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A FORMULA FOR THE APPROXIMATION OF FUNCTIONS

BY SINGLE HIDDEN LAYER NEURAL NETWORKS WITH

WEIGHTS FROM TWO STRAIGHT LINES

VUGAR E. ISMAILOV

Abstract. In this paper we consider approximation of a continuous
function by single hidden layer neural networks with an arbitrary non-
polynomial activation function and with weights varying on two fixed
straight lines. We obtain a formula for the approximation error.

1. Introduction

A single hidden layer neural network with r units in the hidden layer and input
x = (x1, ..., xd) evaluates a function of the form

r∑
i=1

ciσ(w
i·x− θi), (1.1)

where the weights wi are vectors in Rd, the thresholds θi and the coefficients
ci are real numbers and the activation function σ is a real univariate function.
For various activation functions σ, it was shown by many authors that one can
approximate arbitrarily well to any continuous function by functions of the form
(1.1) (r is not fixed!) over any compact subset of Rd. That is, the set of linear
combinations of functions of the form σ(wi·x − θi) is dense in C(Rd) in the
topology of uniform convergence on compacta (see, e.g., [7, 8, 10, 13, 21, 29]). The
most complete result of this type was due to Leshno, Lin, Pinkus and Schocken
[24]. They proved that a continuous activation function has the density property if
and only if it is not a polynomial. This result shows the approximation capability
of single hidden layer neural networks within all possible choices of the continuous
activation function σ. For detailed information on this and other density results,
see [15, 26, 29].

A number of authors proved that single hidden layer neural networks with some
suitably restricted set of weights also possess the density property. For example,
White and Stinchcombe [32] showed that a single layer network with a polygonal,
polynomial spline or analytic activation function and a bounded set of weights
has the density property. Ito [21] investigated this property of networks using
a monotone sigmoidal function (any continuous function tending to 0 at minus
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infinity and 1 at infinity), with weights located only on the unit sphere. Note
that sigmoidal functions have played an important role in neural network theory
and related application areas (see, e.g., [9, 14, 23, 25, 26]). Thus we see that
the weights required for the density property are not necessarily of an arbitrarily
large magnitude. But what if they are too restricted. Obviously, in this case, the
density property does not hold, and the problem reduces to the identification of
compact subsets in Rd over which the model preserves its general propensity to
approximate arbitrarily well. The first and most interesting case is, of course,
neural networks with a finite set of weights. In [17], we considered this problem
and gave sufficient and necessary conditions for good approximation by networks
with finitely many weights and also with weights varying on finitely many straight
lines. For a set W of weights consisting of two vectors or two straight lines, we
showed that there is a geometrically explicit solution to this problem (see [17]).

In this paper, we consider the approximation of single hidden layer networks
with weights from two fixed straight lines in Rd. As noted above these networks
are not always dense in the space of continuous functions. Clearly, the possibility
of density depends on compact sets, where approximated functions are defined.
Characterization of compact sets, for which various density results hold, was
given in [17, 20]. Here we are interested in the approximation error, within which
the networks with weights from two lines can approximate any given continuous
function. We obtain an approximation error formula for single hidden layer neural
networks with weights from two fixed straight lines. Our formula is valid for any
nonpolynomial activation function. For example, it holds for all the popular
activation functions (such as ReLU, Tanh, Sigmoid, etc).

2. Approximation error formula

Assume σ is a continuous function on R. Assume, besides, a and b are two
nonzero vectors in Rd. Consider the set

L(σ) =

{
r∑

i=1

ciσ(w
i·x− θi) : r ∈ N, ci, θi ∈ R, wi ∈ l1 ∪ l2

}
,

where l1 = {ta : t ∈ R}, l2 = {tb : t ∈ R}. That is, we consider the set of single
hidden layer neural networks with weights restricted to the straight lines l1 and
l2. Let Q be a compact subset of Rd and f ∈ C(Q). Consider the approximation
of f by neural networks from L(σ). The approximation error is defined as

E (f,L(σ)) def
= inf

Λ∈L(σ)
∥f − Λ∥ .

The following objects, called paths, were exploited in many papers. We will
use these objects in the further analysis.

