
Proceedings of the Institute of Mathematics and Mechanics,
National Academy of Sciences of Azerbaijan
Volume 48, Number 1, 2022, Pages 113–122
https://doi.org/10.30546/2409-4994.48.1.2022.113

ON SOME ASYMPTOTICALLY HALF-LINEAR EIGENVALUE

PROBLEM FOR ORDINARY DIFFERENTIAL EQUATIONS OF

FOURTH ORDER

MASUMA M. MAMMADOVA

Abstract. In this paper, we consider a half-linearizable at infinity eigen-
value problem for ordinary differential equations of fourth order. We
prove the existence of four families of global continua of nontrivial solu-
tions of this problem in R× C3 emanating from the points in R× {∞}
and possessing the usual nodal properties in some neighborhoods of these
points. Moreover, we will demonstrate the existence of nodal solutions
of some boundary value problems that are half-linearizable at zero and
infinity.

1. Introduction

We consider the following nonlinear eigenvalue problem

ℓy ≡ (p (x) y′′)′′ − (q(x)y′)′ + r(x)y = λτ(x) y+
α(x)y+(x) + β(x)y−(x) + g(x, y, y′, y′′, y′′′, λ), x ∈ (0, l),

(1.1)

y(0) = y′(0) = y(l) = y′(l) = 0, (1.2)

where λ ∈ R is a spectral parameter, p is a twice continuously differentiable pos-
itive function on [0, l], q is a continuously differentiable non-negative function on
[0, l], r is a continuous real-valued function on [0, l], τ is a continuous positive func-
tion on [0, l], α, β are continuous real-valued functions on [0, l], y+ = max {y, 0},
y− = (− y)+. The nonlinear term g is a continuous real-valued function on
[0, l]× R5 and satisfies the following condition:

g(x, y, s, v, w, λ) = o(|y|+ |s|+ |v|+ |w|) at (y, s, v, w) = ∞ (1.3)

uniformly in x ∈ [0, l] and in λ ∈ Λ, for any bounded interval Λ ⊂ R.
Half-linear and half-linearizable Sturm-Liouville problems were first investi-

gated by H. Berestycki [5]. He showed the existence of two sequences of half-
eigenvalues of the half-linear Sturm-Liouville problem, corresponding to the usual
nodal properties, but differing in sign of the eigenfunctions in the neighborhood
of 0. Moreover, in [5], the author also proves that for a half-linearizable problem
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having different linearizations for y → 0+ and y → 0−, these half-eigenvalues cor-
respond to bifurcation points in a global sense. The global bifurcation from infin-
ity of nontrivial solutions to the asymptotically half-linear Sturm-Liouville prob-
lem was studied in [8], where for different asymptotic linearizations at y = ±∞
it is proved the existence of global continua of solutions which have the usual
nodal properties in some neighborhoods of asymptotic bifurcation points. In [6],
the authors showed the existence of nodal solutions of Sturm-Liouville boundary
value problem (without potential) that are half-linearizable at zero and infinity.

Half-linear problem with jumping nonlinearity for a 2mth-order, self-adjoint,
disconjugate ordinary differential operator, together with appropriate boundary
conditions was considered in [9]. In this paper the author shows that a sequence of
half-eigenvalues to a half-linear eigenvalue problem exists, with certain properties,
and proves various results regarding the existence and multiplicity of solutions
of a half-linear boundary value problem. It should be noted that these results
depend strongly on the location of the half-eigenvalues relative to the point λ = 0.

The present paper is devoted to the study of global bifurcation from infinity
of nontrivial solutions of problem (1.1), (1.2).

The structure of this paper is as follows. Section 2 presents the classes of fixed
oscillation count constructed in [2, § 3] and auxiliary results for the corresponding
half-linear eigenvalue problem (1.1), (1.2) with g ≡ 0. In Section 3, we find the
structure of asymptotic bifurcation points of problem (1.1), (1.2) with respect to
the classes with fixed oscillation count, and using [3, Theorem 5.9], we establish
a global bifurcation theorem for this problem. In Section 4, by applying this the-
orem, we prove the existence of nodal solutions for some boundary value problem
that is asymptotically half-linearizable at zero and infinity.

2. Preliminary

Denote by (b.c.) the set of differentiable functions on [0, l] satisfying the bound-
ary conditions (1.2).

