinity.

1. Introduction

We consider the following nonlinear eigenvalue problem

by = (p(x)y")" — (q(2)y') +r(z)y = Ar(z)y +
a(x)yt(z) + B(@)y~ (x) + g(z, y, ¥, y", ¥, N), = € (0,1),

y(0) =y'(0) =y() =y'(l) = 0, (1.2)
where A € R is a spectral parameter, p is a twice continuously differentiable pos-
itive function on [0,1], ¢ is a continuously differentiable non-negative function on
[0, ], 7 is a continuous real-valued function on [0, [], 7 is a continuous positive func-
tion on [0,1], o, 8 are continuous real-valued functions on [0,[], y© = max {y, 0},
y~ = (—y)T. The nonlinear term g is a continuous real-valued function on
[0,1] x R5 and satisfies the following condition:

(1.1)

9(@,y,s,0,w, A) = o[yl + [s] + |v[ + |w]) at (y,s,0,w) =00 (13)

uniformly in = € [0,{] and in A € A, for any bounded interval A C R.

Half-linear and half-linearizable Sturm-Liouville problems were first investi-
gated by H. Berestycki [5]. He showed the existence of two sequences of half-
eigenvalues of the half-linear Sturm-Liouville problem, corresponding to the usual
nodal properties, but differing in sign of the eigenfunctions in the neighborhood
of 0. Moreover, in [5], the author also proves that for a half-linearizable problem
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having different linearizations for y — 0% and y — 0~, these half-eigenvalues cor-
respond to bifurcation points in a global sense. The global bifurcation from infin-
ity of nontrivial solutions to the asymptotically half-linear Sturm-Liouville prob-
lem was studied in [8], where for different asymptotic linearizations at y = +o00
it is proved the existence of global continua of solutions which have the usual
nodal properties in some neighborhoods of asymptotic bifurcation points. In [6],
the authors showed the existence of nodal solutions of Sturm-Liouville boundary
value problem (without potential) that are half-linearizable at zero and infinity.

Half-linear problem with jumping nonlinearity for a 2mth-order, self-adjoint,
disconjugate ordinary differential operator, together with appropriate boundary
conditions was considered in [9]. In this paper the author shows that a sequence of
half-eigenvalues to a half-linear eigenvalue problem exists, with certain properties,
and proves various results regarding the existence and multiplicity of solutions
of a half-linear boundary value problem. It should be noted that these results
depend strongly on the location of the half-eigenvalues relative to the point A = 0.

The present paper is devoted to the study of global bifurcation from infinity
of nontrivial solutions of problem (1.1), (1.2).

The structure of this paper is as follows. Section 2 presents the classes of fixed
oscillation count constructed in [2, § 3] and auxiliary results for the corresponding
half-linear eigenvalue problem (1.1), (1.2) with g = 0. In Section 3, we find the
structure of asymptotic bifurcation points of problem (1.1), (1.2) with respect to
the classes with fixed oscillation count, and using [3, Theorem 5.9], we establish
a global bifurcation theorem for this problem. In Section 4, by applying this the-
orem, we prove the existence of nodal solutions for some boundary value problem
that is asymptotically half-linearizable at zero and infinity.

2. Preliminary

Denote by (b.c.) the set of differentiable functions on [0, (] satisfying the bound-
ary conditions (1.2).
Let E be the Banach space C3[0,1] N (b.c.) equipped with usual norm ||u||3 =

e+ 1o+ 1o+ 1, where [l = s (o)

A pair (\,y) € R x C*[0,1] satisfying (1.1), (1.2) is called a solution of problem
(1.1), (1.2).

The Green’s function of the differential expression (p (z)y")” — (q(z)y")" to-
gether with boundary conditions (1.2) can be used to convert (1.1), (1.2) to an
equivalent equation in R x E (see [2, §3.3]). Thus we may consider the structure
of the set of solutions of problem (1.1), (1.2) in the space R x E.

In this section we introduce subsets of E with fixed oscillation count, the
construction of which is presented in [2, §3.1] under more general boundary
conditions.

Let’s introduce the notation: Ty = (py”) — qv'.