Definition 2.1. A finite or infinite ordered set p = (p1,p2, ...) ⊂ Q with pi ̸=
pi+1, and either a · p1 = a · p2,b · p2 = b · p3,a · p3 = a · p4, ... or b · p1 =
b·p2, a·p2 = a·p3,b·p3 = b·p4, ..., is called a path with respect to the directions
a and b.
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It should be remarked that paths with respect to two directions in R2 were first
considered by Braess and Pinkus [5]. They proved a theorem, which yields that
the idea of paths are essential for deciding if a set of points

{
xi
}m

i=1
⊂ R2 has

the interpolation property for so-called ridge functions, which are used in many
modern application areas (for details, see, e.g., [2, 15, 30]). In the special case,
when a and b are the coordinate vectors in R2, paths represent bolts of lightning
(see, e.g., [1, 6, 28]). Note that bolts, first introduced by Diliberto and Straus [11]
under the name of permissible lines, played an essential role in various problems
of approximation of multivariate functions by sums of univariate functions (see,
e.g., [11, 12, 19, 22, 27, 28]). Note that the name “bolt of lightning” is due
to Arnold [1]. In [15], paths with respect to two directions were generalized to
those with respect to finitely many functions. The last objects were shown to
be effective in solutions of some representation problems arising in the theory of
linear superpositions.

In the following, we consider paths with respect to two directions a and b
in Rd. A finite path (p1,p2, ...,p2n) is said to be closed if (p1,p2, ...,p2n,p1)
is also a path. A path (p1, ...,pn) in a set Q is called enlargeable if there
exist points p0,pn+1 ∈ Q such that (p0,p1, ...,pn,pn+1) is a path. For ex-
ample, in a square S with the vertices (1, 0), (0, 1), (−1, 0), (0,−1), the set
{(1/2, 1/2), (1/2,−1/2), (−1/2,−1/2), (−1/2, 1/2)}, in the given order, is a closed
bolt. It is not difficult to understand that any bolt (p1, ...,pn) ⊂ S, with p1 and
pn different from the vertices of S, is enlargeable.

We associate each closed path p = (p1,p2, ...,p2n) with the functional

Gp(f) =
1

2n

2n∑
k=1

(−1)k+1f(pk).

In the sequel, we will assume that the considered compact set Q ⊂ Rd contains
a closed path. This assumption is not too restrictive. Sufficiently many sets in
Rd have this property. For example, any compact set with at least one interior
point contains closed paths. Note that if Q does not contain closed paths, then
in almost all cases we have E (f,L(σ)) = 0 for any f ∈ C(Q) (see [17]). We say
“in almost all cases” because there is a highly nontrivial example of such Q and
continuous f : Q → R, for which E (f,L(σ)) > 0 (see [17]).

In [16], we obtained the following lower bound error estimate in approximation
with elements from L(σ).

Lemma 2.1. (see [16]). Assume σ is an arbitrary continuous activation function.
Then

sup
p⊂Q

|Gp(f)| ≤ E (f,L(σ)) , (2.1)

for any f ∈ C(Q). Here the sup is taken over all closed paths.The inequality (2.1)
is sharp, i.e. there exist functions f for which (2.1) turns into equality.

It should be remarked that estimates of type (2.1) were also valid for approxi-
mation of functions by RBF neural networks (see [4]).

In our main result (see Theorem 2.1 below), we assume that the considered
function f has a best approximation in the set

R(a,b) = {g(a · x) + h(b · x) : g, h ∈ C(R)} ,
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that is, there exists v0 ∈ R(a,b) such that

∥f − v0∥ = inf
v∈R(a,b)

∥f − v∥ .

Some results on existence of a best approximation from R(a,b) was obtained in
our paper [18].

We also need the concept of extremal paths.

Definition 2.2. (see [15]). A finite or infinite path (p1,p2, ...) is said to be ex-
tremal for a function u ∈ C(Q) if u(pi) = (−1)i ∥u∥ , i = 1, 2, ... or u(pi) =
(−1)i+1 ∥u∥ , i = 1, 2, ... .