Let E be the Banach space C3[0, l] ∩ (b.c.) equipped with usual norm ||u||3 =
||u||∞ + ||u′||∞ + ||u′′||∞ + ||u′′′||∞, where ||u||∞ = max

x∈[0, l]
|u(x)|

A pair (λ, y) ∈ R×C4[0, l] satisfying (1.1), (1.2) is called a solution of problem
(1.1), (1.2).

The Green’s function of the differential expression (p (x) y′′)′′ − (q(x)y′)′ to-
gether with boundary conditions (1.2) can be used to convert (1.1), (1.2) to an
equivalent equation in R×E (see [2, § 3.3]). Thus we may consider the structure
of the set of solutions of problem (1.1), (1.2) in the space R× E.

In this section we introduce subsets of E with fixed oscillation count, the
construction of which is presented in [2, § 3.1] under more general boundary
conditions.

Let’s introduce the notation: Ty ≡ (py′′)′ − qy′.
By S we denote the subset of E defined as S = S1 ∪ S2, where

S1 = {u ∈ E : u(i)(x) ̸= 0, Tu(x) ̸= 0, x ∈ (0, l), i = 0, 1, 2 }
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and

S2 = {u ∈ E : there exists i0 ∈ {0, 1, 2} and x0 ∈ (0, l) such that u(i0)(x0) = 0,
or Tu(x0) = 0 and if u(x0)u

′′(x0) = 0, thenu′(x)Tu(x) < 0 in a neighborhood of x0,
and if u′(x0)Tu(x0) = 0, thenu(x)u′′(x) < 0 in a neighborhood of x0}.
It follows from the definition of the set S that if u ∈ S, then the Jacobian

J = ρ3 cosψ sinψ of the Prüfer-type transformation
y(x) = ρ(x) sinψ(x) cos θ(x),
y′(x) = ρ(x) cosψ(x) sinφ(x),
(py′′)(x) = ρ(x) cosψ(x) cosφ(x),
T y(x) = ρ(x) sinψ(x) sin θ(x),

(2.1)

does not vanish in (0, l) (see [2, 4]).
For every y ∈ S we define ρ(y, x), θ(y, x), φ(y, x) and w(y, x) to be the con-

tinuous functions on [0, l] satisfying

ρ(y, x) = y2(x) + y′2(x) + (p(x)y′′(x))2 + (Ty(x))2,

θ(y, x) = arctg
Ty(x)

y(x)
, θ(y, 0) = −π/2,

φ(y, x) = arctg
y′(x)

(py′′)(x)
, φ(y, 0) = 0,

w(y, x) = ctgψ(y, x) =
(py′′)(x) sin θ(y, x)

Ty(x) cosφ(y, x)
, w(y, 0) = −(py′′)(0)

Ty(0)
,

and ψ(y, x) ∈ (0, π/2), x ∈ (0, l).
For each k ∈ N and each ν ∈ {+ , −} let Sν

k be the set of functions y ∈ S that
satisfy the following conditions:

1) θ(y, l) = (2k − 1)π/2;
2) φ(y, l) = kπ or φ(y, l) = (k + 1)π;
3) for fixed y, as x increases from 0 to l, the function θ(y, x) (respectively

φ(y, x)) strictly increasing takes values of mπ/2, m ∈ Z (sπ, s ∈ Z) ; as x de-
creases, the function θ(y, x) (respectively φ(y, x)), strictly decreasing takes values
of mπ/2, m ∈ Z (respectively sπ, s ∈ Z) ;

4) the function νy(x) is positive in a deleted neighborhood of x = 0.
For each k ∈ N let Sk = Sk+ ∪ S−

k . It follows directly from the definitions

of the sets S+
k , S

−
k , Sk, k ∈ N, that they are open in E. Moreover, if y ∈ ∂Sν

k ,
k ∈ N, ν ∈ {+ , −}, then by [1, Lemma 2.4] there exists τ ∈ [0, l] such that
y(τ) = y′(τ) = y′′(τ) = y′′′(τ) = 0.

It follows from [2, Theorem 1.2] that the eigenvalues of the problem{
ℓ(y)(x) = λτ(x)y(x), x ∈ (0, l),
y ∈ (b.c.),

(2.2)

are real, simple, and form an infinitely increasing sequence {λk}∞k=1. Moreover,
the eigenfunction yk(x), k ∈ N, corresponding to the eigenvalue λk, lies in Sk.