By S we denote the subset of E defined as S = 51 U Sy, where

S1={ueE:ux)#0,Tu(x)#0,ze(0,1),i=0,1,2}
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and
Sy = {u € E : there exists ig € {0, 1, 2} and zy € (0,1) such that u(0)(z9) =0,
or Tu(zg) = 0 and if u(xg)u”(z¢) = 0, thenu'(z)Tu(z) < 0 inaneighborhood of xg,
and if v/ (zo)Tu(zg) = 0, thenu(z)u”(x) < 0 inaneighborhood of zp}.
It follows from the definition of the set S that if w € S, then the Jacobian
J = p?costpsint) of the Priifer-type transformation

y(x) = p(z) siny(x) cos 6(x),
y/(2) = pla) costi(z) sin () o
(py") () = p(x) cos () cos p(x), '
Ty(z) = p(x) sintp(z) sin f(x),
does not vanish in (0,1) (see [2, 4]).
For every y € S we define p(y,x), 0(y,x), ¢(y,x) and w(y,x) to be the con-
tinuous functions on [0, /] satisfying

p(y,z) = y*(z) + () + (pla)y (x))* + (Ty(x))?,

T
0(y, ) = arctgy—f, 0(y,0) = —7/2,

= arc 7:‘/(3:) =
o(y,r) = tg(py,,)(x),cp(y,()) 0,

UJ(y,.T) = Ctg?/f(yvﬂf) =

)

(py")(x) sin O(y, ) __(py")(0)

- w(y,0) = - B0
Ty(x) cos p(y, ) Ty(0
and $(y, ) € (0,7/2), € (0,1).

For each k € N and each v € {4+, —} let S/ be the set of functions y € S that
satisfy the following conditions:

1) 0(3,1) = (2% — 1)/2;

2) p(y,1) = km or (y,1) = (k+ 1)m;

3) for fixed y, as x increases from 0 to [, the function 0(y,z) (respectively
©(y, z)) strictly increasing takes values of mn/2, m € Z (sm, s € Z); as x de-
creases, the function 0(y, x) (respectively p(y, x)), strictly decreasing takes values
of mm/2, m € Z (respectively s, s € Z);

4) the function vy(x) is positive in a deleted neighborhood of = = 0.

For each k € N let S = Sp+ U S, . It follows directly from the definitions
of the sets S,j, S, s Sk, k € N, that they are open in E. Moreover, if y € 95},
ke N, v e {+, —}, then by [1, Lemma 2.4] there exists 7 € [0,!] such that
y(r) =/ (r) = f'(r) = /"(r) =0

It follows from [2, Theorem 1.2] that the eigenvalues of the problem

U(y)(z) = Ar(x)y(z), = € (0,1),

(2.2)
y € (b.c.),

are real, simple, and form an infinitely increasing sequence {\;}32,. Moreover,

the eigenfunction yi(x), k € N, corresponding to the eigenvalue )\, lies in Sk.

Putting g = 0 from (1.1)-(1.2) we get the following half-linear eigenvalue prob-
lem

~—

{ U(y)(z) = Ar(z)y(z) + alz)y™(z) + B(x)y~ (), = € (0,1), (2.3)
y € (b.c.), '
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Obviously, the problem (2.3) is positively homogeneous and linear in the cones
y > 0 and y < 0. Therefore, it is called a half-linear problem.

We present the following definitions, which are given in [5, 8, 9]. If there exists
a nontrivial solution (A, yy) to problem (2.3), then the number X is called the half-
eigenvalue of this problem, and ¥, is called the corresponding half-eigenfunction.
In this case the set {(A\,tyx) : t > 0} is a half-line of non-trivial solutions of
problem (2.3). Note that there may exist other half-lines of solutions (A, vy). A
half-eigenvalue X is said to be simple if there is only one such half-line or there are
exactly two such half-lines {(\,tyy) : t > 0} and {(A,tvy) : t > 0} with y) and
vy having opposite signs on a deleted neighborhood of x = 0, and all solutions
(A, yx) of problem (2.3) lie on these two half-lines.

By following the arguments in Theorem 3.3 of [9] and taking into account [2,
Theorem 1.3] we verify the validity of the following theorem for problem (2.1).
Theorem 2.1. There exist two unbounded sequences of simple half-eigenvalues
of problem (2.1),

AT <A << <
and

AL <Ay <o <AL <L,
The half-eigenfunction y;, corresponding to the half-eigenvalue i, lies in SY.
Furthermore, aside from solutions on the collection of the half-lines {(A\},tyy) :
t > 0} and trivial ones, problem (2.1) has no other solutions.