The following theorem is valid.

Theorem 2.1. Let Q ⊂ Rd be a convex compact set and f ∈ C(Q). Let the
following conditions hold.

(1) f has a best approximation in R(a,b);
(2) There exists a positive integer N such that any enlargeable path p =

(p1, ...,pn) ⊂ Q, n > N, can be made closed by adding not more than N points
of Q.

Then for any continuous nonpolynomial activation function σ the error of ap-
proximation from the class of single hidden layer networks L(σ) can be computed
by the formula

E (f,L(σ)) = sup
p⊂Q

|Gp(f)| ,

where the sup is taken over all closed paths.

Proof. Denote one of best approximations mentioned in Condition (1) by v0(x) =
g0(a ·x)+h0(b ·x). First assume that there exists a closed path p0 = (p1, ...,p2n)
extremal for the function f1 = f − v0.

Recalling the definition of extremal paths, we can write that

|Gp0(f)| = |Gp0(f − v0)| = ∥f − v0∥ . (2.2)

It follows from the universal approximation theorem of Leshno, Lin, Pinkus
and Schocken (see Introduction) that for any ε > 0 there exist natural numbers
m1,m2 and real numbers cij , wij , θij , i = 1, 2, j = 1, ...,mi, for which∣∣∣∣∣∣g0(t)−

m1∑
j=1

c1jσ(w1jt− θ1j)

∣∣∣∣∣∣ < ε

2
(2.3)

and ∣∣∣∣∣∣h0(t)−
m2∑
j=1

c2jσ(w2jt− θ2j)

∣∣∣∣∣∣ < ε

2
(2.4)

for all t ∈ [a, b]. Here [a, b] is a sufficiently large interval which contains both the
sets {a · x : x ∈ Q} and {b · x : x ∈ Q}.

Taking t = a · x in (2.3) and t = b · x in (2.4) we obtain that
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∣∣∣∣∣g0(a · x) + h0(b · x)−
m∑
i=1

ciσ
(
wi · x− θi

)∣∣∣∣∣ < ε, (2.5)

for all x ∈ Q and some ci, θi ∈ R and wi ∈ l1 ∪ l2. Clearly,∥∥∥∥∥f −
m∑
i=1

ciσ
(
wi · x− θi

)∥∥∥∥∥
≤ ∥f − g0 − h0∥+

∥∥∥∥∥g0 + h0 −
m∑
i=1

ciσ
(
wi · x− θi

)∥∥∥∥∥ . (2.6)

It follows from (2.6) that

E (f,L(σ)) ≤ ∥f − g0 − h0∥+

∥∥∥∥∥g0 + h0 −
m∑
i=1

ciσ
(
wi · x− θi

)∥∥∥∥∥ . (2.7)

The last inequality together with (2.2) and (2.5) yield

E (f,L(σ)) ≤ |Gp0(f)|+ ε.

Now since ε is arbitrarily small, we obtain that

E (f,L(σ)) ≤ |Gp0(f)| .

From this and Lemma 2.1 it follows that

E (f,L(σ)) = sup
p⊂Q

|Gp(f)| ,

where the sup is taken over all closed paths.

Assume now there does not exist a closed path extremal for the function f1.
Then it can be shown that there exists an infinite path extremal for f1 (see

[15, Theorem 1.3]). Let a path p = (p0,p1, ...,pn, ...) be infinite and extremal
for f1. Note that all the points pi must be distinct, otherwise we could form
a closed extremal path. Without loss of generality we may assume that the
finite extremal paths (p1,p2, ...,pn) ⊂ p are enlargeable in Q, and thus, by the
assumption, must be made closed by adding not more than N points. That is, for
each finite extremal path pn = (p1,p2, ...,pn), n > N , there exists a closed path
pmn
n = (p1,p2, ...,pn,qn+1, ...,qn+mn), where mn ≤ N . The functional Gpmn

n

obeys the inequalities∣∣Gpmn
n

(f)
∣∣ = ∣∣Gpmn

n
(f − v0)