Putting g ≡ 0 from (1.1)-(1.2) we get the following half-linear eigenvalue prob-
lem {

ℓ(y)(x) = λτ(x)y(x) + α(x)y+(x) + β(x)y−(x), x ∈ (0, l),
y ∈ (b.c.),

(2.3)
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Obviously, the problem (2.3) is positively homogeneous and linear in the cones
y > 0 and y < 0. Therefore, it is called a half-linear problem.

We present the following definitions, which are given in [5, 8, 9]. If there exists
a nontrivial solution (λ, yλ) to problem (2.3), then the number λ is called the half-
eigenvalue of this problem, and yλ is called the corresponding half-eigenfunction.
In this case the set {(λ, tyλ) : t > 0} is a half-line of non-trivial solutions of
problem (2.3). Note that there may exist other half-lines of solutions (λ, vλ). A
half-eigenvalue λ is said to be simple if there is only one such half-line or there are
exactly two such half-lines {(λ, tyλ) : t > 0} and {(λ, tvλ) : t > 0} with yλ and
vλ having opposite signs on a deleted neighborhood of x = 0, and all solutions
(λ, yλ) of problem (2.3) lie on these two half-lines.

By following the arguments in Theorem 3.3 of [9] and taking into account [2,
Theorem 1.3] we verify the validity of the following theorem for problem (2.1).
Theorem 2.1. There exist two unbounded sequences of simple half-eigenvalues
of problem (2.1),

λ+1 < λ+2 < . . . < λ+k < . . . ,

and
λ−1 < λ−2 < . . . < λ−k < . . . ,

The half-eigenfunction yνk , corresponding to the half-eigenvalue λνk, lies in Sν
k .

Furthermore, aside from solutions on the collection of the half-lines {(λνk, tyνk) :
t > 0} and trivial ones, problem (2.1) has no other solutions.

In the next lemma, the distances between the corresponding eigenvalues of
problems (2.3) and (2.2) are found.
Lemma 2.1. For each k ∈ N and each ν ∈ {+ , −} the following relation holds:

|λνk − λk| ≤
M

τ0
,

where
M = max

x∈[0, l]
|α(x)|+ max

x∈[0, l]
|β(x)| and τ0 = min

x∈[0, l]
|τ(x)|. (2.4)

Proof. For any y ∈ E we denote by χ{y> 0}(x) (respectively, χ{y< 0}(x)), x ∈ [0, l],
the characteristic function of the set {x ∈ [0, l] : y(x) > 0} (respectively, {x ∈
[0, l] : y(x) < 0}). Since yνk ∈ Sk = Sν

k it follows that λνk is the kth eigenvalue of
the linear problem{

ℓ(y)(x) + φν
k(x)y(x) = λτ(x)y(x), x ∈ (0, l),

y ∈ (b.c.),

where
φν
k(x) = α(x)χ{yνk> 0}(x) + β(x)χ{yνk< 0}(x), x ∈ [0, l].

It is obvious that

|φν
k(x)| ≤ |α(x)| |χ{yνk> 0}(x)|+ |β(x)| |χ{yνk< 0}(x)| ≤

|α(x)|+ |β(x)| ≤M, x ∈ [0, l].

By following the arguments in Lemma 4.1 of [2] we get

λk −
M

τ0
≤ λνk ≤ λk +

M

τ0
.

The proof of this lemma is complete.
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Let us introduce the following notations:

f(x, y, s, v, w, λ) = α(x)y+ + β(x)y−, (x, y, s, v, w, λ) ∈ [0, l]× R5,

and

Ik = [λk −M/τ0, λk +M/τ0] .

Then, we have

|f(x, y, s, v, w, λ)| ≤M |y|, (x, y, s, v, w, λ) ∈ [0, l]× R5. (2.5)

Moreover, problem (1.1), (1.2) can be rewritten in the following form

ℓy = λτ(x) y + f(x, y, y′, y′′, y′′′, λ) + g(x, y, y′, y′′, y′′′, λ), x ∈ (0, l),
y ∈ (b.c.),

(2.6)

which has the same form as (1.1), (1.2) of [3]. Lemma 2.1 and conditions (1.3),
(2.4) show that conditions (5.1) and (5.2) of [3] are satisfied for problem (2.6).
Therefore, the statement of Corollary 5.7 in [3] holds for this problem. Hence we
have the following results.
Lemma 2.2. The set of asymptotic bifurcation points of problem (1.1), (1.2)
with respect to the set R×Sν

k is nonempty, and if (λ,∞) is a bifurcation point to
this problem with respect to R× Sν

k , then λ ∈ Ik.
Remark 2.1. Note that Lemma 2.2 does not give an answer to the question
of what structure the bifurcation points respect to the set R × Sν

k , k ∈ N, ν ∈
{+ , −}, have in the interval Ik × {∞} (in fact, the question of how many such
points are contained in the interval Ik × {∞} is of interest).