In the next lemma, the distances between the corresponding eigenvalues of
problems (2.3) and (2.2) are found.

Lemma 2.1. For each k € N and each v € {+, —} the following relation holds:

M
Mo < &=
A% — Akl < g
where
M o + d = i . 24
xrg[gﬁ]!a(:r)! Jnax, |B(z)| and 7o Igl[gl”\f(x)\ (2.4)

Proof. For any y € E we denote by X, 0} (z) (vespectively, x{,<0y(7)), = € [0,1],
the characteristic function of the set {z € [0,1] : y(z) > 0} (respectively, {z €
0,1] : y(x) < 0}). Since y; € Sy = S{ it follows that A} is the kth eigenvalue of
the linear problem

{ U(y)(z)

J)er(x)y(w) = Ar(z)y(z), = € (0,1),

where
Pr(@) = a(@)x(rs 0 (z) + B(T)xqyr<oy(2), = €[0,1].
It is obvious that
lok(@)| < Je(@)] [xgyyr> 03 ()] 4+ 18(2)] X gy <03 (2)] <
la(z)| + [B(z)] < M, = €[0,1].
By following the arguments in Lemma 4.1 of [2] we get
M M
Ap—— <A< A+ —.
70 70
The proof of this lemma is complete.
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Let us introduce the following notations:
f(z,y,s,v,w,\) = a(x)y™ + B(x)y~, (z,y,5v,w,\) €[0,1] xR?,
and
Iy = Ak — M /70, M + M /0]
Then, we have
|f(z,y,s,0,w,\)| < My, (z,y,s,v,w,\) €0,1] x R, (2.5)
Moreover, problem (1.1), (1.2) can be rewritten in the following form

by = r(x)y + f(z,y, 99" y" N +9(x,u, v, 9",y N), = €(0,1),
y € (b.c.),

which has the same form as (1.1), (1.2) of [3]. Lemma 2.1 and conditions (1.3),
(2.4) show that conditions (5.1) and (5.2) of [3] are satisfied for problem (2.6).
Therefore, the statement of Corollary 5.7 in [3] holds for this problem. Hence we
have the following results.
Lemma 2.2. The set of asymptotic bifurcation points of problem (1.1), (1.2)
with respect to the set R x S} is nonempty, and if (A, 00) is a bifurcation point to
this problem with respect to R x Si, then X\ € Ij,.
Remark 2.1. Note that Lemma 2.2 does not give an answer to the question
of what structure the bifurcation points respect to the set R x S}/, k € N, v €
{+, —}, have in the interval I} x {oco} (in fact, the question of how many such
points are contained in the interval I}, x {oc} is of interest).

In the next section, we will give an answer to the question expressed in Remark
2.1.

(2.6)

3. The structure of asymptotic bifurcation points and global
bifurcation of solutions to problem (1.1)-(1.2)

Lemma 3.1. Let \* € I, and (\*,0), k € N, v € {+, —}, be an asymptotic
bifurcation point of problem (1.1), (1.2) with respect to the set R x S}. Then
A= AL

Proof. Let k € N and v € {4, —} are arbitrary and fixed. Assume that (), 00),
A € I, is an asymptotic bifurcation point with respect to the set R x S} of
problem (1.1), (1.2). Then there exists a sequence {(\},y)}>2; € R x E such
that

Uyp) = A (@)yp + o) ()™ + B(e) (yn) ™+
90, v (w3)'s ()" (yn)™, M%), @ € (0,1), (3.1)
Y, € (b.c.),
Setting wy = I *T*l\ls’ we see that (A, w?) satisfies the following relations

Z, 'n,*7 :L /7 :L //7 ’;kl ”,7>\n xTr € 0 Z * &
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We rewrite the first relation in (3.2) in the following form

(wp)"" (@) = (p () {Ar(@)wy (2) + (@) (wy)* (2) + B(z)(wy)™ (z) +

—2p' () (wy,)" () — p" (@) (wy)"(2) + q(a) (wy)" () + ¢ (2)(w;)"(2)—

* 9(@, ys (@), (yn) (@), (y5)" (), (yh) " (2),A)
r(z)wy (v) + I

(
Ynlls
(3.3)
It follows from [3, Lemma 5.5] that we can choose the number n so large enough
to satisfy the inequality

9(x, yn (@), (y3,) (), ()" (), ()" (), \)]
y; 13

Since A} — X as n — oo taking into account the relation ||w}||s = 1 and the
conditions imposed on the functions p, q, v, 7,, 8 equality (3.3) implies that
there exists a constant C > 0 such that

[(wy)™(z)] < C1, z € [0,1].