∣∣ ≤ n ∥f − v0∥+mn ∥f − v0∥
n+mn

= ∥f − v0∥ (2.8)

and ∣∣Gpmn
n

(f)
∣∣ ≥ n ∥f − v0∥ −mn ∥f − v0∥

n+mn
=

n−mn

n+mn
∥f − v0∥ . (2.9)

We obtain from (2.8) and (2.9) that

sup
pmn
n

∣∣Gpmn
n

(f)
∣∣ = ∥f − v0∥ . (2.10)
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Using the above sum
∑m

i=1 ciσ
(
wi · x− θi

)
and the inequalities (2.5) with (2.7)

here, we obtain from (2.10) that

E (f,L(σ)) ≤ sup
pmn
n

∣∣Gpmn
n

(f)
∣∣ . (2.11)

The inequality (2.11) together with (2.1) yield that

E (f,L(σ)) = sup
p⊂Q

|Gp(f)| ,

where the sup is taken over all closed paths. The theorem has been proved. □

The next corollary shows that the sup |Gp(f)| in Theorem 2.1 can be easily
computed for some class of functions f . To formulate the corollary, let

Ω =
{
x ∈ R2 : c1 ≤ a · x ≤ d1, c2 ≤ b · x ≤ d2

}
,

where a = (a1, a2) and b = (b1, b2) are linearly independent vectors, c1 < d1 and
c2 < d2. We say that a function f(x) ∈ C(Ω) belongs to the class M(Ω) if f has

the continuous partial derivatives ∂2f
∂x2

1
, ∂2f
∂x1∂x2

, ∂
2f

∂x2
2
and for any x = (x1, x2) ∈ Ω,

∂2f

∂x1∂x2
(a1b2 + a2b1)−

∂2f

∂x21
a2b2 −

∂2f

∂x22
a1b1 ≥ 0. (2.12)

Note that the class M(Ω) with the coordinate directions a = (1, 0) and b = (0, 1)
in R2 was considered in the papers [3, 31], where the formulas for the error of
approximate representation f(x1,x2) ≈ f1(x1) + f2(x2) were derived.

The following corollary is valid. It generalizes Theorem 2.3 from [16], where a
specifically constructed, nontrivial activation function was considered.

Corollary 2.1. Assume σ is an arbitrary nonpolynomial activation function and
f ∈ M(Ω). Then the error of approximation from the class of single hidden layer
networks L(σ) can be computed by the formula

E (f,L(σ)) = 1

4
[g(c1, c2) + g(d1, d2)− g(c1, d2)− g(d1, c2)] ,

where

g(y1, y2) = f

(
y1b2 − y2a2
a1b2 − a2b1

,
y2a1 − y1b1
a1b2 − a2b1

)
.

Proof. Note that for any function in C(Ω) there is a best approximation inR (a,b)
(see [18]). Consider the following linear transformation

y1 = a1x1 + a2x2, y2 = b1x1 + b2x2. (2.13)

Let

K = [c1, d1]× [c2, d2].

Since the vectors (a1, a2) and (b1, b2) are linearly independent, for any (y1, y2) ∈ K
there exists only one solution (x1, x2) ∈ Ω of the system (2.13). This solution is
given by the formulas

x1 =
y1b2 − y2a2
a1b2 − a2b1

, x2 =
y2a1 − y1b1
a1b2 − a2b1

. (2.14)
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The linear transformation (2.14) transforms the function f(x1, x2) to the func-
tion g(y1, y2). Besides, this transformation maps paths with respect to the direc-
tions (a1, a2) and (b1, b2) to paths with respect to the coordinate directions (1, 0)
and (0, 1). As we have already known the latter type of paths are called lightning
bolts (see Definition 2.1 and the subsequent discussions). Hence,

sup
l⊂Ω

|Gl(f)| = sup
q⊂K

|Gq(g)| , (2.15)

where the sup in the left hand side of (2.15) is taken over closed paths with
respect to the directions (a1, a2) and (b1, b2), while the sup in the right hand side
of (2.15) is taken over closed bolts.