In the next section, we will give an answer to the question expressed in Remark
2.1.

3. The structure of asymptotic bifurcation points and global
bifurcation of solutions to problem (1.1)-(1.2)

Lemma 3.1. Let λ∗ ∈ Ik and (λ∗,∞), k ∈ N, ν ∈ {+ , −}, be an asymptotic
bifurcation point of problem (1.1), (1.2) with respect to the set R × Sν

k . Then
λ∗ = λνk.
Proof. Let k ∈ N and ν ∈ {+ , −} are arbitrary and fixed. Assume that (λ,∞),
λ ∈ Ik, is an asymptotic bifurcation point with respect to the set R × Sν

k of
problem (1.1), (1.2). Then there exists a sequence {(λ∗n, y∗n)}∞n=1 ∈ R × E such
that  ℓ(y∗n) = λ∗nτ(x)y

∗
n + α(x)(y∗n)

+ + β(x)(y∗n)
−+

g(x, y∗n, (y
∗
n)

′, (y∗n)
′′, (y∗n)

′′′, λ∗n), x ∈ (0, l),
y∗n ∈ (b.c.),

(3.1)

Setting w∗
n = y∗n

||y∗n||3
, we see that (λ∗n, w

∗
n) satisfies the following relations

ℓ(w∗
n) = λ∗nτ(x)w

∗
n + α(x)(w∗

n)
+ + β(x)(w∗

n)
−+

g(x, y∗n,(y
∗
n)

′,(y∗n)
′′,(y∗n)

′′′,λ∗
n)

||y∗n||3
, x ∈ (0, l), w∗

n ∈ (b.c.).
(3.2)
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We rewrite the first relation in (3.2) in the following form

(w∗
n)

′′′′(x) = (p (x))−1 {λτ(x)w∗
n(x) + α(x)(w∗

n)
+(x) + β(x)(w∗

n)
−(x)+

−2p′(x)(w∗
n)

′′′(x)− p′′(x)(w∗
n)

′′(x) + q(x)(w∗
n)

′′(x) + q′(x)(w∗
n)

′(x)−

r(x)w∗
n(x) +

g(x, y∗n(x),(y
∗
n)

′(x),(y∗n)
′′(x),(y∗n)

′′′(x),λ∗
n)

||y∗n||3

}
.

(3.3)
It follows from [3, Lemma 5.5] that we can choose the number n so large enough

to satisfy the inequality

|g(x, y∗n(x), (y∗n)′(x), (y∗n)′′(x), (y∗n)′′′(x), λ∗n)|
||y∗n||3

< 1.

Since λ∗n → λ as n → ∞ taking into account the relation ||w∗
n||3 = 1 and the

conditions imposed on the functions p, q, r, τ, α, β equality (3.3) implies that
there exists a constant C1 > 0 such that

|(w∗
n)

′′′′(x)| ≤ C1, x ∈ [0, 1].

Therefore, by the Arzela-Ascoli theorem, there exists a subsequence {w∗
nm

}∞m=1

of the sequence {(λ∗n, w∗
n)}∞n=1 which converges in R × E to (λ,w∗) for some w∗

with ||w∗||3 = 1. Then, it is seen from (3.2) (or (3.3)) that this subsequence
{w∗

nm
}∞m=1 converges to (λ,w∗) also in R×C4[0, l]. Moreover, it follows from [3,

Lemma 5.5] that

||g(x, y∗nm
(x), (y∗nm

)′(x), (y∗nm
)′′(x), (y∗nm

)′′′(x), λ∗nm
)||∞

||y∗nm
||3

→ 0 as m→ ∞.

Then, passing to the limit as m→ ∞ in the relations
ℓ(w∗

nm
) = λ∗nm

τ(x)w∗
nm

+ α(x)(w∗
nm

)+ + β(x)(w∗
nm

)−+

g(x, y∗nm
,(y∗n)

′,(y∗nm
)′′,(y∗nm

)′′′,λ∗
nm

)

||y∗nm
||3 , x ∈ (0, l), w∗

nm
∈ (b.c.),

we get {
ℓ(w∗) = λ∗τ(x)w∗ + α(x)(w∗)+ + β(x)(w∗)−, x ∈ (0, l),
w∗ ∈ (b.c.).