<1

Therefore, by the Arzela-Ascoli theorem, there exists a subsequence {wy;, }5°_;
of the sequence {(\},w})}>°; which converges in R x E to (A, w*) for some w*
with [|w*||3 = 1. Then, it is seen from (3.2) (or (3.3)) that this subsequence
{w }2°_, converges to (A, w*) also in R x C*[0,1]. Moreover, it follows from 3,
Lemma 5.5] that

l9(z, y3,, (@), W3,)" (@), (W3,,)" (), (Y,)" (), A, ) oo
197,113

Then, passing to the limit as m — oo in the relations

Uwy, ) = A, T(@)wy, +alx)(w;, )"+ B)(w;,,)” +

— 0 as m — oo.

9, Y s WR) W) s W) A)
195,13

, e (0,), wy € (bc),

we get
{ l(w*) = M7 (x)w* + alx)(w*)T + B(z)(w*)~, = € (0,1),
w* € (b.c.).

Since wy, ,,, € Sy it follows that w* € Sy U Sy If w* € S}, then by [2, Lemma
1.1] we have w* = 0 which contradicts to the condition ||w*||3 = 1. Therefore,

w* € 57, and consequently, by Theorem 2.1 we get A* = A\ and w* = HZZ”ZIIS The
proof of this lemma is complete.

Let D C R x E be the set of nontrivial solutions to problem (1.1), (1.2). For
each k € N and each v € {+, —} by D/ C D we denote the union of all the
components of D which meet (A}, 00) with respect to R x S} (this set is non-
empty in view of Lemma 3.1 and [3, Theorem 5.9]). Note that the set D} may
not be connected in the space R x E but, by adding the points {(\,00) : A € R}
to this space and defining the corresponding topology on the resulting set, the
set D} U {(A\},00)} is connected.

By Lemma 3.1 it follows from [3, Theorem 5.9] the following result.
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Theorem 3.1. For each k € N and each v € {4, —} for the set D} one of the
following assertions holds:

(i) DY meets (A, 00) with respect to the set R x S¥, for some (kK',v') # (k,v);

(i) Dy meets R =R x {0} for some X € R;

(ili) The projection Pgr(Dy) of the set D}, onto R is unbounded.

In addition, if the union Dy, = D} U D, does not satisfy (ii) or (iii), then it
must satisfy (i) with k' # k.
Remark 3.1. Let £ € Nand v € {4+, —} be arbitrary and fixed. Then it follows
from Theorem 2.1 that A}, # A} for any k' € N, k' # k. While for A}, and A} the
following cases are possible: either (i) A" # A} for any k', or (i) A" = A} for
some k’. By Lemma 5.6 of [3], in the case (i) there exists an open neighborhood
Q7 of (A}, 00) such that

DiNnQp CRxSE,
and in a case (i) there exists an open neighborhood Q¥ of (A, 00) such that
DynQyn(Rx S.Y) #0.

In the latter case, in a sense, D contains a ”closed loop” that meets the point
(A}, 00) from two different directions.

4. Existence of nodal solutions to some half-linearizable problem

In this section, we consider the following nonlinear problem
U(y)(z) = d7(x)h(y(x)) + @)y " (x) + B(x)y~ (2), = € (0,1), (4.1)
y € (b.c.), '

where d # 0 is a parameter, h(s) is a continuous function on R that satisfies the
following conditions:

uh(u) >0, u € R\{0}; (4.2)
there exists hg, hoo € (0,4 00) such that
ho = lim hlw) and heo = lim M (4.3)
lul=0 u [u|=>+o00 U

We will determine the values of d for which there are solutions to problem (4.1)

oo
contained in (J S}.

k=1
Theorem 4.1 Suppose that for some k € N and v € {+, —}, either condition
}%’1 <d< 2—5 or % <d< }% holds. Then there exists a nontrivial solution of
problem (4.1) which lies in Sy
Proof. Consider the following nonlinear eigenvalue problem