Now we find the sup in the right hand side of (2.15). It follows from (2.12)
that

∂2g

∂y1∂y2
≥ 0, (2.16)

for any (y1, y2) ∈ K. Integrating both sides of (2.16) over arbitrary rectangle
S = [u1, u2]× [v1, v2] ⊂ K, we obtain that

g(u2, v1)− g(u2, v2) ≤ g(u1, v1)− g(u1, v2). (2.17)

Let q = (q1, ...,q2n) be any closed bolt in K. The coordinates of qi we denote
by (αi, βi), i = 1, ..., 2n. Without loss of generality we may assume that q is
ordered so that the number

Gq(g) =
1

2n
([g(q1)− g(q2)] + [g(q3)− g(q4)] + · · ·+ [g(q2n−1)− g(q2n)])

(2.18)
is nonnegative and for each k = 1, ..., n, the first coordinates of q2k−1 and q2k

coincide.
Now we apply to q the bolts maximization process (see [19]). This process

replaces a closed bolt p ⊂ K with a closed bolt r ⊂ K such that Gp(g) ≤ Gr(g)
and the points of r coincide with the vertices of K. First, we obtain from (2.17)

that for each pair (q2k−1,q2k) there exists a pair (q
′
2k−1,q

′
2k), positioned in the

left or right side of the rectangle K, satisfying the inequality

g(q2k−1)− g(q2k) ≤ g(q
′
2k−1)− g(q

′
2k), (2.19)

More precisely, the pair (q
′
2k−1,q

′
2k) lies in the left side of K if β2k−1 < β2k and

it lies in the right side of K if β2k−1 > β2k. Let us remove from the sequence

q
′
1, ...,q

′
2n all pairs (if any) (q

′
i,q

′
i+1) with q

′
i = q

′
i+1 and the obtained sequence

denote by s1, ..., s2m. Obviously, m ≤ n and s = (s1, ..., s2m) is a closed bolt. It
follows from (2.18) and (2.19) that

Gq(g) ≤ Gs(g). (2.20)

In the above process, we have passed from q to s. Let us continue the bolts
maximization process. For this, write (2.17) in the form

−g(u1, v1) + g(u2, v1) ≤ −g(u1, v2) + g(u2, v2)

and apply the above technique to s, this time replacing its points with the points
positioned in the top and bottom sides of K. Then, as above, we can find a
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sequence of points s
′
1, ..., s

′
2m coinciding with the vertices of K and satisfying the

inequalities

−g(s2k) + g(s2k+1) ≤ −g(s
′

2k) + g(s
′
2k+1), k = 1, ...,m, (2.21)

where it is assumed that s2m+1 = s1 and s
′
2m+1 = s

′
1. As above, we remove from

the sequence s
′
1, ..., s

′
2m all pairs (if any) (s

′
i, s

′
i+1) with s

′
i = s

′
i+1 and the obtained

sequence denote by r1, ..., r2p. Obviously, p ≤ m and r = (r1, ..., r2p) is a closed
bolt. We obtain from (2.21) that

Gs(g) ≤ Gr(g). (2.22)

Since the closed bolt r contains only vertices of K,

Gr(g) =
1

4
(g(c1, c2)− g(c1, d2) + g(d1, d2)− g(d1, c2)) . (2.23)

The equations (2.20), (2.22) and (2.23) yield that

Gq(g) ≤
1

4
(g(c1, c2)− g(c1, d2) + g(d1, d2)− g(d1, c2)) . (2.24)

Since our selection of q was arbitrary and the vertices of K form a closed bolt,
we obtain from (2.24) that

sup
q⊂K

|Gq(g)| =
1

4
(g(c1, c2)− g(c1, d2) + g(d1, d2)− g(d1, c2)) . (2.25)

It follows from (2.15) and (2.25) that

sup
l⊂Ω

|Gl(f)| =
1

4
(g(c1, c2)− g(c1, d2) + g(d1, d2)− g(d1, c2)) , (2.26)

where the sup is taken over closed paths with respect to the directions (a1, a2)
and (b1, b2). Now we obtain from (2.26) and Theorem 2.1 that

E (f,L(σ)) = 1

4
(g(c1, c2)− g(c1, d2) + g(d1, d2)− g(d1, c2)) .

□
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