Since w∗
n,m ∈ Sν

k it follows that w∗ ∈ Sν
k ∪ ∂Sν

k . If w
∗ ∈ ∂Sν

k , then by [2, Lemma
1.1] we have w∗ ≡ 0 which contradicts to the condition ||w∗||3 = 1. Therefore,

w∗ ∈ Sν
k , and consequently, by Theorem 2.1 we get λ∗ = λνk and w∗ =

yνk
||yνk ||3

. The

proof of this lemma is complete.
Let D ⊂ R × E be the set of nontrivial solutions to problem (1.1), (1.2). For

each k ∈ N and each ν ∈ {+ , −} by Dν
k ⊂ D we denote the union of all the

components of D which meet (λνk,∞) with respect to R × Sν
k (this set is non-

empty in view of Lemma 3.1 and [3, Theorem 5.9]). Note that the set Dν
k may

not be connected in the space R×E but, by adding the points {(λ,∞) : λ ∈ R}
to this space and defining the corresponding topology on the resulting set, the
set Dν

k ∪ {(λνk,∞)} is connected.
By Lemma 3.1 it follows from [3, Theorem 5.9] the following result.
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Theorem 3.1. For each k ∈ N and each ν ∈ {+ , −} for the set Dν
k one of the

following assertions holds:
(i) Dν

k meets (λν
′

k′ ,∞) with respect to the set R×Sν′
k′ for some (k′, ν ′) ̸= (k, ν);

(ii) Dν
k meets R = R× {0} for some λ ∈ R;

(iii) The projection PR(D
ν
k) of the set Dν

k onto R is unbounded.

In addition, if the union Dk = D+
k ∪D−

k does not satisfy (ii) or (iii), then it
must satisfy (i) with k′ ̸= k.
Remark 3.1. Let k ∈ N and ν ∈ {+ , −} be arbitrary and fixed. Then it follows
from Theorem 2.1 that λνk′ ̸= λνk for any k′ ∈ N, k′ ̸= k. While for λνk′ and λ

ν
k the

following cases are possible: either (i) λ−ν
k′ ̸= λνk for any k′, or (ii) λ−ν

k′ = λνk for
some k′. By Lemma 5.6 of [3], in the case (i) there exists an open neighborhood
Qν

k of (λνk,∞) such that

Dν
k ∩Qν

k ⊂ R× Sν
k ,

and in a case (ii) there exists an open neighborhood Q̃ν
k of (λνk,∞) such that

Dν
k ∩ Q̃ν

k ∩ (R× S−ν
k′ ) ̸= ∅.

In the latter case, in a sense, Dν
k contains a ”closed loop” that meets the point

(λνk,∞) from two different directions.

4. Existence of nodal solutions to some half-linearizable problem

In this section, we consider the following nonlinear problem{
ℓ(y)(x) = d τ(x)h(y(x)) + α(x)y+(x) + β(x)y−(x), x ∈ (0, l),
y ∈ (b.c.),

(4.1)

where d ̸= 0 is a parameter, h(s) is a continuous function on R that satisfies the
following conditions:

uh(u) > 0, u ∈ R\{0}; (4.2)

there exists h0, h∞ ∈ (0,+∞) such that

h0 = lim
|u|→0

h(u)

u
and h∞ = lim

|u|→+∞

h(u)

u
. (4.3)

We will determine the values of d for which there are solutions to problem (4.1)

contained in
∞⋃
k=1

Sν
k .

Theorem 4.1 Suppose that for some k ∈ N and ν ∈ {+ , −}, either condition
λν
k

h∞
< d <

λν
k

h0
or

λν
k

h0
< d <

λν
k

h∞
holds. Then there exists a nontrivial solution of

problem (4.1) which lies in Sν
k .

Proof. Consider the following nonlinear eigenvalue problem{
ℓ(y)(x) = λ τ(x)h(y(x)) + α(x)y+(x) + β(x)y−(x), x ∈ (0, l),
y ∈ (b.c.).

(4.4)

By the second condition of (4.3) we get

h(u) = h∞u+ γ(u), (4.5)
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where
γ(u)

u
→ 0 as |u| → ∞.

Let γ̃ : [0,+∞) → [0,+∞) be the continuous function defined by

γ̃(u) = max
0≤|t|≤u

|γ(t)|.

It is obvious that if 0 < u1 < u2, then

γ̃(u1) ≤ γ̃(u2).