{ Uy)(x) = AT()h(y(2)) + a(2)y™ () + Bz)y~ (2), € (0,1), (4.4)
y € (b.c.). '

By the second condition of (4.3) we get
(o) = hogtt + 1(u), (45)
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where
() — 0 as |u| — oco.
u
Let 4 : [0, + 00) — [0,4 00) be the continuous function defined by

v = ).
() = max (1)

It is obvious that if 0 < u; < wue, then
Y(u1) < (u2).
Moreover, we have
B max |vy(t " " *
5 o2 e @)l ien )] )

u u B u T [t*(u)]  w (46)

In this case, either
[t*(u)| = 400 as u — + oo,

or there exists positive number mg such that
[t*(uw)| < mg for u € [0, + o).
In both cases, it follows from (4.6) that

M—)Oasu%—i—oo. (4.7)
u

We have the following relation
y(w) _ 3lul) _ (lulls)
lulls = flulls = [lulls
which, by (4.7), implies that

Y (@)lloo = o(l|ulls) as [[ulls = +oo. (4.8)
By (4.5) we can rewrite (4.4) as follows:
U(y) = A7(@)hooy + a(x)y™ + B(x)y~ + AT(2)y(y), € (0,1), (4.9)
y € (b.c.). '
In view of (4.8) for (4.9) Theorem 3.1 holds. Then there exists a component
Dy of the set of nontrivial solutions of (4.9) for which one of the statements (i),
(ii), and (iii) of this theorem holds.
By first condition of (4.3) we represent h in the following form
h(u) = hou + 71 (u)

where

7w — 0 as |u] — 0.
u

Hence we can rewrite (4.5) also in the following form

Uy) = A71(x)hoy + a(z)y™ + B(x)y™ + A7(2)n(y), = € (0,1),
{ y?é ooy 0y y y 7 (y (4.10)

Following the above reasoning, we can show that

[n(w)llee = ofl[ull3) as [lulls = 0. (4.11)
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Then, by Corollaries 5.2 and 5.3 of [2] the set of bifurcation points of (4.10) with
respect to the set R x S} is nonempty. Hence following the arguments in Lemma

3.1 we can show that for each k¥ € N and v € {+, —} the point (2—2,0) is an
unique bifurcation point of (4.10) with respect to the set R x S}. Moreover, it
is clear from the proof of [3, Theorem 4.1] that D} C R x S{, and consequently,
the alternative (i) of Theorem 3.1 cannot hold. Moreover, D} can meets R x {0}
for A = 2—%

Now, to complete the proof of the theorem, it only remains to prove that
alternative (iii) of Theorem 3.1 does not hold for D}. Indeed, if the projec-
tion Pr(D}) of the set D} onto R is unbounded, then there exists the sequence
{(pn, un) o2 C Dy such that

fin, — OO0 S M — 00.
Note that for each k£ € N the pair (un,uy,) satisfies the following relations
Uun)(@) = pin 7(2)(un) (2) + (@) vy (2) + B2)uy (), © € (0,1),
(4.12)
up, € (b.c.).
We introduce the notation:

on(z) =

7’151"(%)) for u,(z) # 0,
ho  for uy(z)=0

Then (pin, uy,) solves the problem
Uy)(z) = A7(z)en(x)y(x) + a(z)y™(z) + B(x)y~ (), = € (0,1), (4.13)
y € (b.c.). '
It follows from (4.2) and (4.3) that there exists a constant p > 0 such that
h
ﬂ2p>0f01ranyu7é0,
u

which implies that
on(z) > max{p, ho} for z € [0,] and n € N.
Consequently, we have
o, T(2) o (z) — £o0o for any x € [0,1].

Since the half-eigenvalues of problem (4.13) are bounded from below in view of
Theorem 2.1 it follows that

fn, T P, — —00
is not possible. Note that the relation

Wn, T Op —> +00

is also impossible, since for a sufficiently large n, by Theorem 2.1, the number
of zeros of the function u,, will be large enough, which contradicts the condition
u, € Sy.

Therefore, the alternatives (i) and (iii) of Theorem 3.1 cannot hold for (4.9).
Then by alternative (ii) of this theorem D} meet (%,0) and (%,oo), whence
the assertion of the theorem follows immediately. The proof of this theorem is
complete.
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