Moreover, we have

γ̃(u)

u
=

max
0≤|t|≤u

|γ(t)|

u
=

|γ(t∗(u))|(|t∗(u)|≤u)

u
=

|γ(t∗(u))|
|t∗(u)|

|t∗(u)|
u

. (4.6)

In this case, either

|t∗(u)| → +∞ as u→ +∞,

or there exists positive number m0 such that

|t∗(u)| ≤ m0 for u ∈ [0,+∞).

In both cases, it follows from (4.6) that

γ̃(u)

u
→ 0 as u→ +∞. (4.7)

We have the following relation

γ(u)

||u||3
≤ γ̃(|u|)

||u||3
≤ γ̃(||u||3)

||u||3
.

which, by (4.7), implies that

||γ(u)||∞ = o(||u||3) as ||u||3 → +∞. (4.8)

By (4.5) we can rewrite (4.4) as follows:{
ℓ(y) = λ τ(x)h∞y + α(x)y+ + β(x)y− + λ τ(x)γ(y), x ∈ (0, l),
y ∈ (b.c.).

(4.9)

In view of (4.8) for (4.9) Theorem 3.1 holds. Then there exists a component
Dν

k of the set of nontrivial solutions of (4.9) for which one of the statements (i),
(ii), and (iii) of this theorem holds.

By first condition of (4.3) we represent h in the following form

h(u) = h0u+ γ1(u)

where
γ1(u)

u
→ 0 as |u| → 0.

Hence we can rewrite (4.5) also in the following form{
ℓ(y) = λ τ(x)h0y + α(x)y+ + β(x)y− + λ τ(x)γ1(y), x ∈ (0, l),
y ∈ (b.c.).

(4.10)

Following the above reasoning, we can show that

||γ1(u)||∞ = o(||u||3) as ||u||3 → 0. (4.11)
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Then, by Corollaries 5.2 and 5.3 of [2] the set of bifurcation points of (4.10) with
respect to the set R×Sν

k is nonempty. Hence following the arguments in Lemma

3.1 we can show that for each k ∈ N and ν ∈ {+ , −} the point (
λν
k

h0
, 0) is an

unique bifurcation point of (4.10) with respect to the set R × Sν
k . Moreover, it

is clear from the proof of [3, Theorem 4.1] that Dν
k ⊂ R× Sν

k , and consequently,
the alternative (i) of Theorem 3.1 cannot hold. Moreover, Dν

k can meets R×{0}
for λ =

λν
k

h0
.

Now, to complete the proof of the theorem, it only remains to prove that
alternative (iii) of Theorem 3.1 does not hold for Dν

k . Indeed, if the projec-
tion PR(Dν

k) of the set Dν
k onto R is unbounded, then there exists the sequence

{(µn, un)}∞n=1 ⊂ Dν
k such that

µn → ∞ as n→ ∞.

Note that for each k ∈ N the pair (µn, un) satisfies the following relations

ℓ(un)(x) = µn τ(x)h(un)(x) + α(x)u+n (x) + β(x)u−n (x), x ∈ (0, l),
un ∈ (b.c.).

(4.12)

We introduce the notation:

φn(x) =

{
h(un(x))
un(x)

for un(x) ̸= 0,

h0 for un(x) = 0.

Then (µn, un) solves the problem{
ℓ(y)(x) = λ τ(x)φn(x)y(x) + α(x)y+(x) + β(x)y−(x), x ∈ (0, l),
y ∈ (b.c.).

(4.13)

It follows from (4.2) and (4.3) that there exists a constant ρ > 0 such that

h(u)

u
≥ ρ > 0 for any u ̸= 0,

which implies that

φn(x) ≥ max{ρ, h0} for x ∈ [0, l] and n ∈ N.

Consequently, we have

µn τ(x)φn(x) → ±∞ for any x ∈ [0, l].

Since the half-eigenvalues of problem (4.13) are bounded from below in view of
Theorem 2.1 it follows that

µn τ φn → −∞
is not possible. Note that the relation

µn τ φn → +∞
is also impossible, since for a sufficiently large n, by Theorem 2.1, the number
of zeros of the function un will be large enough, which contradicts the condition
un ∈ Sν

k .
Therefore, the alternatives (i) and (iii) of Theorem 3.1 cannot hold for (4.9).

Then by alternative (ii) of this theorem Dν
k meet (

λν
k

h0
, 0) and (

λν
k

h∞
,∞), whence

the assertion of the theorem follows immediately. The proof of this theorem is
complete.
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